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ABSTRACT 
The phenomenon of  genomic imprinting has recently excited  much interest among  experimental 

biologists. The population  genetic  consequences of imprinting,  however, have  remained  largely 
unexplored.  Several  population  genetic  models are presented  and the following  conclusions  drawn: 
(i) systems  with  genomic imprinting  need not behave similarly to otherwise  identical systems  without 
imprinting;  (ii)  nevertheless, many of the models  investigated can be shown to be  formally  equivalent 
to  models  without  imprinting; (iii) consequently,  imprinting  often  cannot be  discovered by  following 
allele  frequency  changes or examining  equilibrium  values;  (iv)  the  formal  equivalences fail to  preserve 
some well known properties.  For  example,  for  populations  incorporating  genomic  imprinting,  param- 
eter values exist that cause these  populations to behave  like  populations  without  imprinting,  but with 
heterozygote  advantage,  even  though no such  advantage is present in these  imprinting  populations. 
We call this last phenomenon  “pseudoheterosis.” The imprinting systems that fail to be formally 
equivalent  to  nonimprinting  systems are those in which males and  females are not  equivalent, i .e . ,  
two-sex  viability  systems  and  sex-chromosome  inactivation. 

M ANY observations  have  been  made of the com- 
plementary  roles  of  maternally and paternally 

derived alleles in the life and  development of  orga- 
nisms. As early as the  1920s, while working with the 
dipteran Sciara, METZ (1938)  discovered that  during 
development  a  chromosome  from  the  paternal  parent 
may function quite differently from its maternal  hom- 
olog in contrast  to  the usual Mendelian  equivalent 
action.  In  197 1 SHARMAN concluded  from his exper- 
iments with kangaroos that  the  mode of  dosage com- 
pensation  of the X-linked genes  seemed to  be  paternal 
X inactivation, in contrast  to  the  random X-inactiva- 
tion seen in eutherian mammals (SHARMAN 197 1). By 
the mid-1980s  genomic  imprinting  became the subject 
of many more  experiments  and scientific interest. 
Experiments  conducted with mice in which transgenes 
had been inserted  revealed that  the expression of the 
transgene  depended on  the sex of the  parent  from 
which it was inherited (HADCHOUEL et al. 1987; REIK 
et  al. 1987; SAPIENZA et al. 1987; SWAIN, STEWART 
and LEDER 1987).  Paternally  derived alleles were ex- 
pressed in appropriate tissues, whereas  maternally 
derived alleles were  not.  Nevertheless, males who 
inherited  the  transgene  from  their  mothers  (and who 
thus  did  not express  it), passed on  the transgene  into 
offspring in which it was expressed. The  pattern of 
inactivation of the  transgene was thus  readjusted  at 
each  generation. The inactivation  of the maternally 
derived  transgenes appeared  to  correspond  to its level 
of methylation (HADCHOUEL et al. 1987; REIK et al. 
1987; SAPIENZA et al. 1987; SWAIN, STEWART and 
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LEDER 1987) (reviews in MONK 1987; MARX 1988; 
SOLTER 1988; HALL 1990). The maternally  inherited 
transgene was inactivated by the  attachment of an 
increased number of methyl groups.  Paternally  de- 
rived  transgenes, in contrast,  were  found  to  have  a 
low  level of  methylation. The state of methylation 
thus  depends  on  the sex of the  parent  from which the 
gene came and most importantly  this  state is reconsti- 
tuted in  each  generation,  depending  on  the sex of the 
individual passing on  the allele. More  recently,  ge- 
nomic  imprinting has been used to describe the dif- 
ferential  expression  of  genetic  material  where  both 
alleles are expressed,  but  at  different times, in differ- 
ent tissues, or  at different levels, depending  on  their 
parental  origin [see SOLTER (1  988)  and HALL (1  990) 
for reviews]. Again there is evidence that  the  imprint- 
ing occurs by methylation at  the molecular level 
(MARX 1988; SOLTER 1988; HALL 1990). 

Genomic  imprinting  thus conflicts with normal 
Mendelian  genetics in that  although all alleles are 
passed on  to  the  next  generation,  their  parental origin 
affects their expression. Thus in contrast  to  other 
violations of the  tenets of Mendelian genetics such as 
meiotic drive, it  is the expression not  the  inheritance 
that is altered. Below  we investigate some of the 
consequences of these  deviations in some  standard 
population  genetic models. In  particular, we examine 
the effects of  the inactivation of  an allele (or chro- 
mosome) on  the dynamics of allele frequencies in 
various standard models. Last, we study models of 
differential  gene  expression in which the  phenotype 
of the individual  depends on  the quantity  of  expres- 
sion of alleles of  maternal  and  paternal origin. This 
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TABLE 1 

Viability parameters used in the models 

Phenotype 

form of genomic imprinting is more  complicated, but 
in its simplest forms is identical to  the inactivation we 
model below. 

