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ABSTRACT 
In this article we investigate multiplicative effects between genes in relation to heterosis. The 

extensive literature on heterosis due  to multiplicative effects between characters is reviewed, as is 
earlier work on  the genetic description of heterosis. A two-locus  diallelic model of arbitrary gene 
action is used to derive linear parameters for two multiplicative models.  With  multiplicative action 
between loci, epistatic effects are nonlinear functions of one-locus effects and  the mean. With 
completely multiplicative action, the mean and additive effects form similar restrictions for all the rest 
of the effects. Extensions to more than two loci are indicated. The linear parameters of various 
models are then used to describe heterosis, which is taken as the difference between respective 
averages of a cross (FI) and its  two parent populations (P) .  The difference (F2 - P )  is also  discussed. 
Two parts of heterosis are distinguished: part I arising from dominance, and  part I1 due  to additive 
x additive ( a  x a)-epistasis. Heterosis with  multiplicative action between loci  implies  multiplicative 
accumulation of heterosis present at individual loci  in part I, in addition to multiplicative ( a  x a)- 
interaction in part 11. Heterosis with completely multiplicative action can  only  be negative ( i . e . ,  the F1 
values  must  be  less than the  midparent),  but  the difference ( F n  - P )  can  be  positive under certain 
conditions. Heterosis without dominance can arise from multiplicative  as well  as any other nonadditive 
action between loci,  as is exemplified by diminishing return interaction. The discussion enlarges the 
scope  in various directions: the genetic significance  of multiplicative models is considered. The 
description of heterosis is extended  to  three loci to show that multiplicative action between loci can 
make part I very large, but not part 11. The genetic role of part I1  is explained. Finally, we compare 
multiplicative to  arbitrary gene action in general, suggesting that  the  former may serve to measure 
nonadditivity of gene interactions in the  latter. 

I N a recent  article MINVIELLE (1987)  presented a 
two-locus  diallelic model for which there  were  no 

dominance  effects  but  with  multiplicative  effects  that 
could  lead  to  heterosis. As was shown by COCKERHAM 
(1  959),  multiplicative  effects  between  non-alleles 
which  otherwise  act  additively  give  rise  to  epistatic 
effects of the  additive by additive (a X a)-type. T h e  
objective  of  the  present  paper is to  clarify the role 
multiplicative  gene  action  can play in  producing  het- 
erosis. T h e  influences  exerted  on  heterosis by multi- 
plicative  effects  between  genes  cannot properly be 
discussed  without  referring  to  multiplicative  effects 
between  characters. As effects  of  the  latter  kind  have 
been  dealt  with by various  authors  who  sometimes 
were  partly  unaware of each  other, we  shall  first 
recapitulate  the  main  lines of research  done  in  that 
area. Some  earlier  work  on  the  genetic  description  of 
heterosis will also be reviewed. 

REVIEW OF  LITERATURE 

Multiplicative  interaction  as  a  source of heterosis 
is  widely known in complex  characters  which are 
products of two or more  subcharacters.  Plant  height, 
for  example, is the  product  of  internode  length  and 
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number. RICHEY (1942) was the first to  realize  that 
the  relations  between  the  product  of  means  and the 
mean of products  can lead to  heterosis  which is 
not  due  to  dominance.  Let  the  respective levels of 
two  component  traits be X’ and Y’ in  parent P ’ ,  X” 
and Y” in  parent P”, and x = (X’ + X”)/2 and = 
(Y’ + Y”)/2 in  the  midparent  as well as in the F1, 
assuming  heterosis  in  the  components  to  be  absent.  In 
the  complex  trait,  then,  the F1 will differ  from  the 
midparent (P)  by 

F1 - P = XY - (X’Y’ + X”Y”)/2 - (1) 
= -(X’ - X”)(Y’ - Y”)/4. 

