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ABSTRACT 
Nonrandom  mating  whereby  parents are related is expected  to  cause a reduction in  effective 

population size  because their  gene  frequencies are correlated  and  this will increase  the  genetic drift. 
The published  equation  for the variance  effective  size, Ne, which  includes the possibility  of  nonrandom 
mating,  does  not take into  account  such a correlation,  however. Further, previous  equations to predict 
effective  sizes  in  populations  with  partial  sib  mating are shown to be different, but also incorrect.  In 
this  paper, a corrected  form of these  equations is derived  and  checked by stochastic  simulation.  For 
the case of stable  census  number, N ,  and  equal  progeny  distributions  for  each sex, the  equation is 

4N 
N, = 2(1 - a) + s:(l + 3 4 ’  

where S: is the variance of family  size  and a is the departure from  Hardy-Weinberg  proportions.  For 
a Poisson distribution of family size (Si = 2), it reduces to N ,  = N / (  1 + a), as  when inbreeding is due 
to  selfing.  When nonrandom  mating  occurs  because there is a specified system of partial  inbreeding 
every  generation, a can  be substituted by Wricht’s Ffs statistic, to give the effective size as a function , -  - 
of the proportion of inbred  mates. 

I N most analyses of unstructured  outbreeding  nat- 
ural  populations  mating is assumed to  be  at  ran- 

dom,  and in  populations  subdivided into small demes, 
random  mating is assumed in each deme.  Nonrandom 
mating,  however, can be  important in  some species of 
plants and animals. Many plants reproduce by self- 
fertilization to varying  degrees  [see, for  example,  re- 
views  by JAIN (1976) and SCHEMSKE and LANDE 
(1 985)].  In  certain parasitic Hymenoptera, males 
hardly  disperse at all and  mate with their sisters almost 
as soon as they emerge  from  the host (ASKEW 1968). 
SELANDER (1 970)  found a significant deviation  from 
Hardy-Weinberg  proportions  for an esterase locus in 
the house mice of  a barn.  This implies that  the  popu- 
lation was reproductively  subdivided into family 
groups,  born out by behavioral  studies  indicating that 
house mice form small groups  that repel outsiders, 
especially males. In  humans  and  other  primate social 
structures, in contrast,  matings  between  relatives are 
usually avoided. This is also the policy normally  car- 
ried  out in management  of  domestic  populations.  Fur- 
thermore,  deliberate  matings  of full-sibs can be useful 
in increasing  fixation  probabilities  of recessive muta- 
tions  without the disadvantages of delaying  fixation 
by population subdivision (CABALLERO, KEICHTLEY 
and HILL  1991). 

The possible effect  of nonrandom  mating  on effec- 
tive population size (Ne)  has  been  considered in the 
derivation of the variance  effective size, which meas- 
ures  the  amount of gene-frequency drift [CROW and 
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MORTON (1 955); KIMURA and CROW (1 963);  corrected 
for  separate sexes by CROW and DENNISTON (1 988)]. 
For  stable census number, N ,  and monoecious diploids 
or separate sexes with the same  progeny  distribution 
for each  sex, the effective size has been  expressed as 

4 N  
NeKC = 2(1 - a) + s:(l + a) 

(KIMURA and CROW  1963),  where S i  is the variance 
of the  number of gametes (which with no selfing is 
number of  progeny) per  parent, V,, with the Gaussian 
correction, Sl = VkN/(N - I), and a is a  measure of 
the  departure  from  Hardy-Weinberg ratios due  to 
inbreeding or other causes, such that  the frequency 
of heterozygotes is 2q(l - q)(l - a), where q is the 
gene  frequency in the  parental  generation. As will be 
shown,  Equation 1 holds when inbreeding  occurs due 
to selfing providing S: is interpreted  as  the variance 
of number of gametes contributed by each individual. 
By contrast, it does  not  hold when inbreeding is due 
to  mating of relatives, but  not selfing. 