MODELS 

Model 0. Standard  Mendelian  inheritance: In  or- 
der  to facilitate comparisons between our models and 
to introduce our terminology, we first review the 
standard one-locus two-allele viability selection model 
[see, e.g., CROW and KIMURA (1970) or HARTL 
(1 980) ] .  We label the two alleles A1 and A2 and suppose 
they are  at frequencies p and q, respectively (and so p 
+ q = 1). Unless there  are viability differences between 
males and females (as  in model 2 ,  below), p (and q )  
will be the same in both sexes after  one  generation, 
regardless of any initial differences.  Let the  three 
genotypes AIAI,  A1A2 and A2A2 have viabilities 
wf1,  wf2 and w&, respectively. (Table 1 shows the vi- 
abilities of the various genotypes in the models we 
construct.) The frequency ofAl in the  next  generation 
is then given by 

p‘ = (p2wf1 + p q w f 2 ) h  (1) 

zlr = pzw;”, + 2pqwf2 + 42w2*2. ( 2 )  

where rir is the population mean fitness given by 

Such a dynamic affords  up to  three equilibria where 
Ap = p‘ - p = 0.  The equilibrium p = 1 always exists, 
is  locally stable if w f l  > w& and is globally stable if 
wf2 > wz2 as well. Similarly the p = 0 equilibrium 
always exists, is locally stable if wZ2 > wfz and is globally 
stable if W X  > w f l  as well. An internal  equilibrium 

also exists when either wT2 > wfl and w& (in which 
case it is globally stable) or wfz  < w f l  and ~ $ 2  (when 
it is unstable). By globally stable we mean the system 
iterates to  the equilibrium  for all initial p E (0,l) and 
by locally stable,  for all p sufficiently close to  the 
equilibrium value. When wT2 > wfl and w&, we  say 
there is heterozygote  advantage or heterosis and  the 
system maintains both alleles in the  population. 

Model 1. Complete  autosomal  inactivation: We 

now introduce  autosomal inactivation into model 0 by 
supposing that  the maternally derived alleles are not 
expressed in an individual at all. The fitness of an 
individual receiving an A1 allele from its father (an 
A I -  individual) is w1 and  the fitness of an individual 
receiving an A2 allele from its father (an AS- individ- 
ual) is w2. With random mating,  the (preselection) 
zygotes in the  next  generation have the following 
phenotypic frequencies: 

[AI - ]  = p 2  + pq = p 
[AZ-] = q2 + pq = q. 

We may assume that p is the same for  both males and 
females because an individual’s sex does  not affect its 
own viability but  that of its offspring (of both sexes). 

Following selection, the genotypic frequencies are 

(4) 

[ A I A I ]  = P2w1/G 

[AIAZ] = (pqwl + qPw2)b (5 )  

[ A d z ]  = q2w2/5, 

where 

ZZI = pwl + qw2, 

Thus 

p2w1 + $$Q(Wl + w2) 
p’ = p2w1 + Pq(w1 + w2) + q2w2’ (6) 

which is the same formula as for  a  nonimprinting 
system where the fitnesses of AIAI,   A1A2 and A2A2 are 
respectively w f l  = w l ,  wf2 = (wl  + w2)/2 and w& = w2. 
(We use w*’s to  denote viabilities  of nonimprinting 
systems, throughout.) By applying the well-known re- 
sults of model 0, we find  that the only solutions to the 
equilibrium  equation p’ = p are trivially p = 0 and p 
= 1. The internal  equilibrium, $, does  not exist in this 
case. The stability of the p = 0 equilibrium may  also 
be  derived  from model 0. The conditions  for global 
stability, w& > wf2 > wfl give w2 > w l .  Similarly, the 
p = 1 equilibrium is globally stable if and only if w1 > 
w2. 

The behavior of this model can also be  deduced 
from  the observation that, since viabilities depend 
solely on  the paternal  gamete, selection can be viewed 
as acting  on  the gametes, and so the model is formally 
equivalent to a haploid one of gametic selection. As is 
well known, deterministic  constant viability haploid 
models cannot maintain polymorphism without mu- 
tation or  structured populations, and so the system 
will iterate  to fix the  fitter of the two gametes: A1 if 
w1 > W P ,  A2 if w2 > w1. 

One way this model can be generalized is to remove 
the restriction  that only the maternal alleles are inac- 
tivated. We therefore  introduce  a  parameter, a, the 
probability that  the  paternal allele is inactivated,  re- 
quiring,  therefore,  that  the  maternal allele is im- 
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printed with probability 1-a. Thus a = 0 in model 1. 
As before, we can assume that  the allele frequencies 

are equal in both sexes. Eight different zygotic phe- 
notypes are possible and their  frequencies are 

[ A , - ]  = p2(1 - a) 
where the unexpressed allele is a  maternal A1 

[-AI] = p2a 

where the unexpressed allele is a  paternal A1 

[ A , - ]  = pq(1 - 4 
where the unexpressed allele is a  maternal A2 

[-A21 = Pqa 
where the unexpressed allele is a  paternal A1 

[&-I = qp(1 - 4 
where the unexpressed allele is a  maternal A I  

[ - A I ]  = qpa 
where the unexpressed allele is a  paternal A2 

[AZ-] = q2(1 - a) 
where the unexpressed allele is a  maternal A2 and 

[-A21 = q2a 

where the unexpressed allele is a  paternal A2.  

After viability selection we obtain 

p’ = lp2(( 1 - a)w1+  awl)  + +q(( 1 - a)w1+  aw2) 

+ iqp((1 - + awl ) I / $  

which is the same equation as before. In  other words, 
provided one allele is always imprinted,  the dynamics 
of the system are unaffected by which  sex’s alleles are 
imprinted. 

