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ABSTRACT 
The variances  of genetic variances  within and between finite populations were systematically studied 

using a general multiple allele model with mutation in terms of identity by descent measures. We 
partitioned the genetic variances into components corresponding to genetic variances and covariances 
within and between loci. We also  analyzed the sampling variance. Both transient and equilibrium 
results were derived exactly and  the results can be used  in diverse applications. For the genetic 
variance within populations, G:, the coefficient of variation can be very  well approximated as 

for  a normal distribution of  allelic effects, ignoring recurrent mutation in the absence of linkage, 
where m is the  number of  loci, N is the effective population size, n is the sample  size, e,, is the initial 
identity by descent measure of  two genes within populations and t is the generation number. The first 
term is due  to genic variance, the second due  to linkage disequilibrium, and  third  due  to sampling. 
In the  short  term,  the variation is predominantly due  to linkage disequilibrium and sampling; but in 
the long term it can  be  largely due  to genic variance. At equilibrium with mutation 

cv(6:)m = 2 2  + - + -  
4Num  3N n 

where u is the mutation rate. The genetic variance between populations is a  parameter. Variance 
arises only among sample estimates due  to finite sampling of populations and individuals. The 
coefficient of variation for sample genetic variance between populations, i;, can be generally 
approximated as 

when the  number of  loci is large where S is the  number of sampling populations. 

T HERE  have been considerable analyses  of the 
genetic variation  within and between finite pop- 

ulations. The original work  of WRIGHT (1 95  1, 1952) 
partitioned the total genetic variance  of populations 
a? = (1 + d)u: into components of  variance  within and 
between populations a: = (1 - e)& ab‘ = 2ea,2, where 
0 is the coancestry  coefficient  between  individuals  in 
the same population and is the same  as the inbreeding 
coefficient, and a: is the genetic variance in an infinite 
random mating population. By incorporating muta- 
tion into the model COCKERHAM and TACHIDA (1 987) 
formulated the genetic variation  within and between 
populations with mutation in the same framework as 
WRIGHT’S partition and expressed the results in terms 
of identity by descent measures. In contrast, CHAK- 
RABORTY and NEI (1982)  and LYNCH and HILL (1 986), 
working on  a different mutation model, reached 
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somewhat different results. For a discussion  of the 
differences of the results between the two  models,  see 
COCKERHAM and TACHIDA (1 987). 

These  are, however,  analyses  of expectations of 
estimates  of genetic variances.  Estimates  of genetic 
variances  have variation. Variation arises among ge- 
netic  variances  within populations because  of drift  and 
mutation (“genetic sampling”) and finite sampling  of 
individuals  (“statistical  sampling”). For the genetic 
variance  between populations, however, variance 
arises  only among sample  estimates due to finite sam- 
pling  of populations and individuals. 

Compared with the analysis  of genetic variances, 
analysis  of the variance  of genetic variances  within 
and between populations is limited. BULMER (1976, 
1980) and AVERY and HILL (1 977) analyzed the vari- 
ance of genetic variance  within populations without 
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mutation for two  alleles  in a locus for  a relatively short 
time. They derived approximate results and observed 
that if many  loci affect the character the variance of 
genetic variance  within populations is contributed to 
largely by linkage  disequilibrium  between  pairs  of  loci, 
and  the distribution of individual  allelic  effects and 
frequencies may  be unimportant in the  short  term. 
LYNCH and HILL (1986) analyzed the equilibrium 
variance  of the genetic variance  within populations 
with mutation for  the constant variance mutation 
model. LYNCH (1988b) also approximated the sam- 
pling  variance  of the genetic variance  between popu- 
lations without mutation. Only approximate results 
were attempted in these analyses  however. 

In  this paper we attempt to derive complete and 
exact  solutions  of  variance  of genetic variances  within 
and between populations for  a quantitative character 
with additive effects of genes undergoing mutation. 
The analysis  is greatly facilitated by utilizing  various 
identity by descent measures.  Both transient and equi- 
librium  results are derived, and  the results are evalu- 
ated for different founder populations. Where possi- 
ble, we try to extract approximate formulae from the 
complex  solutions. These are then compared with the 
results  of  some  previous studies and  the analysis is 
presented in the discussion. There  are similarities in 
the approach of  using  descent  measures to  the papers 
of WEIR, AVERY and HILL (1980), WEIR and HILL 
(1980), COCKERHAM and WEIR (1983) and WEIR, 
REYNOLDS and DODDS (1 990). 

VARIANCE OF GENETIC  VARIANCE  WITHIN 
POPULATIONS 

Definitions and assumptions: Let us consider a set 
of independent replicate random mating (including 
selfing)  monoecious  diploid populations, each consist- 
ing of N individuals  in each distinct generation, all 
stemming from the same founder population, which 
is assumed to be at linkage equilibrium. We consider 
a quantitative character contributed to by m loci, 
which are otherwise neutral, undergoing mutation. 
Mutation is of the form that a random gene in a locus 
mutates to  the ith allele  with  probability v i  each gen- 
eration. The total mutation rate  for  the locus is u = 
Ci v,, i = 1, 2 ,  . . . , K for K alleles and  the equilibrium 
frequency for the ith allele is p i ,  = v i / u .  We consider 
only additive effects of genes within and between  loci. 

Let the genotypic  value for a genotype with  alleles 
Ai and Aj at  a locus  be G ,  = x i  + x,, where the x's are 
considered to be  identically independently distributed 
with  some distribution with  mean zero, variance a:, 
and the  fourth central moment p4. Genotypes formed 
by the union  of gametes A& and A,& have frequency 
Pj: = Pi;. Sums  of  genotypic frequencies indicated by 
dots for the indices summed, provide various  marginal 
totals.  Gametic frequencies for A&, for example, are 

denoted by 

P!k. = cp;. 
j f  

For convenience,  allelic frequencies have  an alterna- 
tive notation 

p i  = P!. for A i  and q k  = P:k for Bk. 

All of  these frequencies are expected population 
values so that they are expected values over all  pos- 
sible replicate populations maintained with  identical 
histories. 

Let the expected gene and gametic frequencies in 
a population  be  distinguished by a degree hat 
(or other notations indicated below),  as  in f i i .  Then, 
with random union  of gametes as  in our mating sys- 
tem, the expected genetic variance in a population is 
defined as 

;: = CCC IgtIgj(xi + Xj)' 
r i j  (1) + 2 zzzz (@!'. + Pi .k)X$k - ( 2  !&)' 

r#s i k r i  

where the summations of r and s are over  loci and  the 
summations of i , j ,  k and 1 are over alleles  with  respect 
to the implied  locus. This can  be  decomposed into 
components representing gene effects  (genic  variance) 
within  loci and the effect  of  linkage  disequilibrium 
which is the covariance  between  loci 

;: = ;:E + ad ( 2 )  02 

with 

Z g  = 2 CC j i ( 1  - f i i ) ~ S  - 2 CCC j i f i + x j  (3) 
r i  r i#j 

6:L = 2 CCzz (fi!'. + p.i - 2 f i i i k ) x i x k .  (4) 
4 s  i k 

The variance  of G: among replicate populations is 

Van(;:) = q;)' - %(&%) (5 )  

where G: and 5: are used to  denote  the variances for 
two  distinct replicate populations, which is the differ- 
ence between the variance for unrelated populations 
and  the covariance for replicate populations. In ana- 
lyzing the variance  of  variance (5),  we  will dissect it 
into parts of the variance corresponding to the differ- 
ent genetic variance components (2 ) .  