Alternative  expressions for  the effective sizes of 
populations with partial sib mating and Poisson distri- 
bution of family size have  been  developed by POLLAK 
(1987,  1988) following a system of recurrent equa- 
tions  derived by WRIGHT (1 951). These expressions 
are summarized by 
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[ POLLAK (1 988), Based on WRIGHT (1 95  l)], where  NeR 
is the effective size  with random  mating, Fls is the 
inbreeding coefficient at equilibrium when N is infi- 
nite,  and a is a  constant which depends  upon  the 
conditional probabilities of different types of sib mat- 
ing. For example, with mixed full-sib mating and 
random  mating, a = 2 and NewP = NeR/(l + 3Fls). For 
comparison with (l) ,  FIs can  be  approximated by a if 
N is large, giving 

Likewise,  with a mix  of half-sib mating and  random 
mating  where  mothers of the half-sibs are again half- 
sibs, a = 4 and N,wp = NcR/(l + 7FIs) or 

If Equation 1  held in these cases,  it would show that 
when the  expected  distribution of progeny  numbers 
is approximately Poisson and,  therefore, S t  = 2, the 
predicted variance effective size equals the actual  cen- 
sus number irrespective of the  magnitude of the  de- 
parture from  Hardy-Weinberg  proportions. This  de- 
parture is, however, expected to cause a  reduction in 
effective size because, when mates are  related,  there 
is a covariance of their  gene  frequencies which could 
increment the genetic  drift in the offspring.  Equation 
2, or  more clearly its derivatives (3) and (4), show that 
reduction,  but no attempt has been made to connect 
these equations with KIMURA and CROW’S expression. 
In fact, as will be  shown,  these expressions also give 
incorrect values of the effective size. 

In  this paper, Equation 1 is corrected  for  the case 
when inbreeding is due  to mating of relatives without 
selfing, and  the new expression checked by means of 
stochastic simulation for several situations of unse- 
lected populations with nonrandom  mating. By a dif- 
ferent approach based on inbreeding  grounds 
(WRIGHT  1951,  1969),  an equivalent equation is de- 
rived to predict effective sizes where  a specified pro- 
portion of full-sib matings is performed every gener- 
ation, correcting POLLAK’S equation.  Throughout  the 
paper we shall deal just with the case  of stable census 
number  for simplicity. Other assumptions are discrete 
generations, autosomal inheritance and  no correlation 
between the fertility of a  parent  and  that of its off- 
spring. 

EFFECTIVE  SIZE WITH A DEPARTURE  FROM 
THE HARDY-WEINBERG RATIOS 

Inbreeding due to mating of relatives without 
selfing. Because mates are likely to  be related in a 
nonrandom  mating  population,  there is a  correlation 
between  gene  frequency of male and female  parents. 
T o  take such a  correlation  into  account in the  deri- 

vation, we use the average  frequency of a couple and 
not, as is usual, that of every individual. The argument 
is given in terms of males and females, but also applies 
to monoecious individuals. Then, if in  family i, q i m  and 
qq are  the  gene frequencies of male and female par- 
ents, respectively, k, is the  number of offspring coming 
from  that family and  there  are N/2 families, the mean 
gene  frequency of the total  offspring in the population 
is following the methodology of LATTER (1959)  and 
HILL (1 979)] 

where  the  second  term in brackets  accounts  for the 
random  segregation in heterozygotes, and 6em (&) is 
the difference in frequency  between  the jth sampled 
gene  and its male (female) parental value q i m  (qq), 
where 6,, (6d) is 0 if the  parent is a homozygote or 
& 1/2 if a  heterozygote. 

The genetic drift is 6, = Q - q ,  where q = 
(l/N)EZ; (qim + qq). Thus,  the variance in gene- 
frequency drift, Va,, is 

The variance of the gene  frequency of the  parents 
is 

V ( q i m )  = V(qq) = q( 1 - q)( 1 + ~ ) / 2 ,  (6) 

a1 being  their  inbreeding coefficient, and  the covari- 
ance between their  gene  frequencies is 

COV(qtm, qc) = q(1 - q)ao, 

where cyo is the  inbreeding of the offspring or the 
coancestry of the parents. Therefore, 

V ( q i m  + qc) = q(1 - q)(l + + 2q(l - q)ao* (7) 

The variance due to segregation, V(6vm) = V(hd), equals 
the  product of the frequency of heterozygotes, 
2q(l - q)(l  - a,) and  the variance generated  from 
them,  1/4,  that is 

V(6+m) = V(&g) = q(1 - q)(1 - af)/2- (8) 

Substituting (7) and (8) into  (5) 

1 vas = q(1 - q)[2(1 - .I) 

+ Vk(1 + a] + 2ao)l. (9) 

In  the ideal population, the  drift variance per  gener- 
ation is Vaq = q( 1 - q)/2Ne [see, e.g. ,  CROW and KIMURA 
(1970), p. 3571, and  equating this to  (9), gives 

4N 
Nee = 2( 1 - a]) + Vh(1 + a1 + 2ao)’ 
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In the steady state of constant  mating structure, at = 
cxo = a and, 

4N 
Ne, = 2(1 - CY) + V*(1 + 3 4 '  (10) 

which, for  large N when the Gaussian correction  for 
the variance of family  size is irrelevant, is a  corrected 
form of Equation 1 with the  term  (1 + 3a) instead of 
(1 + a). The additional term (from a ~ )  comes because 
KIMURA  and CROW (1963) assumed random  mating 
of inbred individuals. 