Model 2. Partial  autosomal  inactivation: Let us 
now consider the case where inactivation occurs in 
only some individuals. That is, we introduce viability 
selection into CHAKRABORTY’S (1989)  model. CHAK- 
RABORTY assumed a  Hardy-Weinberg  population 
(with no selection), but with a  constant  parameter, 8, 
equal  to  the probability that  the  maternally  derived 
allele is unexpressed (0 d I9 d 1). The same I9 value 
applied to  both A l  and A2 alleles, and  the paternally 
derived alleles were assumed to always be  expressed 
(although  these assumptions were shown to be easily 
modified). Model 1 thus has an implicit I9 value of 1 ; 
model 0 one of 0. There  are several possible interpre- 
tations of 19. For example, 0 may be envisaged as the 
proportion of females in the population who pass on 
imprinted alleles (e.g., if inactivation were  tempera- 
ture sensitive), the rest having standard  inheritance 

patterns; it can be  regarded as the  proportion  of 
imprinted eggs that (all) females pass on (e .g . ,  if the 
phenomenon  were  dependent  on  the  age of the fe- 
male); or it may be some combination of these two 
possibilities. Nevertheless, we are  not yet aware of any 
reports which have demonstrated such intermediate 
values of I9 in living organisms. For a  particular allele 
we consider 0 to he  fixed  (but see model 4, below). 

If both alleles are expressed then in the  next gen- 
eration,  the zygotes have the following phenotypic 
frequencies (CHAKRABORTY 1989): 

[ A I A I ]  = p2(1 - 0) 

[AI&] = 2pq(l - 6) (7) 

[A2A2] = q2(1 - 0) .  

If the maternally inherited allele is unexpressed  then 
in the  next  generation,  the zygotes have the following 
phenotypic  frequencies (CHAKRABORTY 1989): 

[ A I - ]  = p219 where the unexpressed allele is A1 

[AI-] = pqI9 where  the unexpressed allele is A2 
[Az - ]  = pq0 where the unexpressed allele is A I  

[Az- ]  = 4% where the unexpressed allele is AS. 

(8) 

If we let w 1  be the viability of an A 1   A 1  or A I- 

individual, w12 that of an AlA2  individual and w22 that 
of an A2A2 or A2- individual, we obtain  the postselec- 
tion  frequencies 

[ A I A I ]  = p2wll/G 

[ A d z ]  = [ ~ P ~ w z  + +q(wll + wzz - 2 ~ 1 z ) ] / W  (9) 

[AzAz] = q2wz2/W, 

where the standardized mean fitness is 

w = p2w11 + 2pqw12 + q2w22 

+ Opq(wl1 + w22 - 2w12). 

Therefore 

+ q2w22 
This shows the same formula as for a  non-imprinting 
system  in  which w f l  = w11, w& = wZ2 and wT2 = 

If the fitness of a  heterozygote in  which both alleles 
are expressed is  less than  -the average homozygote 
fitness (in the  imprinting system), then in the equiva- 
lent  nonimprinting system the heterozygote fitness 
will be greater by the  amount of iB(w11 + wZ2 - 2 ~ 1 2 ) .  
There is a limit to this increase, however: if w12 is  less 
than w11 or w22, then wf2  can not  be simultaneously 
larger  than W E  and w&. So if heterozygote  advantage 
is not  present in the  imprinting system then it will not 
be exhibited in the equivalent  nonimprinting system. 

w12 + + w 1 1  + w22 - 2w12). 



902 G. P.  Pearce  and H. G. Spencer 

T o  see this, suppose that w l l  > w12 and, without loss 
of generality, that w11 3 w22. Then 

wf2 = w12(1 - e) + + q W l l  + w22) 

s w12(1 - e) + ow11 

< w l l ( l  - e) + ew l l  
= w11 (12)  

= W f l ,  

a.e., 

w;E2 < WT1. 

If heterozygote  advantage exists in the  imprinting 
system, however, it can be  absent in the equivalent 
nonimprinting system. That is,  if w12 > w11 and w22 

then wI2 > (w11 + w22)/2 and w;"2 < w12, and with 
certain  parameter values we have w;I; < wTl or w& so 
that  the equivalent nonimprinting system exhibits 
no heterozygote  advantage. Consequently no stable 
polymorphic equilibrium will be present in either 
system. An example is: 0 = 0.9, w11 = 0.95, w12 = 1.0 
and w22 = 0.85, giving wr l  = 0.95, w& = 
0.85, and w;"2 = 0.91 < wTl. 

The only solutions to p' = p are (from model 0), 
p = 0 ,  p = 1 and (if it exists) 

In  order  that 0 < < 1 we require 0 # 1 and  either 
(a) w h  > w;FI and w&, which  gives 

w12 > (2 - q w l l  - ew22 

2(1 - 8) 

and 

(2 - qw22 - ow11 

w12 > 2(1 - e) ' 

or (b) w h  < w h  and wfr,  which reverses  these last two 
inequalities. In  the first case is stable, in the second 
unstable. 