Identity  measures: Analysis  is greatly facilitated by 
utilizing identity by descent  measures.  With mutation 
they are the probabilities that  the genes are identical 
by descent and none of them has mutated. The re- 
quired descent measures are defined and listed 
in Table 1. They involve genes from four popula- 
tions, both  for within and between  loci.  Explicit  solu- 
tions of these descent measures for random mating 
monoecious populations are given  in APPENDICES A 
and B. Many  of these descent measures for one and 
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Definitions of identity measures 
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Description Identity measures 

One locus 
Within population 

T w o  genes B1 = Prob(a = b) 
Three genes 7) = Prob(a = b c) 
Four genes Q, = Prob(a e b EE c d) 

Two genes 0 ;  = Prob(a = a’) 
Three genes 7; = Prob(a =E b = a’) 
Four genes 6; = Prob(a = b,  a’ = b’) 

6; = Prob(a a‘, b H b‘) 
6; = Prob(a b, c a’) 

Between two populations 

Among three populations 
Three genes 7; = Prob(a E a’ E a”) 
Four genes 6; = Prob(a b, a’ a”) 

6; = Prob(a = a’, b = a”) 

Q2 = Prob(a * b, c = d) 

6; = Prob(a b a’ = b’) 
6; = Prob(a b = c = a’) 

6,“ = Prob(a = b = a’ a”) 

Among four populations 
Four genes 6; = Prob(a = a’, a” = a”’) 

Two loci 
Within population 

On two gametes 
On  three gametes 
On four gametes 

On two gametes 
On  three gametes 
On four gametes 

Between  two populations 

Among three populations 
On  three gametes 
On four gametes 

On  four gametes 
Among four populations 

e“, = Prob(a E b, A = B) 
f 1  = Prob(a b, A C) 
61 = Prob(a = b, C = D) 

& = Prob(a = a’,  A = A’) 
f i  = Prob(a =E a’, A E B’) 
6; = Prob(a = b, A‘ = B’) 
8; = Prob(a b, C A’) 

f; = Prob(a = a‘,  A = A”) 
6; = Prob(a E a’, B A”) 

6;” = Pro& E a‘, A” A’”) 

4; = Prob(a 3 b, A = A’) 
6; = Prob(a = a’, B = B’) 

8; = Prob(a b, A‘ = A”) 

Identity by descent measures are defined as the probability of genes being identical by descent without mutations (denoted by 0). The 
representation of random distinct genes from populations is 

Population 1 Population 2 
Locus 1 a b c d  a‘ b‘ 

Locus 2 A B  A’ B‘ 
I l l 1   I I  

Population 3 

a” 
I 

A “ 

Population 4 

a “’ 
I 

A ”’ 
Genes connected by a line are on the same gamete. Only a representative gene  arrangement is presented above. 

two populations have been given by H. TACHIDA and 
C.  C. COCKERHAM (unpublished results) and are re- 
produced here. We  use somewhat different notations 
here  due  to  the complexity  of the problem considered. 
As before, fl is  used for two  genes, y for  three genes, 
and 6 for  four genes. For genes  involving  two popu- 
lations a prime is used,  two primes for  three popula- 
tions, and  three primes for  four populations. Tilde (“) 
is used for descent measures  involving  two  loci. 

These descent  measures are functions of  effective 
population size N ,  mutation rate u,  recombination 
rate r for two  loci, generation time t and also  initial 
descent  measures  which depend on the  founder pop- 
ulation. The initial  values  of primed descent measures 
are equal to  the initial  values  of their unprimed coun- 

terparts within populations. At equilibrium with  mu- 
tation, except that 6;- = d:_ and &- = &,&,, all other 
primed descent  measures are zero. 

One-locus  analysis: We first  analyze the variance 
of genetic variance  within populations for  a locus by 
assuming that  the genetic variance is averaged over 
many  samples from the same population. In so doing 
we analyze  only the population component of variance, 
Varb(&$), of the genetic variance which  takes into ac- 
count genetic drift  and mutation that occurred during 
the period of separation of replicate populations, ig- 
noring the sampling  variance  of the genetic variance 
due to finite sampling  of  individuals  within replicate 
populations which  we  will  discuss later. 

From  Equation 3 the genetic variance among indi- 
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TABLE 2 

Gene  frequency functions associated  with XiZ 

c4 a: 

& I i ,  E, izit 1 - E, lid, 
!&i? E, if;: El # J 

!&.i:+i:< Et+] i8itiliJ 
gi?& E, i$ E, j :  - El iai, 

The components of expectations with &@? are given by replac- 
ing by in  all of the above expectations. 

viduals for a locus r in a  replicate  population is defined 
as 

GZgT = 2[c j ; x :  - !:x: - j l j j C i X j  
I I i#j 1 

= 2[i l  - i, - i,] = 2 i  

where j ,  is the expected  frequency of allele Ai in 
gametes at reproduction in a  replicate  population. To 
analyze the variance of this variance, we let the genetic 
variance of another distinct replicate  population  be 
defined  as 

z g ,  = 2[c j i X ?  - j p x :  - p;jjxixj] 
I i i#j 

= 2[i l  - i, - i,] = 22. 

Then  the population  component of variance of 2; is 

Varb(GigJ = WG;~,), - HGZ~,G~~,>  = 4[&' - gii]. 

Next we expand  the  expectation .!&9 = %-!& to 
include the expectation % over  replicate  populations, 
and g with respect to  the x's ,  assuming that allelic 
effects and frequencies are independent. First, in tak- 
ing  expectation with respect to  the x ' s ,  we note  that 
%x,x,xfll = g g ? x , x k  = S g 3 x j  = 0 and g x f  = p4, 

Ygpx,' = u$ for i # j # k # 1. Thus,  the  nonzero 
expectations with respect to  the x's  in gii are 

gii = gi1& + gi,& + g i 3 &  - 2 g i 2 i 1  

and  the associated gene  frequency  functions are listed 
in Table 2. 

Now  we take the  expectation, %, over  replicate 
populations using identity by descent measures. In 
deriving A& we note  that 5& j ?  is the expected 
probability that two randomly  chosen  genes in a  pop- 
ulation are  the same gene.  They could be  the same 
either because they are identical by descent (with 
probability 8,) or they are  not identical by descent 
(with probability 1 - 01) but  are identical in state (with 
probability p y  which is q2 = ci v'/u' if the initial 
population is at equilibrium). This gives 

% c j :  = el + (1 - el)q2. 
1 

By similar arguments, we can show that 

% E j ; j i = e ;  +( I  - 6 i ) q z  
i 

% 2 jij;jjjj= (6; - a;)( 1 - 42) 
i#j 

+ 2(e: - 27; - si + 2s4)(q2 - q,) 

+ (1 - 281 - 40; + 87; +Si + 264 - 664) 

* G?; - 44) 

where q, = ci (vi/u)' = ci f i r * .  It is noted  that  these 
results depend  on  the initial gene  frequencies pi0.S 

satisfying the condition % e, p Z ' ( p ; o  - pi , )  = 0 or 
r = 1,  2, 3 and 4. This condition is satisfied when 
(i) the initial population is at equilibrium, or is fixed 
for allele A, with probability p, ,  (%$io = p,.); (ii) the 
mutation rate is equal among alleles (p,* = l/K); or 
(iii) the  number of alleles is infinite (K  + m), in  which 
case q2 = q, = q4 = 0 also. When the condition is not 
satisfied, the  gene  frequency  functions become more 
complex. We avoid discussing theq  situations here. 