For the case of a Poisson distribution of  family  size 
(S i  = 2), Equation 10 reduces to  the simple form 

N 
Ne, = - 

1 +a' 

which agrees with the case of a monoecious population 
with a  mixture of selfing and  random mating and 
Poisson  family  size [LI (1976), p. 562; POLLAK (1987, 
1988)]  but  differs  from Equations 3 or 4 .  

Inbreeding  due to selfing: A similar derivation to 
that above may be given for  the case when inbreeding 
results  from selfing in the population. 

An individual passes two genes to each selfed off- 
spring  and  one  gene  to each nonselfed offspring. 
Therefore,  the mean gene  frequency in the offspring 
is 

[" 
"I 

Q = - C C (2qi + 6 ~ 1  + + C (Si + 6 ~ )  9 2N , = 1  j= 1 1 
where si and ni are  the  number of selfed and nonselfed 
offspring of individual i, respectively, and qi and 6, 
are defined as above with the subscript 1 or 2 to 
denote  the two genes passed to each selfed progeny. 

The variance in gene-frequency drift, where now 
= ( l / N ) Z Z l  qi, is 

Denoting the variance of the  number of gametes 
(V2s + n]) as S i ,  this gives Equation 1, in agreement 
with KIMURA and CROW  (1  963) and CROW and DEN- 
NISTON (1988).  Thus, Equation  1 holds for  the case 
of nonrandom selfing, but  not  nonrandom  pair mat- 
ing. KIMURA and CROW  (1963)  and CROW and DEN- 
NISTON (1988),  however, assumed that with Poisson 

TABLE 1 

Observed (Ne)  and  expected ( N S ~ c ,  N*WP and Nee; see text) 
effective population sizes for  populations  with size N ,  random 

mating (R) or full-sib mating  whenever  possible (FS) 

Population NFS a N, & S.E. N e ~ c  N e ,  Ne,, 

N = 6 4  
R 1.0 -0.011 64.0 f 0.07 64.0 66.2 64.7 
FS 15.5  0.159 54 .5f  0.05 64.0 43.3 55.2 

R 1.0  -0.005 200.4 f 0.22 200.1 202.8 200.9 
FS 47.8  0.182 170.0f 0.46 200.0 129.4 169.2 

NFS, number of full-sib matings achieved; a, observed departure 

N = 200 

from the Hardy-Weinberg proportions. 

distribution,  the variance of the  number of gametes 
equals its mean, i e . ,  S i  = 2 and  from (l), Ne = N ,  
irrespective of whether  the  parents  are in Hardy- 
Weinberg  proportions or not. This is not  the case if 
selfing occurs, for if the  number  of selfed and non- 
selfed progeny are independently Poisson distributed, 
S i  = 2 + 2& where P is the  proportion of selfing. As 
a = p/(2 - 0) for  partial selfing (see, e.g., HEDRICK 
and COCKERHAM  1986), p = 2a/( 1 + a) and substitut- 
ing  into  (1) yields Equation 1 1  again, as expected. 

CHECK OF PREDICTIONS BY SIMULATION 

T o  check these  equations, stochastic simulation was 
carried  out  for a  population subject to  nonrandom 
mating. The simulated population consisted of N dip- 
loid individuals, half of each sex, mated in pairs to 
produce families with an average  number of  two  males 
and two females following a multinomial distribution 
of family  size for each sex. From the total offspring, 
parents  for  the  next  generation were chosen at  ran- 
dom  and were either  mated  at  random (scheme R )  or 
by crossing full-sibs whenever possible, otherwise at 
random (e.g., if two males and  one female from  a 
family were sampled to  breed,  one male was mated 
with  his sister, the  other with a  random female from 
a  different family) (scheme FS) .  