T o  see the effect of the level of imprinting  on  the 
internal  equilibrium, we examine afi/dO, which (when 
f i  is stable) has the same sign as w11 - w22. Thus 
increasing the level  of imprinting increases the equi- 
librium  frequency of the allele of the  fitter homozy- 
gote. 

Model 3: Generalized  autosomal inactivation: We 
now generalize model 2 so that  the fitnesses of indi- 
viduals with an unexpressed allele are not necessarily 
equal to  the fitnesses of the homozygotes for  the 
expressed allele. As before, let w l l ,  w12 and w22 be the 
viabilities of AlAl ,  A1A2 and A2A2 individuals respec- 
tively, but suppose imprinted individuals AI- and AS- 

have respective viabilities w l 0  and wz0. Proceeding as 
before, we obtain 

p2[(1 - e)wl l  + flyl0] 
p' = + p q w  - e)Wl2  + ? m l 0  + wz0)1 

p - 8)Wll + ewlo] + 2Pq[(l  - qw12 

+ vqw10 + w20)] + q2[(1 - qw22 + OWZO] 

(15 )  
This equation for p' shows equivalence to  a nonim- 
printing system where 

W E  = (1 - 0)Wll + ow10 

w;I; = (1 - O)w,, + +d(WlO + w20) (16) 

w'& = (1 - d)W22 + ew20. 

It is  easily seen that when (wl0 + wz0)/2 > w12, wf2 is 
larger  than w12. Thus, it is possible for  an  imprinting 
system to exhibit the dynamics of a  nonimprinting 
system with heterozygote  advantage, even though  no 
heterozygote  advantage actually exists. T o  construct 
such an example,  let us assume, without loss of gen- 
erality,  that w11 > w12 > w22. We require  that w& > 
w1 1, a.e., * '  

(1  - o ) ~ ~ ~ + + e ( w ~ ~ + ~ ~ ~ ) > ( 1  - e ) ~ ~ ~ + e ~ ~ ~  (17)  

which gives 

(1 - fl)  
w20 > 2 - ( ~ 1 1  - ~ 1 2 )  + w10 (18) 8 

and also that wT2 > w&, i . e . ,  

( 1  - o ) W 1 2 + $ e ( ~ l o + ~ 2 0 ) > ( 1  - O ) W ~ ~ + B W ~ ~  (19) 

which  gives 

( 1  - 6 )  
w20 < 2 ~ (w12 - w22) + w10. (20) e 

Thus, 

2- ( 1  - 6) 
e (w11 - w12) + w10 < w20 

< 2 7  (1  - 6 )  
(w12 - w22) + w10 (21) 

and so 

T(W11 + w22) < w12. (22) 1 

If w22 > w12 > w l l  then similar expressions can be 
found which must be met for heterozygote  advantage 
to be mimicked. Thus if (21)  holds and w11 > w12 > 
wZ2 then  apparent heterozygote  advantage will be 
shown in the dynamically equivalent nonimprinting 
system. We  call this property pseudoheterosis. As a 
numerical  example consider the following: let w11 = 
0.9, wZ2 = 0.1 and 0 = 0.3, and  therefore, by (22), we 
require w12 > 0.5, say w12 = 0.6. Let w10 = 0.01 
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therefore, by (21), we require  1.41 < w20 < 2.34 and 
so let wz0 = 1.5. This gives w;”l = 0.6330, w?z = 
0.64665, and w& = 0.5200.  Thus we have w11 > W I Z  

> wZ2,  whereas w;”2 > w f l  > w& so that  there is het- 
erozygote  advantage in the  nonimprinting system but 
clearly none exists in the  imprinting system. (Of 
course,  the viabilities in this  example may not be 
particularly realistic: w11 > w22, but w10 < W Z O ,  but see 
model 5 ,  below.) 

The stability analysis  of the polymorphic equilib- 
rium in this model is constructed in a similar manner 
to that of model 2.  The polymorphic  equilibrium is 
feasible and stable if and only if wg2, w?1 < wf2 which 
gives (21 )  and hence (22) .  

The effect of 8 on # is similar to the effect in model 
2: d#/d8 has the same sign as w10 - W Z O .  That is, greater 
penetrance of imprinting increases the equilibrium 
frequency of the allele of the  fitter hemizygote. 

Model 4. Imprinting us. Mendelizing  alleles: A 
natural  question to ask about genomic  imprinting is 
how the  phenomenon  originated. Our next  model, 
therefore, looks at how imprinting affects an allele’s 
ability to  enter a  non-imprinting  population.  Suppose 
we have one allele A I  that is never  imprinted  and 
another A2 that is imprintable, with probability 8. As 
in model 2 ,  suppose that Ai-’s have the same viabilities 
as A,Ai’s, wii (i = 1 and 2).  