The nonzero  expectations in %Z2 are 

g.? = gi: + gi; + g 2 :  - 2 g i 1 i 2 ,  

Note  that this amounts  to fedacing " by O in all of 
the  expectations involving ZZ including the j ' s ,  e.g. 
% jijij,jj becomes % xi+, j;j?, and replacing 
the between population  descent measures Si and 64 by 
the within population  descent  measure 62, and also e;, 
r;, 84 by e l ,  yl, respectively. 
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Putting the analysis together, 

Varb(Zg,) = 4((e1 - 271 + 6 ,  - ei + 27i - 64) 

* [(I - 5qz + 8qs - 4 ~ 4 ) ~ 4  

- (1 - 9q2 + 8qs - 12qz + 12q4)~:] 

- (362 - 261 - 6 ;  + 264 - 26;) 

* [(q2 - 2qs + q 4 b 4  

- (1 - 9q2 + 8q3 - 12qz + 12q4)~:]). 

It is initially zero. At equilibrium (6:- = 0:- and all 
other primed descent measures are zero) 

Varb(G:g,) = 4((81_ - 271, + 61,) 
- [(I - 5qz + 8qs - 444)~4 

- (1 - 9q2 + 8q3 - 12qz + 12q4)~:] 

- (362, - 26,- - e:,)[(q2 - 2gs + q4)P4 

- (1 - 9 q 2  + 8qs - 12qz + 12q4)6:]). 

For the infinite allele mutation model 

Varb(Xg,) 

= 4((e1 - 27, +a, -e: + 27: - - 3u:) (6) 

+ (28, - 471 + 362 - 2e: + 471 - 6:  - 26;)u:l 

and  at equilibrium 

Varb(Zg,) = 4((81, - 271, + 6Im)(P4 - 3 4  (7) 
+ (2e1, - 47,- + 362, - 

Identity  disequilibrium: When we consider several 
loci, we  sum up the above variance over loci. In 
addition, the variance component also contains joint 
product terms involving  two  loci,  aside from the var- 
iance  of  linkage disequilibrium discussed  below. This 
part of the variation  as we will show  is due  to identity 
disequilibrium. 

For a pair of  loci r and s the non-zero expectations 
with  respect to the x's in  Varb(&) contain 

4 j i (  1 - fii)ih( 1 - i k ) d , d ,  
i h  (8) 

- 4 2s pic1 - f i i ) i k ( l  - i k ) d , d *  
~k 

where f i  and q denote allelic frequencies for loci r and 
s respectively. By taking the expectation we note 
that 

% cc fi?$ = 8, + (e,, - Qq2, + (els - &)q2, 
i h  

+ (1 - el, - e,, + &)q2,q2, 

% fiPi: = 8 + (e,, - 8)q2, + (els - 81q2, 
i h  

+ (1 - el, - el, + &)q2,q2,. 

This gives (8) the value 

4(& - 8)(1 - 42,)(1 - q 2 , ) d r d ,  

since % tick j& % f i j i k  = 1 and % zick j'& 
= % fi'4.t = el, + (1 - e1,)q2,_ For a  founder 
population at identity equilibrium, 6 ;  = 81,81,, how- 
ever. I 

o b  = a1 - O1,B1, is one of the components (COCKER- 
HAM 1984) of the total identity disequilibrium 9 = 
e", - 8$1, (WEIR and COCKERHAM 1969) which  is the 
difference between double identity and  the  product 
of the probabilities for single identities. Other com- 
ponents are qa = 2(+, - 8,) and q d  = e", - 2+, + 8, 
with ??b + va + V d  = 3. Consequently, when summing 
over all  pairs  of  loci (indexed by r and s) for an infinite 
allele mutation model, we have 

Varb(&) = 4 C.((e, - 2 r l  + a1 - e: + 27: - 64) 
r 

*(/.l.4-U:)+(362-261-6~ (9) 

+ 264 - 26;)6,4) + 4 cc oba:,u:,. 
r 2 S  

Linkage  disequilibrium: Because our populations 
are finite with  effective  size N ,  the genetic variance 
within populations also contains covariances  between 
loci due to linkage disequilibrium. For a pair  of loci r 
and s in a population this  covariance  is, from (4) 

&.,s = 4 (t!'. + e!; - 2jiik)Xixk. 
i k  

This contains two  types  of  linkage disequilibrium, 
distinguished according to whether the two  genes, 
within  an individual, are gametic or not 

d!. = P!. - fi& for gametic genes 
fi!. - 

k - Pf - f i i i h  for nongametic genes. 
0 .  

These are covariances representing differences be- 
tween the  joint frequencies and  the products of  single 
ffequencies. For  monoecious mating populations, 
Df = 0. By expectation *GiL,) = 0 and  the variance 
is 

Varb(;:L,) = * 2 L J 2  - *ZL,&,) 

Expressed  in terms of identity by descent measures 
and summed over all  pairs  of  loci 

= 8 CC(& - 2+, + & - & + 2 3  - 8;) 
4 s  

which  can  also  be  expressed  as 
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if we let q2 = 8; - 2T; + $4 .  As pointed out by 
COCKERHAM (1984), the variance of linkage disequi- 
librium is actually a  component of the  identity 
disequilibrium. 

The total  population  component of variance for  the 
genetic variance within populations is then 

Sampling  variance: We  also consider the effect of 
sampling on  the variance of the genetic variance 
within populations. For samples from  different  popu- 
lations, the variance of genetic variances among sam- 
ples contains an  additional  source of variation due  to 
sampling. The genetic variance among individuals in 
a sample from  a  replicate  population with  size n is 
defined as 

+ 2 cczC(@!". + P'.k)&xk - (2 12 j ix i ) ' }  
r#s t k r i  

where n/(n - 1) is the usual correction  factor  for bias, 
and P ' s  (and j ' s )  represent  actual  frequencies.  This 
can be  decomposed  into  components  representing 
the sampling of gene  frequencies and  the effects of 
sample departures  from  Hardy-Weinberg  and linkage 

In this setting the sample heterozygotes are  repre- 
sented only once in the summation and  the  gene 

frequencies are calculated as 

bi = P;:  + !A Pj: (1 5 )  
: 9  

Throughout  the  rest of the  paper, a sum such as that 
in this equation is meant to include every possible 
heterozygote  for allele A,, but  to include it only once. 
The coefficients 

4 .  6:: = Pi: - jp and Df: = P;: - 2$,j, 

are  the Hardy-Weinberg disequilibrium coefficients 
which measure sample departures  from  Hardy- 
Weinberg genotypic frequencies. Since separate di- 
genic frequencies p!', and k$ cannot  be  observed, it 
is always convenient to define  the  sum of sampling 
gametic and nongametic linkage disequilibria as a 
composite measure 

1. A .  

i r k  = 61.'. + 6l.k = Pi.k, + Pi.k - 2$i{k 

with 

f i t . ! .  + P2.k 

= @ i f +  X @ +  Pif+1/2 C(P$+P$) .  (16) 

Note  that the expected value of G:L is zero,  but  that 
of G:HW is not. With sampling the expectation %'= 
@!&x contains three level expectations: with 
respect to  the x's, gW with respect to  the sampling 
within populations and @ over-all replicate popla-  
tions. If we utilize 5&,j = f i i ,  .i@':: = fiP, and WJ: = 
2fi,fij, we can show that 

t<j k< I iCj k< 1 

gw %(Gwg) - 2 -- 2n-  1 2 z( 1 - Fp:)u:. 
2(n-  1) 7 

Thus  the lack  of sample Hardy-Weinberg  equilibrium 
is to  reduce  the variance on  the average slightly. As 
an average  over  replicate  populations %x%(G;) = 
2 z7(l - e,)(l - qn)ax,. 