Every simulation was run for 30 generations and 
300 or 3000 replicates, depending  on  the  population 
size. Values of a were  obtained by including in the 
simulation a  gene with initial frequency 0.5 in Hardy- 
Weinberg  proportions  and calculating each genera- 
tion the relative deviation of observed homozygosity 
from  expectation with the Hardy-Weinberg assump- 
tion. These values were averaged  for all generations 
and replicates after  generation 10, when an asymptote 
had  been  reached.  Observed effective sizes were cal- 
culated  from the  change in variance of the  gene 
frequency between generations 11 and 30. 

Table 1 shows the observed values of effective size 
and  the predictions by means of Equations 1, 3 and 
11 as well as the observed values of a and  the  number 
of full-sib matings achieved for two population sizes 
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TABLE 2 

Observed  parameters for populations with size N and a fixed 
proportion of full-sib matings  every  generation 

Population NFS 

N = 6 4  0 (0.0) 
8 (6.7) 

16 (12.8) 
24 (1 8.2) 
32 (23.0) 

N = 200 0 (0.0) 
25 (20.8) 
50 (39.5) 
75 (56.5) 

100 (71.1) 

S: SI., 

2.0 -0.022 
2.1 0.096 
2.3 0.222 
2.6 0.358 
2.9 0.504 

2.0 -0.009 
2.1 0.106 
2.3 0.225 
2.6 0.357 
2.8 0.499 

a 

-0.020 
0.051 
0.114 
0.21 1 
0.347 

-0.007 
0.051 
0.131 
0.237 
0.368 

NFS, intended  number of  full-sib matings (the number actually 
performed is shown  in parenthesis); S:, variance of  family size; SI,, 
covariance of the number of male and female progeny; a, departure 
from the Hardy-Weinberg proportions. 

2101 

200 , 
\ 
\ 

Nekc 

Nea 
Ne 

Newp 

1 0 1  
-0.10  0.10  0.30 

a 
FIGURE 1 .-Observed (Ne) and expected (N,,, Newp and Ne=; see 

text) effective population sizes for populations with  size N and a 
fixed proportion of  full-sib matings every generation, plotted 
against a. 

and random  mating ( R )  or crossing of full-sibs when- 
ever possible ( F S ) .  As expected,  the  observed effective 
size  with a  large value of a was smaller than with 
random  mating  (about 15% less for  both  population 
sizes) and  that  reduction was only properly  taken  into 
account by New. 

An alternative  scheme, which permitted  a variable 
number of full-sib matings and consisted of choosing 
the reproductive males at  random  from  the  total 
offspring and crossing a fixed proportion of them 
with their sisters (if available) and  the  remainder with 
non-sisters is shown in Table 2 and Figure 1. The 
number of full-sib matings actually performed was 
smaller than  intended because sibs sometimes were 
not available as  the  distribution of  family  size was 
multinomial. Sf increased with the  magnitude of a 
because of the increase in the covariance of the num- 
ber of male and female progeny  (although Sf for  the 
females was  less than  expected  from the multinomial, 
because of impositions of the mating  structure). Val- 
ues of Newp were calculated from  equation  (3) substi- 

tuting N c ~  for  the effective size  with random  mating 
and  the  appropriate S f .  

As clearly seen in Figure 1, Ne,  (obtained  from 
Equation 10) was a very accurate  prediction of the 
effective size but NeKc was again an overestimation 
and Newp an underestimation, especially with greater 
a. However,  both the proportional over- or underes- 
timation and  the  reduction in the effective size  with 
increasing a were  independent of the population size, 
the proportional  reduction  being  approximately lin- 
ear with a such that a 10% increase in a yielded about 
a 9% decrease in effective size. 

Finally, a  hierarchical scheme in  which the  number 
of reproductive males (25) was smaller than  that of 
females (1 00) to give families of full and half-sibs, was 
run.  This would give NcR = 80 with random  mating. 
Males and females were chosen at  random  for  repro- 
duction and mating was between half-sibs whenever 
possible (avoiding full-sib matings) and otherwise at 
random. With an average  number of 49.7 half-sib 
matings, the observed effective size  was 73.3 k 0.5. 
The predicted value of Newp (Equation 4) was 49.1, 
whereas the  predicted value of Ne, was 73.3, calcu- 
lated from Equation 10 considering means, variances 
and covariances of family  size for each sex separately, 
following CROW and DENNISTON (1 988). 