The interative  equation for p is thus 

p ’  = [ P 2 W l l  + & q W l l  + $ p q m  

+ +(I - ~)pqw12]/zs) (23 )  

= [p2wll  + pq(Wl2 + $ q w l l  - w12))l/zlt 

zs, = p2wll  + 2pq[w12 + $8(Wl1 - w12)1 + q2Wz2. ( 2 4 )  

where 

This behaves as model 0 where wrl = w l l ,   w &  = 
wZ2 and w h  = w12 + 28(w11 - w12). Like model 2 ,  this 
system cannot display pseudoheterosis,  for if w l l  > 
w12, wTl - w& = (1 - $8)(wll - w 1 2 )  > 0 and so 
wfl > wT2. Alternatively, if w l l  < w12  < wZ2,  then w& 

The internal  equilibrium, a, exists and is stable 
provided w& > wTl and w&, i .e. ,  w12 > w l l  and (2wZ2 
- 8w11)/(2 - 8). Putting 8 = 0 recovers model 0 (as 
expected).  Examining d$/d8 reveals that  just as in 
model 2 the level of imprinting increases the equilib- 
rium frequency of the allele of the fitter homozygote. 

The p = 1 equilibrium  where A1 is fixed will be 
stable if w?] > w t ,  ie., if w11 > w12,  the same condition 
as without imprinting  (model 0). In a  finite  population, 
however, deviations from  deterministic  behavior 
mean that the A2 allele may still not  invade  even if w12 
> ~ 1 1 ,  the probability of success being an increasing 
function of w t  - w ? ~  = (1 - T B ) ( W ~ ~  - w l l ) .  Thus in- 
creasing the probability of imprinting decreases the 

1 

< w12 < w22 = w& 

1 

chances that  an imprintable allele will invade  a  finite 
population  of  nonimprintable alleles. 

The invadability of a  population of imprintable 
alleles by an  nonimprintable allele (AI) depends  on 
the stability of the p = 0 equilibrium. Such an invasion 
will be successful if and only if w& < w h ,  i.e., if w22 C 
w I 2  + i 8 (w l l  - wI2) .  Thus for  fixed viabilities, a  larger 
value of 8 increases the chance of  success only if 
imprinting of the A2 allele in an A1A2 heterozygote 
increases the viability. 

Model 5. Generalized  imprinting us. Mendelizing 
alleles: Model 4 can  be  generalized in the same way 
model 3 generalizes model 2 ,  introducing  parameters 
w10 and wz0. We obtain  a system for which 

and so 

and 

w2*2 = w22 + O(W20 - w22). 

The value of # and  the conditions  for its existence 
and stability may be calculated as previously. We can 
see from  equations  (26) that pseudoheterosis is  possi- 
ble, e.g., with 8 = 0.8, w l l  = w10 = w20 = 1, w12 = 1.1, 
wZ2 = 1.2. (This  example certainly appears  more re- 
alistic than  that in model 2.)  

The condition for  the  imprinting allele A2 to invade 
becomes 

2(Wl2 - w11) > e(w12 - WIO) ( 27 )  

which means that  a  greater level  of imprinting favors 
invasion when A1- individuals are  fitter  than AIA2’s. 
Since 

W &  - W ~ I  = ~ 1 2  - W ~ I  - ~B(w12 - w ~ o ) ,  (28) 

if wlo is close to w l l ,  we preserve our model 4 result 
that  larger 8’s reduce  the probability of A2 successfully 
invading a  finite  population  (for given w’s). If  wlo is 
rather  larger  than w I 1 ,  however, then this result is 
reversed. (The deterministic model may no longer 
admit such an invasion, however, if wl0 is very large.) 

Model 6. Autosomal  inactivation  with  two-sex  vi- 
abilities: The next system we consider  differs  from 
model 1 in only one  feature: viability selection affects 
the sexes differently. The following set of  viability 
fitnesses are assumed: the fitness of male Al”s is wlm, 
that of female A,”s w l f ,  that of male A2”s w2, and 
that of female Ay’s  w2p The first model is thus the 
special case in  which wlm = w l f ( =  w l )  and wZm = W2f (= 
w2). Following our previous procedure, we obtain, in 

1 
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the female population after selection, the genotypic 
frequencies: 

[AIAI]/ = prnpfwlf/Wf, 
[ A I A ~ ] ~  = (PrnqfWlf + qrnPfw2f)/Wf (29) 

and 

[A2A2]f = qrnqfw2~/5~, 

where 

W/ = PmW, + q r n ~ 2 ~ .  (30) 

Similarly, in the male population following selection 
the genotypic frequencies are: 

[AIAI], = p m p f w l m / ~ m  

and (31) 
[AIAz]~ = (pmqfwlm + qrnP~w~rn)/~rn 

[A2A2]m = q m q f W z m / W m  

where 

Wrn = p m w l m  + q m w 2 m .  (32) 

Now, the frequencies of the A I  allele in the female 
and male populations of this generation  (denoted by 
pj and p: respectively) are: 

p j  = [AIAI]~  + $[AIAP~ (33) 
= [PmPfWlf + i (PmqfW1f  + ~ , P ~ W V ) I / W ~  

and 
PA = FrnPfWlrn + ivrnqfwlrn + qrnpf~2rn)l/Wrn- (34) 

Unfortunately this system is not formally equivalent 
to  the well-known  two-sex  viability scheme of OWEN 
(1953), nor  to a fertility selection scheme (BODMER 
1965). The difference is a  consequence of the differ- 
ent viabilities  of the reciprocal heterozygotes. We 
therefore analyze the system  in more detail. 