The sampling component of variance is defined as 
2 

var,(%) = %%g(c2,)2 - %%S(Z,G:) (17) 
= % g( X( ;:)2 - ( Z y )  

which is the difference between the variance of un- 
related samples and  the covariance of replicate sam- 
ples within populations,  where G: and Z: are used to 
denote  for two distinct samples within a  population, 
since %?, %%(G:Z$) = !& g(G;)* for an unbiased esti- 
mate of u:. Let i?: be  defined similarly as G: above but 
with  all A being  replaced by -. Since we decompose 
G: into  components and also in our decomposition the 
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components &ig and &iHw are correlated,  the sampling TABLE 3 

component of variance of the variance comprises Sampling gene and genotypic frequency functions associated 

Var,(Gi) = Var,(Gig) + 2 Cov,(Gig, G L W )  with W=W(Gs:) 

+ Var,(GzHw) + var,(&) 

with 

Var,( t Z g )  = - 4n2 {CL-qi:l+i:2+i:3 
(n- 1)' r 

-2 ir1ir2 - ir12r1 - ir'2r' 
- i r 3 j r 3  + 2i,1ir2) 

+ C C - @ i r l i 5 1  + i r , i s *  - 2 i r l i s 2  
I f 5  

- i r 1 . Z 5 1  - i r 2 i 5 2  + 2i,125') I 
Var,( G H w )  = - 4n2 {CWi:4+i:2+i:5 

(n- 1)' T 

+ 2:s - 22,22,4 - 2 i r 3 i r 5  

- i r 4 i r 4  - ir& 
- i r 5 Z r 5  - ir3.& + 2ir$?,4 

+ 2 i r 3 L )  

+ CC W j r 4 2 5 4  + i r 2 2 5 2  - 2 2 , 2 2 5 4  
r f s  

- 2 ~ 4 2 ~ 4  - i r 2 2 s 2  + 2 i r 2 j 5 4 )  I 
8n 2 2 cov, (Gig, G H W )  = - 

(n-1)' T 

+ 2:' + i:3 - irlir2 
- i r 2 i r 4  - i r 3 i r 5  

{ C W i r l i r 4  

- 2712~4 - i r 2 2 r 2  

- i r 3 2 r 3  + i r 1 2 r '  + &2&4 + i r 3 2 r 5 )  

+ ~ ~ ~ % l i s 4  + & * i s 2  - & l i s 2  

- i r & 4  - i r l &  

r#5 

- i , , Z 2  + .&lis' + i & 4 )  ) 
8n ' 

Var,( GzL) = - ~ ~ ~ i : 5 6  + 42:57 
(n- 1)' r f 5  

- 4 i r s 6 i r s 7  - ir562r56 

- 4 i r s 7 2 r s 7  + 4 i r s 6 2 r s 7 ) .  

These involve a series of complex sampling gene 
and genotype  frequency  functions. These func- 
tions are listed in Table 3 and analyzed in detail in 

P+. a:, or a:,a:, 

xi,1Z1 
gi,& 
x2,:4E:4 
.g2,4&4 
%i75i,5 

.%i,]Z2 
~i,,Zd 
5&+2,4 

g 2 , : 4 i r 5  

E* j , i ,  Et $!I jZiJ 
E, ;;'pa E, $! ] j : j ;  

E& P::P:. E*#] P::P;: 
E ". 

E, j,ja E2 # J {Zi; 

E, j , P :  E, $!I fGP; 
E, j e P :  E, ?4 ] jai; 

2 Et*] i*.blptiJ 

' ( 1  I I 

2 E,<] j ,jlP;. 
.i";ci,, is ] 

.i";cZ&y 

.K2& 

.K2,1i,2 

.%.?,A 

.K2,?iS4 
-KL,i ,d; 
.%i,<A 
%i,,,,Z,,, 

... E8 E k  p ^ z i h  

E, Ek jyi; 
Et E k  P:,p:: 
E* E k  j t i :  

E8 E h  $tp.$ 
Er E h  i ? P , $  
Ex E h  (PI! + k ) ( P !  + p'k) 
Ez E h  i t $ t i k i h  

Ez E h  (P" + @ l k ) i t i h  

The components of expectations with 5&!&(Gi)' are given by 
replacing - by - in  all of the above  expectations. 

APPENDIX c.  The results  for the infinite allele muta- 
tion model are 
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and 

where a = 1/2n. T o  the  order of l/n, these are 

What is analyzed here is the  component of variance 
of the variance among samples within populations. 
The total variance of 2: contains  both the  components 
of variance among  populations and  among samples 
within populations 

Var(Z) = var,(Z) + Varb(2,). 

The advantage of partitioning  the variance of variance 
into  components is that variances of averages can be 
easily accommodated. For example, the average ge- 
netic variance for k equal sized samples from  the  same 
replicate population is 31 = E t l  G:,/k. The variance 
among 5:s from  different  replicate  populations is 

Numerical  Analysis 
Founder  populations: We consider three  founder 

populations in numerical analysis: an infinite equilib- 
rium  population,  a random finite  equilibrium  popu- 
lation, and a random fixed  population, i.e., fixed  for 
genes in proportion  to  their  equilibrium  frequencies. 
For an  infinite  equilibrium founder population all 
descent measures are zero initially, and all primed 
descent measures among  populations will remain  zero 
except 6; = 8: and 6: = 01,elS. For  a  finite  equilibrium 
founder population, the initial values of the descent 
measures are  the equilibrium values of the descent 
measures within the populations with size No. If the 
subpopulations in subsequent  generations are of the 
same size as the finite  equilibrium founder population 
( i e . ,  N = NO) the descent  measures within populations 
will not  change.  Otherwise every descent  measure will 
change. For a  random fixed founder population all 
descent measures are initially one. 

Linkage  structure: Linkage affects descent meas- 
ures involving two loci. For numerical analysis we 
assume that loci are randomly  distributed in the ge- 
nome with no  interference within chromosomes. In 
this case the  relation  between  recombination rate c 
and map distance d is c = (1 - e-2d) /2  for loci  in the 
same chromosome. The recombination rate is 0.5 for 
loci  in different chromosomes. In analysis we first 
sample locations for  the m loci for  a given number of 
chromosomes and  map  lengths  and  then calculate 
the pairwise recombination  rates  among m loci 
accordingly. 