EFFECTIVE SIZE WITH A SPECIFIED 
PROPORTION  OF  FULL-SIB  MATINGS 

The previous discussion has been in terms of the 
effective size as a  measure of the change in variance 
of the  gene  frequency, but  under  the assumed situa- 
tion of stable census number,  inbreeding  and variance 
effective sizes have the same value. An approach in 
terms of inbreeding is also illuminating and can be 
used where the  departure  from  the Hardy-Weinberg 
proportions is due  to a specified number of  full-sib 
matings. 

Prediction of WRIGHT’S F statistics: By allowing 
the possibility  of nonrandom  mating in the popula- 
tion, we can distinguish the effects of nonrandom 
mating  from the effects of finite size on  the inbreed- 
ing. This can be done by considering the whole group 
of replicates as a subdivided population in  which every 
replicate is a  subpopulation and  then using WRIGHT’S 
F statistics [WRIGHT (1969), pp. 294-295;  HARTL and 
CLARK  (1989), pp. 293-2981. In a subdivided popu- 
lation, FIs is the correlation of uniting gametes relative 
to gametes  drawn at random  from within a  subpopu- 
lation (a replicate) or, as stated  above, the  inbreeding 
when the  population size is infinite, and is a  function 
of the  nonrandom  mating in the subpopulation; FST is 
the correlation of gametes  drawn at  random within 
subpopulations relative to gametes  drawn at random 
from  the  entire  population (all replicates) and is a 
function of the effective population size; and FIT is the 
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and, analogously, 0.400 
N = 64 

0. 
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l R 1  
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0 4 8 12 16 20 

Genera t ions  

FIGURE 2.-Observed values of Fm, FST and FIS for a population 
with size 64 and random mating (R) or full-sib mating whenever 
possible ( F S ) .  

correlation of uniting gametes relative to gametes 
drawn at random from the  entire population. The 
relationship between  these three types  of inbreeding 
coefficients is 

(1 - FIT) = (1 - FIS)( 1 - FsT). ( 1  2) 

In the simulation, values  of FIT and FST were  calcu- 
lated by means  of the symmetric matrix of the nu- 
merator of WRIGHT’S coefficient of additive genetic 
relationship (or, equivalently,  coancestry) and  the val- 
ues of FIs from them by means  of Equation 12. 

FIT, FST and FIS values for the case  with N = 6 4  and 
random ( R )  or full-sib mating whenever  possible ( F S )  
are plotted against generations in Figure 2. For ran- 
dom mating, FIs is zero and,  therefore, FIT equals FST, 

while  in the nonrandom mating scheme FIs increases 
to an  asymptote. 

Using a similar derivation to  that of WRIGHT (1 95 1 ; 
1969, p. 197), assume a proportion x of  matings are 
between  individuals  which are full-sibs and let CM, 
and CO, be the coancestry  between mated and non- 
mated individuals in generation t ,  respectively. The 
coancestry  between  two  mated  sibs in generation t is 
the probability  of  two  copies  of the same gene coming 
from one of the genes in one of their parents, i .e. ,  
1/4, plus the probability .of two  copies  of the same 
gene coming from the two  genes in one of their 
parents, i.e., (1/4)cMt-2, plus the probability  of  two 
copies  of the same gene coming from different par- 
ents, i.e., (1/2)CM1-1. The coancestry  between  two 
non-sibs  mated  in generation t is the coancestry  be- 
tween unmated individuals  in generation t - l .  There- 
fore, 

+ (1 - x)COt-1 (13) 

+ (1 - y)COk“, (14) 

where y is the probability that two  individuals are 
sibs  given that they are not mated. Thus, at gen- 
eration t + 1 ,  FIT = CM, and FST = CM,/(N - 1) + 
( N  - 2)CO,/(N - l) ,  or, FST = CO, for large N .  

For large populations an approximation for the 
asymptotic  value  of FIs can  be evaluated. Then, FsT 

and, therefore, Cot 0 and all the inbreeding comes 
from F I S ;  thus, from Equation 13, CM, = (x/4)(1 + 
CM,-2 + 2CMt-l). At equilibrium CM, = CM,-I = 
CM,-2 = CM, to give 

which is a well-known result (GHAI 1969; LI 1976, p. 
245). 