Let us first suppose that  neither wl, nor w1f is zero, 
so that we  may divide (33) by wlfand (34) by wl, and 
write wf = w2f/wlf and w, = w2,/wlm. We can see from 
(33) and (34) that if W, = wf then pj = PA, otherwise 
pi # PA. Thus  the previous  result that allele frequen- 
cies are equal in  males and females does  not  hold 
when there  are viability differences  between the two 
sexes. Now 

and 

Apm = PA - p m  (36) 
- - pm(2qm qJ) + qm(pf - 2pm)wm 

2(pm + qrnwm)  

At equilibrium Apf = Ap, = 0. Thus,  the  numerators 
of (35) and (36) will equal  zero.  Adding the  numera- 
tors gives: 

2Pmqm(l - wm) + p f q m ( w m  - wf) = 0. (37) 

This equality holds if either:- (a) q, = 0 (ie., p, = 1) 
which on substituting  into Ap, = 0 gives qf = 0 (ie., 
PJ = 1) and so the population is fixed for  the A1 allele 
in both sexes; or (b) qm # 0 which  gives 

If p, = 0 then pf must also be  equal  to  zero and so the 
A2 allele is fixed in both sex  systems.  If p, # 0 then: 

Substituting (38) and (39) into Apf = 0 gives: 

As am is an allele frequency it must lie between zero 
and  one,  and so by enforcing this range  on (40) we 
see that  for 0 < $, either 

w, + wf>  wfw, + 1 and w, + wf > 2wfw, (41) 

or 

w, + wf < wfw, + 1 and w, + wf < 2wf w, (42) 

and  for $, < 1 either w, + wJ> 2 when (41) holds or 
w, + wf < 2 when (42) holds. So for 0 < $, < 1 we 
have that  either 

w, + wf> max (2, wfw, + 1, 2wfw,) (43) 

or 

w, + w f <  min (2, wfw, + 1, 2wfw,). (44) 

Let us now consider the cases when wl, or wlf is 
zero. If they are  both zero  then clearly pfand pm halve 
every generation  and  the sole equilibrium is pf= p, = 
0. Now, if wlm = 0, but w1f# 0 then (34) reduces to 

1 PA = Fpm* (45) 

Now the only equilibrium value for (45) is pm = 0, 
which on substitution into (33) gives pf = ipf and so 
the equilibrium value is pf = 0. Similar arguments 
show that when wlf = 0, the only equilibrium is p, = 

Figure 1 illustrates the changes in the A I  allele 
frequency  over  time within a system constructed  on 
the assumptions of model 6. In this system we have 
that 2w,wf = 2.0 < w, + wf = 2.5 and 2 < w, + wf= 
2.5 (refer  to  Equation 43). Thus  the necessary ine- 
qualities for  a polymorphism hold and we see that  the 
internal  equilibrium is reached in both sexes. For  the 
male population: 

pf = 0. 

$m = 
Wf + w, - 2WfW, 

2(wm + wf - wfwm - 1) 
= 0.500  (40) 
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and 

p k  = pfwl / zm (49) 

where 

6, = pfw1 + qf w2 = 6f. (50) 

O-.iI 

0.0 I 0 20 40 60 eo 100 

No. Gleneratiom 

FIGURE 1 .-The frequency of the A I  allele over successive gen- 
erations in model 6. w,,, = 0.5 and w,= 2.0. Initially p. = 0.01 and 
p, = 0.99. Males = solid line. Females = dotted line. 

and for  the  female  population: 

Note  that, if the sex ratio is even,  the  total  population 
has more A2 alleles than Ai's, even  though wmwf= 1 .O ,  
because the maternally derived alleles (more likely to 
be A2’s) are  hidden  from selection in the following 
generation’s males. 

Model 7. X chromosome  imprinting: So far we 
have  considered only imprinting involving the inacti- 
vation of autosomal alleles. Consider now the case in 
which the  paternal  X  chromosome (or parts  of  it)  are 
inactivated in female  offspring. That is, only the ma- 
ternal  chromosome is expressed throughout  an indi- 
vidual’s soma [see MONK ( 1  987) for  a review of this 
phenomenon]. This situation  differs  from the classical 
X-inactivation in eutherian mammals which occurs 
after  the zygote has undergone several cell divisions. 
Within each cell  of the zygote, inactivation is random 
with respect to  the parental  origin of the chromosome. 
In  the classical case, therefore, cell lineages express 
only one X  chromosome but  the organism  generally 
has  both X chromosomes  expressed. 

Continuing our formulation, assuming that males 
are  the heterogametic sex, let A1 males and -A1 fe- 
males have viability w l ,  and A2 males and -A2 females 
have viability w2. If the frequency  of A I  in the male 
population is p ,  and that in the female  population is 
pf we obtain 

p i  = [ P m p f W l  + i ( P m q f W 2  + q m p f w 1 ) ] / ~ f  (47) 

where 

$f = p m p f  w1 + p m q f  UP + q m p f  w1 + q m q f  WP (48) 
= pfwl + Q f W 2  

Again our system is different  from  standard Men- 
delian models; in particular, its dynamics are different 
from  those of a sex-linked locus with  viability selection 
(MANDEL 1959). 