Without  mutation: Let us first  consider the dynam- 
ics of the variance of the genetic variances ignoring 
recurrent  mutation.  This discussion is of relevance to 
small populations in a relatively short  time such as 
control  populations in many experiments. Here we 
assume the allelic effects x’s to  be normally distributed 
so that p 4  = 3a: and let = 1. Figure  1 depicts the 
relative magnitudes of Varb(&,), Van(&.), VarW(&), 
Varw(&,) and Varw(&)  for two linkage structures 
with numbers of chromosomes M = 3 and  10  and 
each chromosome having map  length L = 1  Morgan. 
The values in the  figure  depend very much on  the 
number of loci m and sample size n. As m increases 
the relative weight of joint loci terms increases and as 
n increases the sampling variance decreases. We use 
m = 100  and n = 100 as representative values. Com- 
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c is the recombination rate. Thus in the absence of 
linkage, 

4 
m 100 

F: : 
0 

10 t3 
0 u 
0 
0 

9 1 

.d 

k 
(d * 

0.1 .” 
0 20 40 60 80 100 

Generation (t) 
FIGURE 1.-The transient behaviors of the five components of 

variance of genetic variance within populations without mutation 
for two linkage structures: the solid  lines for the number of chro- 
~nosonle M = 10 and  the dashed lines for M = 3 with the length of 
each chromosome L = 1 Morgan. The founder population is at 
equilibrium with N o  = 1000 and u = Other parameters are 
N = 2 0 , n =  100,rn= l O O a n d d =  1. 

pared with the  other components, Varw(i%g) and 
Var,(&w) are one or two orders smaller and 
Var,(G:Hw) > Varw(G:g). Only Varb(&) increases  sig- 
nificantly  as  linkage  increases. This is because  in other 
components the variances are dominated by terms 
other than identity disequilibrium coefficients. The 
identity disequilibrium  coefficients ?la, 716 and q d  have 
been examined in detail by TACHIDA and COCKERHAM 
( 1  989). Depending on the population size and recom- 
bination rate, they are generally  small in magnitude, 
start from initial  value  zeros (if there is no initial 
identity disequilibrium), quickly increase to their max- 
imum  values and  then decrease. q d  is of order 1/N; 
whereas qa and q b  are of order 1/N2. As time goes on, 
the identity disequilibrium coefficients decrease and 
the whole  variance  of the genetic variance  within 
populations is dominated by  Varb(&:g).  Var,(&) is 
dominated by the coefficient ( 1  - el,)( 1 - 0 , )  rather 
than qa and q b .  So it can  have an appreciable effect for 
n as large as 100 and is relatively independent of 
linkage structure. Since  initially  most of the variation 
is due to sampling rather  than differentiation of  pop- 
ulations, Var,(&)  can  play a significant role in the 
first several generations. 

Having  made these qualitative discussions we  now 
approximate the variance of the variance in terms of 
the variance.  In APPENDIX B, we approximate the 
variance  of  linkage disequilibrium. For a pair of  loci 
the dynamics  of q d  can  be approximated as 

ignoring recurrent mutation and letting q d o  = 0, where 

Since the sampling  variance is dominated by 
Var,(&) and VarW(&) is dominated by the term with 
(1  - e,,)( 1 - el,), the sampling  variance  can  be approx- 
imated as 

2 
VarW(6:), Y ;u& 

This is in agreement with Equation 4 of WEIR and 
HILL (1 980). depends on  the distribution of 
allelic  effects.  For the normal distribution of  allelic 
effects, it can  be roughly approximated as 

((1 - &) - (1  - &T}d. 
Thus,  the coefficient  of variation of the genetic vari- 
ance within populations can be approximated as 

Y {( 1 -&)-l}+&( 1 -($)+? 
5m( 1 -dll,) n 

(23) 

in the absence  of  linkage or with a large number of 
chromosomes. As decreases  in the  rate of ( 1  - 1/  
2N)’, CV(G:), increases in the  rate of (1 - 1/2N)-”’ 
after  a few generations. It takes about 

generations for Varb(Gig), to become larger than 
Varb(&)t,  which  is about 23 generations for  the pa- 
rameters of Figure l , ignoring linkage.  When N >> m, 
the condition is t > 1 Om( 1 - e,,)/9 generations. Figure 
2 plots the dynamic  behaviors  of u:, Var(G:) and 
CV(G:) for M = 10 chromosomes, along with the 
approximation (23) for free recombination. The ap- 
proximation is reasonably good. 

With mutation: With recurrent mutation the dy- 
namics  of variance  of genetic variance  within  popula- 
tions is a complex  process. It depends very  much on 
founder populations, linkage structures and equilib- 
rium values.  When founder populations contain large 
genetic variances the variance of the genetic variance 
can first increase to its  maximum  value and then 
decrease to  the equilibrium value. On  the  other  hand, 
when founder populations contain relatively  small or 
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FIGURE 2.-The transient behaviors of the mean, variance and 

coeficient of variation of genetic variance within populations with- 
out mutation for M = 10. Other parameters are the same as  Fig- 
ure 1. The dashed line is the approximation of Equation 23 for 
free recombination. 

no genetic variances the dynamics is a monotone 
process  with the variance  of the genetic variance  in- 
creasing from its  initial  value to the equilibrium. Ini- 
tially  most  of  variation is due  to  the sampling variance, 
Varw(&), [Varw(i%g) and Var,(i%Hw) are always  negli- 
gible] and  the rapid build-up of the variance of linkage 
disequilibrium Varb(&). However, gradually in about 
30 generations (for the parameters of Figure 3) the 
variance  becomes dominated by the component of 
genic  variance  Varb(&). Figure 3 plots the transient 
behavior of the mean, variance and coefficient  of 
variation  of the genetic variance  within populations 
for three  founder populations. 

At equilibrium the variance of the genetic variance 
within populations is essentially a function of the 
parameter 4 = 4Nu. If  we ignore the identity disequi- 
librium  coefficients q b  at equilibrium, from (7) 

Varb(G,), = 4 ~(se,, - 47,- + 3a2- - e:&:, 

for a normal distribution of x. Approximately, the 
one-locus  descent  measures at equilibrium are 
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FIGURE 3.-The transient behaviors of the mean, variance and 

coefficient of variation of genetic variance within populations with 
mutation for three founder populations: the solid  lines for  the 
random fixed populations; the dashed lines for the finite equilib- 
rium population with No = 1000; and the dotted lines for the 
infinite equilibrium population. N = 1000, n = 100, m = 100, M = 
10, u = and uz = 1. 

Taking also the variance of linkage  disequilibrium 
and the sampling  variance into account 

for 4 small  in the absence  of  linkage,  which agrees 
with the principal terms of the approximation of 
LYNCH and HILL (1 986) for two  alleles under  a differ- 
ent mutation model (they did not analyze the sampling 
variance). .Figure 4 depicts the equilibrium values  of 
& and CV(&) against 4 for m = 100. For 4 
both very  small and very large Varb(G&)  is a small 
value. The maximum equilibrium value of 
lies  between 4 = 1 and 2. When 4 is large, however, 
the variance of linkage  disequilibrium and  the sam- 
pling  variance will be important at equilibrium. 

VARIANCE OF GENETIC VARIANCE 
BETWEEN POPULATIONS 

Unlike the genetic variance  within populations, for 
which there is a real component of  variance among 
populations, the genetic variance  between populations 
is a parameter and variances arise only among sample 
estimates analogous to, but more complicated than, 
the sampling  variance  of the genetic variance  within 
populations.  Suppose that observations are taken on 
S replicate populations which  provides an estimate of 
the genetic variance  between  populations. That is, 
however, just a single  realization  of the genetic vari- 
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ance between populations. If, for conceptual reason- 
ing, we execute such an experiment many  times  in a 
way to keep everything identical except sampling, 
there will still be some variation among different 
estimates  of the genetic variance between populations 
from different experiments. Clearly this sampling  var- 
iance  of the genetic variance between populations 
depends on  the  number of replicate populations of 
each experiment. If,  for example, S is very large, 
approaching infinity, there will be no variance of the 
genetic variance  between populations. 