Prediction of y: y accounts for the probability that 
two  individuals are full-sibs  given that they are not 
mated. This can  be evaluated in the following manner. 
In a population with N/2 families and ki reproductive 
offspring per family, the probability that two  individ- 
uals are full-sibs is 

c2; k(k - 1) 
N(N - 1) ’ 

which, for stable  census number gives 

(N/2)(vk + 2) 
N(N - 1) 

Since there  are N(N - 1)/2 pairs, the total number of 
possible  full-sib  pairs is  N(vk + 2)/4. Of these, xN/2 
are pairs of full sibs  actually  mated and thus N(vk + 
2)/4 - xN/2 are not mated. Analogously, from the 
N(N - 1)/2 possible pairs, N/2 are actually  mated and 
N(N - 1)/2 - N/2 are not mated, therefore  the 
probability that two  individuals are full-sibs  given that 
they are not mated is 

N(vk + 2)/4 - xN/2 vk + 2 - 2X - - 
= N(N - 1)/2 - N/2 2 N - 4  ’ 

or approximately, for large N ,  

sf + 2 - 2x 
Y =  2N * 

For simplicity, we have considered no sexes ( i e . ,  mon- 
oecious  individuals) in this derivation but, obviously, 
the result equally  applies for two  sexes  because, among 
non-mated pairs, there is no need to distinguish  be- 
tween those of the same or different sex. 

WRIGHT (1969, p. 197) gave equations similar to 
(1 3) and (14) for changes in FIT and FST ( F  and E ,  
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TABLE 3 

Observed  and  predicted [assuming that the  probability  that  two 
individuals  are full-sibs given that  they  are not mated, y, is 2/N 
as  in WRIGHT-POLLAK'S equations or (2 - x)/N,  where x is the 

proportibn of full-sib matings; see text]  values of Fm and F- for 
a  population  with size N = 64, multinomial  distribution of 
family  size (Si = 2 )  and full-sib mating  whenever  possible 

~ ~ 

Observed y = 2jN y = ( 2  - x)jN 

Gen FIT  FST  FIT  FST  FIT  FST 

1 0.120 0.008 0.121 0.008 0.121 0.008 
4 0.194 0.033 0.198 0.039 0.194 0.034 
7 0.220 0.059 0.231 0.072 0.222 0.060 

10 0.243 0.085 0.259 0.104 0.244 0.085 
13 0.268 0.109 0.284 0.136 0.265 0.111 
16 0.284 0.134 0.309 0.166 0.286 0.135 
19 0.303 0.157 0.334 0.195 0.305 0.159 

Gen, generation. 

respectively, in  his notation) and POLLAK (1988) de- 
rived his expression for  the effective size from  these 
equations.  However, they assumed that  the  probabil- 
ity that two random copies of a  gene in random mates 
that  are  not sibs are derived  from  parents that were 
sibs (our y) was 2/N, a  result which is correct  for 
random  mating but  not  for  nonrandom  mating as 
shown by equation (1 6). In  Table 3 values for FIT and 
F S T  calculated as stated  above  from  equations (1  3) and 
(14) as well as those calculated from  the WRIGHT- 
POLLAK'S equations are compared to their  simulated 
values for  the case with N = 64 and full-sib mating 
whenever possible. It is clear that  the WRIGHT-POL- 
LAK'S equations are only approximate in the early 
generations  and  the bias accumulates rapidly. 

Approximation of the  effective  size  for  large N: 
From Equation 14 and  letting ut = 1 - CM, and Pl = 
1 - cot, 

and from  Equation 12, recalling that CM, = FIT and 
Cot FST, then ut = PI@, where @ = (1 - FIS). 

Letting X be the asymptotic rate of decline in het- 
erozygosity, the value of P in generation t will be P ,  = 
A P t - l  = X2P1-2 = . . . . Substituting  into  Equation 17 

h2P1-2 = Y[t +Pt-2 + - @ A p t +  + (1 - y)xp t-2, 
2 l l  

which factoring out  and  rearranging gives X 2  - 
y + y@/2]X - y9/4 = 0. Solving for X and 
neglecting terms with y 2  (as shown in Equation 16, 
y 0: 1/N and,  therefore, square  terms are negligible 
for large N ) ,  X = 1 - y(1 - 3@/4). From (15), ip = 
1 - F,s = (4 - 4x)/(4 - 3x) plus terms of order 1/N, 
and therefore, X = 1 - y/(4 - 3x). By definition, 
(1 - X) X 1/2N, (see CROW and KIMURA 1970, p. 104), 
so ignoring second order  terms, 

Ne = -. 4 - 3x 
2Y 

By substituting (1 6) into (1 8) an estimate of the effec- 
tive size is obtained in terms of the population census, 
the  proportion of full-sib matings achieved, and  the 
variance of  family  size, 

Ne = 
N(4 - 3x) 

sf + 2 - 2x' 

In  the case of a Poisson distribution of  family  size, 
with S,' = 2, (1 6) reduces to y = (2 - x)/N, and (1 9) to 

N(4 - 3x) 
4 - 2 x .  