Clearly pf  = p ,  = 0 and pf = p m  = 1 are equilibria. 
T o  discover whether any internal  equilibria, ( f i f ,  fi,), 
are possible, we can follow MANDEL’S (1959) treat- 
ment, defining Rf = pr/qf and R,  = p m / q m -  From (49) 
and (50) we immediately get  that  at  equilibrium, 

R m  = R ~ w ~ / w z  (51) 

which yields (excluding  irrelevant cases, e.g. ,  Rf = 0 
and w1 = wp) 

Rf = - W ~ / W I  < 0. (52) 

Obviously we have a nonsensical value for Rf and so 
we can  conclude there  are  no polymorphic equilibria 
possible. 

We can also explore  the consequences of random 
X-inactivation by introducing P, the probability that 
the paternal X chromosome is imprinted. Thus  the 
maternal  X  chromosome is imprinted with probability 
1 - B and we have so far considered /3 = 1. Following 
our  procedure in model 1 we obtain 

P ; = ~ m p f w l ( P w l + ( 1 - P ) w l )  

+ &mqf (PW + ( 1 - P)W 1 ) 
(53) 

+ &mPAPwl+ (1 - P ) w z ) ] / ~ ~  
prnpfW1+ +[pme (PW + ( 1  - P ) w ~ >  

- - + q m p f  (awl + (1 - P)w2)3 
PrnpfWl + P m e ( P W : ,  + ( 1  -P)wl) 

+ q m p f  (Pwl+ (1 - P)w)  + q m e ~ 2  

and 

p: = Pf w1 
P f W l  + qfw2 

(49) 

In contrast to  random autosomal inactivation, ran- 
dom sex-chromosome activation does affect the allelic 
dynamics, but only those in the females. Using MAN- 
DEL’S technique  again, we can show that  for  an  internal 
equilibrium we obtain the contradiction Rf < 0 and so 
no polymorphic equilibria exist. Thus,  although  the 
dynamics are altered by random inactivation, the equi- 
libria are not. 

Model 8. Differential gene expression: Most re- 
cently, genomic imprinting has been used to describe 
the differential expression of alleles (or chromosomes) 
depending  on  whether  the allele (or chromosome) was 
paternally or maternally inherited  (HALL 1990). In its 
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most general  form such differential  gene expression 
means that reciprocal heterozygotes  have distinguish- 
able  phenotypes and hence possibly different viabili- 
ties. We can modify the Mendelian model 0 to this 
situation by simply requiring  that AlA2  individuals 
have viability w12 whereas A2A1 individuals have via- 
bility w ~ l  (which is not necessarily equal to ~ 1 2 ) .  The 
recurrence  equation  for  the  frequency of the A1 allele 
is thus 

which is the same formula as a  nonimprinting system 
in  which 

w?, = w11 

( 5 5 )  
and 

w& = w22. 

That is, differential  gene expression gives identical 
dynamics to  a  standard system  in which heterozygotes 
have viability equal to the  arithmetic mean of the 
reciprocal imprinted  heterozygote viabilities. The de- 
struction of the symmetry of the viability matrix W 
(with entry wq in row i column j )  thus  does  not lead 
to novel behavior of the system. Indeed, this result is 
known in another  context,  that of the parallel between 
the game theoretic  approach to ESS (evolutionarily 
stable  strategy)  theory and  standard one-locus Men- 
delian genetics [see CANNINCS and VICKERS (1 989)  for 
a recent example]. The viability matrices of the  latter 
are payoff matrices of the  former. (All payoff matrices 
are not viability  matrices-even asymmetric viability 
matrices-however.) 

Returning  to Equations 55 we see that in addition 
to the p = 0 and p = 1  equilibria, the  internal equilib- 
rium 

w12 + WPl - 2w22 
= 2(w12 + WPl - w11 - w22) 

will exist provided i ( w 1 2  + wpl) > w l l  and w22. Thus 
for  the dynamics of Mendelian heterosis  to  be mim- 
icked at least one of the heterozygotes must have the 
highest viability. Nevertheless, a kind of pseudohet- 
erosis is possible where one heterozygote has low 
viability, e.g., w l l  = w22 = 1.0, w12 = 0.95, w2I = 1.1. 

The above  formulation allows the easy examination 
of special  cases  of interest.  For  example, suppose the 
paternal and maternal alleles contribute  to  the overall 
phenotype in the  ratio 4:(1 - 4). Under allelic  selec- 
tion,  letting  the Ai allele contribute wi to  the viabil- 
i ty ,  the viability  of an AiAj individual is wq = 4wi + (1 
- 4)wj ( i ,  j 1, 2) .  Thus w;"] = w1, w T ~  = ~ ( w I  + we) 
and w& = wp which, like model 1, is formally haploid 
selection, affording no polymorphic equilibria. 