For S replicate populations, the genetic variance 
between populations is  given  by 

2 2 

G 2 = L { E ( 2 E E j g i )  S - 1  y r t  - + ( 2 X Z X j i ~ i ) }  Y r r  (24) 0.001 0.01 0.1 
4Nu 

which  is the difference between the covariance  of 
individuals  within populations and  that of  individuals 
in  distinct replicate populations, where the summation 
of y (and z below)  is over S replicate populations. (For 
simplicity we have let the sample  size n of each repli- 
cate population be very large in the above equation. 
Unless  they are very  small, finite sample  sizes  only 
trivially contribute  to  the variance of Gb2.) Like the 
genetic variance  within populations, this  can  also  be 
decomposed into components corresponding to gene 
frequency differences between  covariances  of  individ- 
uals  within and between populations for within and 
between loci 

;2 = ;& + ;;L 

with 

G 2 g = ~ ~ z ( x I ; x ; + z z j i j j x i x j )  4 

Y r  i#j 

where f i i  and j ,  denote gene frequencies from two 
distinct replicate populations. 

The sampling variance of ;2 is defined as 

Var(G2) = WG2)' - @G2&2) (27)  

where &b2 and 6: are used to  denote between popula- 
tion genetic variances from two distinct samples. 

FIGURE 4.-The mean,  variance  and coefficient of variation of 
genic  variance  within  populations  at  equilibrium are plotted against 
the parameter 4Nu for m = 100. 

2 
s- 1 

+ 4irs7Zrs7)  + - ( Z s 7  - Zrs7Zrs7) 

+- 4(s- 2)(zrs7i;r7 -Zrs7Zrs7)}. s- 1 
This involves  some additional gene frequency func- 
tions  listed  in Table 4. Taking  the expectation with 
respect to replicate populations 
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+-(&2$+@) 2 
s- 1 ) 

-(P4, - 3 4  + (1  - 4g3, + 3 q 9 4  

32 
Var(&) = - zz O I J A s &  - q2&1 - q 2 , ) d p : s .  

S - l r # s  

Although  these  functions are complex,  they can be 
simplified. First we note what  when the  number of 
loci m is large  the variance  of  genetic  variance  between 
populations is effectively dominated by Var(&). This 
is largely due  to  the difference  between $i and 64. For 
equilibrium founder populations the two-locus iden- 
tity disequilibrium  measures e",, - OlrOOlrO, Tlo - 81,001,0 
and - O I ~ $ I ~ , )  are very small (SERANT 19741 and 
effectively we can approximate O l 0  = TI,, = SI, = 
O,,l,Ols,l. With  this  condition, we can see from APPEN- 
DIX A that Si, = Ol,pL,, = ?i;, = $lt = OlJli,,, and 
&, = Ti, = $4, = Ty, = 61, - 61, - Oi,,Oist. Thus  the  joint 
loci term of Var(&&) is a  function of l)b,  = - O , , , O ~ ~ !  

and is small in magnitude  and effectively Var(;&)  is of 
order m whereas Var(&) is of order m2.  Conse- 
quently,  the whole variance  of  genetic  variance  be- 
tween  populations  can  be  approximated as 

- t  

I! r2% - 

var(;Z), y Var(;ZL), 

32 ,zz(elr, - - Of,,)(OIs, - Ofs) 
4 s  

(1 - q2,)(1 - qzS)d,u:,. 

Since d ,  = q;:,) = 4 Z,(OI, - Oi,)(l - q2,)u& the 
coefficient of  variation  of  genetic  variance  between 
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FIGURE 5.-The transient behaviors of the mean, variance and 

coefficient of variation of genetic variance between populations 
with mutation for three founder populations: the solid lines for  the 
random fixed population; the dashed lines for  the finite equilibrium 
population with No = 1000; and  the  dotted lines for  the infinite 
equilibrium population. S = 10. Other parameters are  the same as 
Figure 3. 

populations can be  approximated as 

when the  number  of loci  is large. This suggests that 
the sampling  variance  of ;E is approximately x2-distrib- 
uted as LANDE (1 977) and LYNCH (1988b) have as- 
sumed. This is however  realized essentially by Central 
Limit Theorem  for a very large  number of loci. When 
the  number of loci  is finite the sampling  distribution 
of i?~: is not exactly x 2  even though we assume that xi's 
are  independent  and identical  normal variables. This 
is because gene  frequencies are variables, not  constant 
( i e . ,  C r C i  j;ji # zrzi j;@, although  they are equal by 
expectation) so that  the population  means with indef- 
initely large samples, (2 zrzi jixi)'s ,  are  not symmet- 
rically normally  distributed (see RAO 1973, pp. 182- 
197). When m is small (30) tends to underestimate  the 
coefficient of  variation and  the coefficient  of  variation 
will depend  on  the  distribution of allelic effects and 
also the  number of alleles for  mutation  at  each locus. 
Figure 5 plots the  mean, variance and coefficient of 
variation of  genetic  variance  between  populations for 
three  founder populations for a normal  distribution 
of allelic effects and  the infinite  allele  mutation  model 
with m = 100. When  populations start  from a random 
fixed founder  population,  the coefficient of  variation 
is significantly larger  than  that  approximated by (30) 
even for loci as large as 100. This would suggest that 
if we perform population  divergence  experiments for 
populations  starting  from  a near fixed founder  popu- 
lation and use genetic  variance  between  populations 
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to  estimate  genetic  parameters such as the  rate of 
input of genetic variance from  mutation  (LYNCH 
1988a), it would tend  to  underestimate the sampling 
variance of the estimate if the approximation (30)  is 
used. However, it seems that unless m is very small 
the approximation (30)  is sufficiently accurate  for 
prediction  for  populations  starting  from  a  heteroge- 
neous founder population. 

DISCUSSION 

Previous analyses of the variance of genetic vari- 
ances within and between  populations  concerned 
mostly the  establishment of simple and useful approx- 
imations. This is the first systematic treatment of the 
subject. Our results  confirm some of previous  approx- 
imations, point out assumptions of simplified approx- 
imations, and also reveal some  problem  of  previous 
analyses. 

There  are many differences  between our analysis 
and those by AVERY and HILL (1977) and BULMER 
(1980) on  the variance of genetic variance within 
populations without  mutation. Both AVERY  and  HILL 
(1977) and BULMER (1980) treated only two alleles 
and assume that allelic effects are fixed. We analyze a 
general multiple allele model and assume random 
allelic effects so that  the results  depend on  the distri- 
bution of allelic effects. This  contributes  to  the  differ- 
ence between our  and  their results. We use identity 
by descent measures in deriving the results. The ad- 
vantage of that is that  the  exact solutions can be 
readily obtained  and  the  results apply to any number 
of alleles and  to any  generation. 

AVERY  and HILL (1977) and BULMER (1980) did 
not distinguish between sample and population size. 
They derived results by analyzing transition  equations 
for  moments of the disequilibria rather  than using 
transition  arguments just  for descent measures and 
translating  these to observable  quantities such as link- 
age disequilibrium only in the sampling generation. 
Also unlike BULMER ( 1  976) ,  BULMER ( 1  980)  included 
only the gametic linkage disequilibrium in the  de- 
finition of the genetic variance due  to linkage dis- 
equilibrium and  grouped  the non-gametic linkage 
disequilibrium into  the Hardy-Weinberg disequili- 
brium  component. Thus  he  obtained  the approxima- 
tion of (5/3N)uz for  the variance of the genetic vari- 
ance due  to linkage disequilibrium in the absence of 
linkage (which should be ( 2 / 3 N  + l /n)ui  in our no- 
tation,  including half of the sampling variance), and 
(l /N)ut‘,  (should be (l/n)ut’,) for  the variance of the 
genetic variance due  to  “Hardy-Weinberg disequili- 
brium.”  Whereas the variance of genetic variance due 
to linkage disequilibrium depends critically on linkage 
structure,  the sampling variance, predominantly due 
to sampling linkage disequilibrium, is largely inde- 
pendent  of linkage structure. 