Ne = 

Recalling that a F ~ s  when N is large (actually, 
a = FIs - aR, where QR = -1/2N - 1/2T is the value 
of a for  the  random mating case  with multinomial 
distribution of family  size and T scored individuals; 
ROBERTSON 1965), x can be given from (1 5) as a 
function of a, x = 4a/( 1 + 3a). Substituting  into (1  9) 
and (20), it  gives equation (10) and (1 l), respectively, 
as  expected. 

DISCUSSION 

The effective population  number is usually smaller 
than  the  actual  number of adults of reproductive  age, 
the reasons for this being,  traditionally,  unequal  num- 
bers of males and females, temporal variation in pop- 
ulation number  and  greater  than Poisson variability 
in the  number of progeny per  parent (CROW and 
KIMURA 1970, pp. 109-1 10). Selection also causes a 
reduction in effective population size  (ROBERTSON 
1961; WRAY  and THOMPSON 1990). 

With unselected populations  where matings be- 
tween relatives are  more  frequent  than  at  random, 
there is also a  reduction in effective size because of 
the additional  increase in genetic  drift due  to  the 
correlation of the  gene  frequency in the parents. This 
reduction is independent of the population size and 
approximately  linear with the  departure  from  the 
Hardy-Weinberg  proportions. 

The causes of this reduction in the effective size 
can  be seen in a  different  manner.  When mates are 
related,  the variance of the  number of offspring 
is not affected  but the variance of the  number of 
grandoffspring is enhanced because there is a covari- 
ance between the  number of offspring  generated by 
the sons and  daughters of a given family.  Likewise, 
the variance of the  number of subsequent  descendants 
is also accordingly enhanced  for  the same reason. The 
classical equation of KIMURA and CROW (1 963) for  the 
effective size using means and variances of the  number 
of offspring per  parent  (Equation 1) is inappropriate 
in this case as it takes into  account only the distribution 
of descendants in one  generation.  WRAY  and THOMP- 
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SON (1  990) derived  a  method  to  predict effective sizes 
considering the long-term  contribution  from ances- 
tors  to descendants. For  the  conditions  dealt with in 
this  paper,  the  predicted effective size would be N e  
2N/(1 + S : ) ,  where S,' is the variance of long-term 
contributions of ancestors to descendants. This 
method was, however,  derived assuming random mat- 
ing which is why, perhaps,  their  predictions are severe 
underestimations for large departures  from Hardy- 
Weinberg  proportions  (data  not shown). 

CROW and DENNISTON (1 988) also gave an  equation 
for  the  inbreeding effective size which considers 
means and covariances in the progeny. For the same 
situation as above, this equation would reduce to 
Ne = N/(  1 + Skrnf), where Skmf is the covariance of the 
number of male and female  progeny per  parent. 
Nevertheless, this equation  does  not  consider  the pos- 
sibility of nonrandom  mating which can be clearly 
seen because when there is no covariance of male and 
female  offspring (e.g., with an  independent distribu- 
tion of  family  size for each sex), the  predicted effective 
size equals the census number irrespective of the 
existence of nonrandom mating. Furthermore, this 
equation is,  in general,  not valid for  more  than  one 
generation  either  for  a  multihypergeometric  distri- 
bution of  family  size or, for example, in the  extreme 
case of constant family  size (Sk,,,f = 0), where  the 
predicted effective size equals the actual size but it 
should  be  approximately  double. 

Finally, POLLAK (1987,  1988) derived  an equation 
to predict effective sizes  with a mix of sib mating and 
random mating. His derivation,  however, was based 
on a recurrent equation  for the  inbreeding of the 
population with an  incorrect coefficient and,  there- 
fore, gave incorrect  roots. 