TABLE 2 

Equivalences between nonimprinting and imprinting models 

Model 0 parameter 

Model w ;, :2 w:2 

1 WI f ( W l  + WP) w 2  

2 WII ( 1  - e ) ~ ,  + +e(wII + wZ2) wqq 
3 (1 - e ) ~ ,  + 8 w l a ( i  - 0)wI2 + &wl0 + wsa) ( 1  - o)wz2 + &uzo 

4 W I I  ( 1  - $e)wIz + +&ul l  W22 

5 W I I  ( 1  - $B)Wl2 + + & u l O  (1  - qwss + OW2,l 

8 W I I  f(Wl* + WZI) w 2 2  

DISCUSSION 

The most important of our conclusions is that  the 
majority of our models incorporating  imprinting 
could be shown to be formally equivalent to models 
in  which there was no imprinting. That is, the allele 
frequencies in a  particular  imprinting system changed 
in exactly the same manner as those in certain  corre- 
sponding  nonimprinting systems. (The equivalences 
are summarized in Table 2.) Consequently, the equi- 
libria in the  imprinting system also corresponded to 
those found in these  certain  nonimprinting systems. 
For  example,  a system  in  which  all the maternally 
derived alleles were inactivated was shown to behave 
as a haploid selection model.  Complete inactivation of 
an autosomal allele thus leads to monomorphism. This 
equivalence between imprinting and nonimprinting 
systems has the  important consequence that  imprint- 
ing can never  be  detected by simply following allele 
frequency  changes. (Of course,  imprinting of this sort 
can easily be detected by setting up  appropriate 
crosses and examining  offspring  genotype  propor- 
tions.) This result  mirrors several other discoveries 
that show  how little can be deduced  about  a  genetic 
population  from analyzing the changes in allele fre- 
quencies. These discoveries include the equivalence 
of viability selection models and some fertility selec- 
tion models (FELDMAN,  LIBERMAN and CHRISTIANSEN 
1983),  the equivalence of constant viability selection 
models and some frequency dependent selection 
models (DENNISTON and CROW  1990),  and  the equiv- 
alence of BODMER'S multiplicative fertility selection 
system and  OWEN'S  (1953) two-sex  viability selection 
system  (BODMER 1965). 

The formal equivalences do  not, unfortunately,  pre- 
serve  some of the  properties of the viabilities  in the 
respective models. For  example,  an  imprinting system 
with heterozygote  advantage could behave like a  non- 
imprinting system without such advantage. Conse- 
quently, under genomic imprinting,  heterozygote  ad- 
vantage is not  a sufficient condition for the mainte- 
nance of a diallelic polymorphism. Conversely, 
heterozygote  advantage is not  a necessary condition: 
an  imprinting system without it can be formally equiv- 
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alent to a  non-imprinting system with it, a  property 
we  call pseudoheterosis. 

When the  internal  equilibrium, $, exists (as it will 
when the equivalent  nonimprinting  model  exhibits 
heterosis) its value depends  on  the  penetrance of 
imprinting, 8. The larger  the value of 8 the closer f i  
moves to fixation of the  fitter type (AJi and/or Ai-). 

Model 4 examines diallelic systems  in which only 
one of the alleles is imprinted. Again this model is 
formally equivalent to a  nonimprinting  model. The 
effect of imprinting  on  an allele attempting to invade 
a finite  nonimprinting  population is to  reduce  the 
invasion’s chance of success. Imprinting  reduces  the 
advantage  the  heterozygote  might  have  over  the  un- 
imprinted homozygote since many of the heterozy- 
gotes are selectively undifferentiated  from the homo- 
zygotes. In model 5 (in which imprinted  heterozygotes 
and homozygotes are  not necessarily identical)  a sim- 
ilar  result holds if A J ,  and Ai- individuals are pheno- 
typically similar. In this latter  model, however, the 
conditions  for  a successful invasion in the determinis- 
tic case depend  on 8,  unlike those in model 4. 

The exceptions to  the  rule of equivalence  between 
imprinting  and  non-imprinting systems arise when the 
sexes are different,  either in their viabilities, or in 
their level  of ploidy. In  nonimprinting models, e.g., 
OWEN’S (1953) two-sex  viability system, or BODMER’S 
( 1965) fertility selection scheme, reciprocal heterozy- 
gotes  had the same fitnesses. Imprinting  contravenes 
this principle and even the sex-symmetry property of 
many fertility selection schemes (FELDMAN, LIBERMAN 
and CHRISTIANSEN 1983)  does  not  apply. Our two-sex 
viability model has a  polymorphic  equilibrium  pro- 
vided certain  restrictions on  the viabilities apply, 
whereas with X-inactivation no polymorphic equilibria 
exist, even when the inactivation is random with re- 
spect to parental  origin. This nonequivalence between 
imprinting  and  nonimprinting systems reveals the im- 
portance of the synonymity of reciprocal heterozy- 
gotes to standard Mendelian models. When viabilities 
from  these  latter models are represented in a  matrix, 
this synonymity is manifested in the symmetry of the 
matrix. Such a  matrix also corresponds to a symmetric 
payoff matrix of ESS (evolutionarily stable  strategy) 
theory [see HINES (1987)  for  a review]. ESS theory, 
however,  does  not  require  that the payoff matrix  be 
symmetric and, in general, it is not. Thus,  our imprint- 
ing models can also be  expected to be  more generally 
equivalent to various models in game  theory. 

Of course, the models we have constructed are 
idealized in  many respects, e.g., in having constant 

viabilities and in ignoring  genetic  drift.  Moreover, 
some (but by no means all)  of the peculiar behaviors 
require  parameter values that might be  considered 
unlikely. Nevertheless, the models do serve to illus- 
trate  that genomic imprinting systems need  not  act  at 
all like otherwise identical non-imprinting ones. 

We thank LISA BROOKS, RAY LITTLER and an anonymous re- 
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andJANET SMITH for assistance  with typing. 
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