Hardy-Weinberg disequilibrium exists only in  sam- 
ples. The lack of sample Hardy-Weinberg  equilibrium 
is to  reduce  the  genetic variance on  the average 
slightly. The squared coefficient of variation of the 
genetic variance due  to sampling Hardy-Weinberg 
disequilibrium is small and of order l /Nn .  

Initially the variance of genetic variance within 
populations is mostly due to linkage disequilibrium 
and sampling. Linkage disequilibrium is however a 
transient  phenomenon.  In  the  long-run  the variance 
of the genetic variance is  likely to be  dominated by 
the differentiation of populations on  gene  frequencies 
since at equilibrium the  squared coefficient of varia- 
tion is 1/(4Num) + 2/3N + 2/n (LYNCH  and  HILL 
1986; this study)  where the first term is due to genic 
variance, the second due  to linkage disequilibrium 
and  the  third due to sampling. Thus, unless the  total 
mutation rate  for  the  character mu is larger  than 
3/[8(1 + 3N/n)] ,  the variance of genic variance will 
be an  important  component in the variance of genetic 
variance within populations in the  long-run.  Approx- 
imately it takes about t > 10m( 1 - 61,,)/9 generations 
for Varb(&) to become  a  dominant  factor for orga- 
nisms  with a  large  number of chromosomes and N >> 
m. When N is of order m or smaller, the time  needed 
is shorter. ( 1  - e,,,) is the heterozygosity in the  founder 
population. If m is of order  hundreds, m(l - e,,,) is 
likely to be of order tens. This time scale  may be  too 
long  for many short-term  experiments. But there have 
been some long-term  experiments which lasted for 
about 70  to 80 generations. In this time span the 
variance of genetic variance within populations can 
be dominated by the  component  due  to genic vari- 
ance. This  feature of the dynamics of the variance 
of variance has been overlooked in the previous 
discussions. 

The variance of genetic variances depends  on  the 
distribution of allelic effects however. This is true 
especially for the  component of variance of genetic 
variance within populations due  to genic variance. In 
the numerical analysis we used the normal  distribution 
of  allelic effects. If the distribution is leptokurtic  the 
variance will be  larger  than  that  under  the  normal 
distribution;  on the  other  hand if the distribution is 
platykurtic it will be smaller. It has been widely be- 
lieved that  the  distribution of allelic effects is probably 
not  normal, but highly leptokurtic (e.g., ROBERTSON 
1967). By using P element mutagenesis on Drosophila 
melanogaster, T .  F. C. MACKAY, R. LYMAN  and M. 
JACKSON (unpublished  data) showed that  the  distribu- 
tions of effects of P element  inserts on abdominal and 
sternopleural bristle numbers are highly leptokurtic. 
If that is true in general,  the relative importance  of 
the component due  to genic variance in the variance 
of genetic variance within populations will be greatly 
enhanced as the shape of the distribution affects only 
the terms within loci, not between loci. 
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The expected sampling  variance  of genetic variance 
between populations is approximately twice the ex- 
pected variance squared divided by the sample  size 
minus one when the  number of  loci  is large, as  ex- 
pected if the means  of populations are normally  dis- 
tributed  (LANDE  1977;  LYNCH 1988b). This is, how- 
ever, a consequence of Central Limit Theorem  that 
as the  number of  loci  increases the distribution of  sum 
of gene effects approaches normal, irrespective of 
underlying distributions of  individual  allelic  effects 
and frequencies. 

We have  analyzed  only additive effects of genes. An 
extension of the analysis to dominance is not a trivial 
matter. The complete description of genetic variances 
within and between populations with dominance for 
a general multiple  allele  model adds four additional 
components (COCKERHAM 1984; TACHIDA and COCK- 
ERHAM 1990).  These components involve identity 
measures  of up to four genes. An  analysis  of the 
variance  of genetic variances  with dominance would 
then involve numerous variances and covariances of 
different components and  require identity measures 
of  up to eight genes  within and between populations. 
This analysis is currently being undertaken  and will 
be presented elsewhere. 

The current analysis is also  only for genetic vari- 
ances. Variance of phenotypic variances  within and 
between populations will include environmental ef- 
fects. This will then  depend on the distribution of 
environmental effects, whether there is genotype- 
environment correlation and interaction, and 
whether there  are common environmental effects 
between populations. For a very  simple  model  in 
which the environmental effects are independently 
and normally distributed and  there  are  no genotype- 
environment correlation and interaction and no com- 
mon environmental effects, the expected variance of 
the phenotypic variance  within populations will in- 
clude twice the squared environmental variance and 
the variance  of the between-population component is 
only  trivially affected. 

The analysis  of  variance  of genetic variances  within 
and between populations is central to many questions 
of quantitative genetics. It has important bearings on 
designing experiments and  interpreting experimental 
results (HILL 1980; LYNCH 1988b); testing the neutral 
model  of phenotypic evolution (LANDE 1977); and 
estimating genetic parameters, such  as the  rate of 
input of  new genetic variance by mutation, using 
genetic variances  within and between populations 
(LYNCH 1988a). 
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APPENDIX A: IDENTITY  MEASURES and 

One  locus C I  = TI,; Cz = P ~ P B I / ( w  - vz); C s  = 62, - G ;  

These  identity by descent  measures  are  dependent  on  the 
mutation  rate, u,  the  effective  population size, N ,  and  the initial 
state of the populations. t indexes  the  generation  number. Among  four  populations: 

C4 = p4PCI/(v1 - up); C5 = 61, - C4; Cs = 62, - C+ 

Within  population: 
6;:l = h2,p41; 6;: = 61,p4t. 

81, = 81, + AIX;; 7 1 ,  = 71, + A2Xf + Azh:; 

61,  = 61, + A4X; + AaX; + A&; 

62, = 62, + A7X: + AsX; + A& 

Two  loci 
Two locus descent  measures I,, -7l and $1  are discussed and 
approximated in APPENDIX B. Others  are given here, which 
depend  on  the  recombination  rate, c, between a pair of loci i 

where  and j .  

p = 1 - u, /3 = 1/2N,  Dt = n ( 1  - j p ) ,  X, = p’”P, (i = 1 ,  2 ,   3) ,  

and 

&,=E,@: -~cEz&+c~EB&,;  

+i#=E14: +(P-c )Ez~S+CPEBE~~& 

f;,= E ~ w : ,  + E545 + E&:; 

, = I  

81, = p 2 P / ( 1  - X I ) ;  71, = p2P[P + 38181,]/(1 - X& 

61-  = p4P[P2 + 7PPlfh- + ~ P T Y I ~ ] / ( ~  - AS); 

62, = P’P[P + 2(1 - P2)81, + 48271,]/(1 - As); 

AI = O I , ,  - 81,; A:! = ~P’PPIAI/(XI - X:!); AB = 710 - 71, - An; &,=E~w: ,  + E541 +E&; 

A4 = p48[7PP1A1 + ~ P Z A P ] / ( X I  - AS); jT,=E~od  +ElldS;8’,=E104;  +EI&; 