In this paper, we have  derived and checked by 
simulation a  corrected  form of the classical equation 
of KIMURA and CROW for  the variance effective size 
when inbreeding is due to mating  between relatives, 
excluding selfing (Equation 10). Further, following a 
derivation in terms of inbreeding, we have also de- 
rived  an  equation to predict effective sizes  in the 
particular case where  a  certain  proportion of full-sib 
matings is performed every generation  (Equation 19), 
correcting POLLAK'S equation.  Equation 10 is appli- 
cable  to any situation  but  requires knowledge of the 
magnitude of the  departure  from  the Hardy-Wein- 
berg ratios,  a  parameter which is not usually known. 
Equation 19, on  the  contrary, is applicable to a  more 
restricted case of nonrandom mating, but has the 
advantage of permitting  a  direct  estimation of the 
effective size provided we know the average number 
of full-sib matings which will be performed. A mating 
structure where the maximum number of full-sib mat- 
ings is performed every generation has been shown to 
be a valuable method  for  increasing  fixation  probabil- 

ities of recessive mutants  without causing delays in 
times to fixation or decreasing fixation probabilities 
for genes with different  gene  action (CABALLERO, 
KEICHTLEY and HILL 1991) and Equation 19 would 
be of practical direct use in that case. 

It is  easy to obtain an equation like Equation 19 for 
other cases  of partial  inbreeding. For example, with a 
mix  of half-sib mating and  random  mating when 
mothers of  half-sibs are themselves half-sibs, FIS = 
r/(8 - 7%) (GHAI and KEMPTHORNE 1971; HEDRICK 
and COCKERHAM 1986), where z is the  proportion of 
half-sib matings. Again approximating (Y by FIS and 
substituting  into (1 0) ,  considering each sex separately, 
we obtain 

N , R ( ~  - 7%) 
4(1 - Z) + Sf(2  - Z) Ne = 

or, for  a Poisson  family  size (s: = 2), 

- 7%) NCR N e R  Ne = -- 
8 - 6% 

- z -  
1 + FIS 1 + (Y' 

as with partial selfing and partial full-sib mating. 
The results  obtained in this paper have an im- 

portant implication on  the discussion  by POLLAK 
(1988) of the  reduction of the effective size caused 
by different  mating systems  of inbreeding. POLLAK 
argued  that  under partial selfing Ne = N,R/(~ + FIS) = 
NeR(l - P/2) ,  under partial full-sib mating Ne = 
AIeR/ (  1 + 3FIs) = NeR( 1 - 3P/4), and  under partial half- 
sib mating if mothers of half-sibs are themselves half- 
sibs N, = NeR/(l + 7F1s) = N e R (  1 - 78/8), where is 
the  proportion of the corresponding  inbreeding mat- 
ing. Thus,  he concluded  that the  more intense the 
inbreeding,  the less the  reduction in effective size  with 
respect to  the  random case for (1 - P/2 )  > ( 1  - 3P/4) 
> ( 1  - 7P/8). The result for partial selfing is correct 
but we have shown that in the two other cases  with 
Sf = 2, (a  Poisson  family  size with the  number of male 
and female offspring  uncorrelated), N,  = NeR(4 - 3P)/ 
(4 - 28) and Ne = N c R ( 8  - 78)/(8 - 68), respectively, 
or Ne =  ne^/( 1 + FIS) in all  cases. Therefore, as ( 1  - 
P / 2 )  < (4 - 38)/(4 - 20) < (8 - 7P)/(8 - SP), the 
expected  result that  an increase in the intensity of the 
local inbreeding leads to a greater decrease in effective 
size is obtained:  quite simply it is a  function only of 
FIS. 

Most of the discussion on this paper has focused on 
cases where the  number of inbred matings is more 
frequent  than  at  random.  It is, however, common to 
avoid matings between relatives in human  and  other 
primate social structures  and in breeding  programs 
applied to livestock production.  This results in FIs < 
0 and,  therefore,  an increase in effective size. Never- 
theless, this increase is very small, especially for  large 
population sizes. A simulation was run where matings 
between relatives were minimized by mating individ- 
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uals  with the smallest coancestry. With N = 64, the 
value of F ~ s  was -0.019 and Ne was 67.5, while for 
N = 200, they were -0.010 and 201.5, respectively. 
This is  easy to  understand  from  the fact that, with 
random  mating, the  number of inbred matings is 
independent of N .  For example, one full-sib mating is 
expected on average for any value of N. Thus, if N is 
large there is not  much effect of whether or not  that 
mating is avoided. 

We are grateful to J. F. CROW, E. POLLAK and an anonymous 
referee  for helpful comments and suggestions. 
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