Aa = 6p4Pp2A3/(X2 - AB);  A6 = 61, - 61- - A4 - A5; $=E4W;r+EI3&; 

A7 = 2p4P[(1 - P2)A1 + 2Pdz]/(X1 - AS); e = &,4; 

~ ; , = ~ I , , ~ I , , + ~ ~ J X : , + E ~ J ~ X : , + E S ~ J X : ~ X : ~ ;  

&,=E14: + 2/3E26;-P2E34&; 

A” = 4p4&92A3/(X2 - AB); Ag = 82, - 62, - A7 - As. 
where 

Between  two  populations: 41 = pap;’, 4 2  = PeP;’(l - P), 4 3  = P?P;’(l - P - c), 

8{,=Blw;;7:,=Bp~:  +B&; 4 4  = pTp;’( 1 - p - c)( 1 - 2@), 4 5  = p:p;’( 1 - p - C Y ,  

61, = 8:- + B4X: + B~w:;  64, = Bsw: + B ~ w ;  + Bn&; and 

6;‘ = B ~ w :  + B ~ w :  + B ~ W : ;  El = (8‘81, + 2cP?l, + c%I,)/(c + p)’; 

h i ,  = Blow: + B1 Iw :  + B~zw: ;  

6 ( , = B l : ~ ;   + B I ~ W : + B I ’ I W I I  

E:! = -(pel,, + ( c  - P)? l ,  - c&,,)/(c + PI:!; 
E:i = +I, - 2?I, + &,)/(c + P)2; 

where 
E4 = P ; L P : P ~ I , J ( ~ I ~  - 42); 

En = [(PI - &)?I, + ~ ( 1  - ~ P ) $ I , ] / [ ~ I  - f i n  + c(1  - 2P)] - E4; 
W1 = ps, w2 = pBP1, ws = p4p:,  w4 = P4P% 

and 
E6 = c( l  - 2P)(?1, - iIJ/[Pl - P 2  + 4 - 2P)I; 

BI = 81,; Bp = P’PBI/(WI - UP); Bs = 71, - Bz;  

B4 = 2p4PPIA1/(XI - ~ 3 ) ;  Ba = 62, - 8:- - B4; 

E7,] = pPPfP(1  - P ) ( ~ I , ,  - 81,J/[X1t(l - A11)l; 

Ex, = 61, - E7rJ - E7,, - 81~,81,~; 
- 

Bs = p48[PBI + 2j31B2]/(w~ - W S ) ;  B7 = ~ P ~ P P I & / ( W J  - U S ) ;  
E9 = -(PI - P2)(? lo  - “S,)/[Pl - 82 + 4 1  - 2P)I; 

B” = 61, - Bs - B7; Bg = 62, - Bs - B7; 

Blo = p4@[PB1 + ~ P I B P ] / ( w I  - ~ 4 ) ;  BI  I = ~ P ~ P P I B B / ( w ~  - ~ 4 ) ;  

BILL = 61,) - Blo - BII; B ~ s  = p4P[B1 + ~ P I B ~ ] / ( w I  - w ) ;  

El0 = (@?lo + C~I,)/(P + c); E I I  = c(?I, - $l,)/(P + c); 

E 1 2  = -P(?l, - ZI,,)/(/3 + c); E13 = 61, - E4. 
- 

APPENDIX B 
8 1 4  = 2p4P@IB3/(w2 - w4); B I ~  = 62, - B I ~  - B I ~ .  

An  Approximation of variance of linkage  disequilibrium: 
Among  three  populations: Here ?e approximate  the  variance  of  linkage  disequilibrium 

Td = o1 - 2T1 + 6,. For monoecious  mating  population,  the 
transition equations  of  identity disequilibrium measures ryt = clv:; ST, = c2w: + c3v:; 6;: = c4v: + cay:;  

a;, = c4v; + csv: 1 1 1  = 8 1  - 81,81,, vi = TI - 81,81,, 7s = 61 - 8191, 

VI = P 3 ,  vz = P 4 P I ,  Qt+1 = pTp;’[AQr + Bt] 

where  are (SERANT 1974) 



Variance  of  Genetic  Variances 

where 

551 

SERANT  found  that  the eigenvalues of matrix A are 

el = (1 - 28) + O(8'), 

e' = 1 - c - p(5 - 2c) + O(@'), 

es = (1 - c)' - 8(3 - 4c) + O(8'). 

This suggests that  for large N we can approximate  the 
eigenvalues as el = (1 - 28), e2 = (1 - 2@(1 - c), and e3 = 
(1 - 28)( 1 - c)' or equivalently the matrix A as 

(1 - c)' 241 - c) c' 
A = (1 - 28) 

0 

for a simple solution. With this we obtain the approximation 

q d ,  = ' $ h d o  

where '$6 = p?pf(l - 2@(1 - c)'. This result  agrees with the 
approximations of SERANT (1 974), AVERY (1 978) and WEIR and 
HILL (1980) at equilibrium. Ignoring  recurrent mutation and 
assuming Tdo = 0, this can  be further  approximated as 

(1 - c)' + c2 
l)d, E 2N42 - c) 

[ 1 - (1 - ~)'~](i  - e& - olJ,). 

The accuracy of the approximation depends very much on N 
and c. When N = 20, the approximation is very good for 
c = 0.5 all time and is generally satisfactory for t up  to  one or 
two N generations. As c decreases, the approximation  breaks 
down more quickly. 

APPENDIX C 

Analysis of sampling effects: With sampling the expectation 
of variance of genetic variance within populations  contains three 
level expectations: 5& with respect to the x's, with respect 
to the sampling within populations and 5& over all replicate 
populations. After taking the expectation x, we take the ex- 
pectation % on the sampling gene  and genotypic frequencies. 
This is done based on the assumption of multinomial sampling 
of individuals from a  replicate  population. For example 

X(@$) = P:;, x($::) = Pi:,  X@,) = ai 
and 

Varw(&) = - P$)/n,  

Varw(Pi:) = Pi:(1 - P::) /n,  varwui) = ji( l  - bi)/2n 

since linear  combinations of plultinomial variables are still mul- 
tinomial. For functions like P ; : j f ,  however, we need  to use the 
definition (1 5) to analyze the expectation of 

based on multinomial theory. For functions involving gene 
frequencies from two loci, we need to use 

j, = P:: + P:: 
k c l  

+ P:p + Yz P;: + P;: + P;: + P;y 
l.m#k ' 9  (A k(* ) l m # k  ) 

f jk  = B:: + P$ 
"=I 

and 

Bf: = P1 + P$ + cc P;y. 
kl l.m#h 

After  taking the expectation x, we then take the expectation 
5& over all replicate populations and express the results in terms 
of identity by descent measures for  the infinite allele mutation 
model. We utilize the fact that  the populations are expected to 
be at  the Hardy-Weinberg and linkage equilibria by the as- 
sumption,  although samples from  the populatjo?s are not. Thus, 
for example, in taking the expectation of Z,ZZ,~, we perform 
the following analysis 

=% 7 p : : + -  1" P::   P::+%xPp;:  {i(i * ;n( * ,cJ a ) 
+'( 2n 1 -1)p.::' n 
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Here we  list the  expectations of all  the gene and genotype 
frequency  functions  required for analysis of sampling  variance 
of genetic variance  within populations. 

Two Loci: 
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gg zz(F*.~. + B!k , (P!h .  + Pik) = dl + 2r-I + 81; where (Y = 1/2n, and n is the  sample  size  in  a  replicate  popula- 
X I  tion. 