The positive  effect  resulting  from  (1)  when X’ > X” 
but Y’ < Y”, or vice  versa, was called  “mock  domi- 
nance” by RICHEY. He estimated  such  effects  would 
be too small to  account  for  any  substantial  part  of  the 
heterosis  observed  in  corn,  for  example. DEMPSTER 
(1 942) doubted  whether  an  interaction like that de- 
fined  in  (1)  should be described  as  “mock”  because  its 
leading  to  heterosis  cannot be removed by transfor- 
mation  of  sca1e:Po~~Rs (1 944)  reported yield heter- 
osis in  tomato  crosses  some of which were closer to  
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the respective lower parent in both  subcharacters, 
fruit  number  and weight. This allowed him to illus- 
trate that the explanation of heterosis by at least 
partial  dominance of favorable  genes is not necessary 
when non-allelic genes  interact multiplicatively. WIL- 
LIAMS (1  959), apparently  independently, also demon- 
strated  the inevitability of multiplicative interaction, 
using a  constructed  numerical  example.  But he 
wanted a distinction to be made “. . . between gene 
interaction and  the  interrelations of the  component 
parts of the phenotype.” This view gave rise to a 
controversy (HAYMAN 1960; WILLIAMS 1960). MOAV 
(1 966) distinguished several classes of heterosis of sire- 
dam combinations. His class termed  “nonlinearity  het- 
erosis’’ actually includes multiplicative interaction as a 
special case. GRIFFING (1990) tested  a  tomato cross 
and its parents  under field and controlled nutrient 
conditions to  compare various hypotheses of heterosis 
including “somatic multiplication of additive compo- 
nent traits.” 

Multiplicative  accumulation of component  heter- 
osis in complex characters is another multiplicative 
effect which came  into view early. WRIGHT (1922) 
had  noted  that relative improvements of crossbred 
matings over  both  parent stocks in guinea pigs were 
much  greater  for  total  performance  than  for its com- 
ponent  characters. Similar observations in farm  ani- 
mals were later  reported by a number of authors. 
DICKERSON (1 955) ascribed the  phenomenon  emerg- 
ing  from such observations “. . . to the fact that total 
performance  tends  to  behave as a  multiple of its 
components. . . . A small amount of heterosis in each 
component becomes relatively very large  for the total 
product.” In plants, an early account of multiplicative 
accumulation of component  heterosis is found in a 
study with  six barley crosses reported by TMMER 
(1 94 1). The F1 average  exceeded the  midparent av- 
erage by 8.3% in number of heads  per  plant, 11.1% 
in number of seeds per  head,  and 4.9% in weight per 
seed. As the  product of these three  traits specifies 
yield, IMMER expected the  Fl/midparent  ratio of yield 
per plant to be 1.083 X 1.1 1 1  X 1.049 = 1.262. The 
ratio calculated directly was 1.273. GRAFIUS (1959) 
studied the same yield components in applying his 
“geometrical model for yield” to 15 barley crosses. 
The Fl/midparent  ratio  for yield, averaging 136.36%, 
was interpreted as “heterosis due to epistasis.” GRAF- 
IUS (1960) postulated that overdominance  for yield 
may have a  “geometric  explanation.” This view  was 
disputed by MOLL, KOJIMA and ROBINSON (1962). 
There is no disagreement,  however, that multiplica- 
tive effects between  component  traits each having 
little heterosis can produce  large  amounts of heterosis 
in the complex trait (GRAFIUS 1961 ; SINHA and 
KHANNA 1975; GEIGER and WAHLE 1978; NITTER 
1978; and others). 

The distinction  between  the  two  multiplicative 
effects discussed above has been  hampered by their 
simultaneous  occurrence. In most reported examples 
($ SINHA and KHANNA 1975; JAKUBEC and HYANEK 
1982), the effect of multiplicative interaction is not 
readily apparent, because the F1 components are not 
on  their  midparent levels, but  exhibit  heterosis  them- 
selves. As component  heterosis is usually small, many 
cases could  be interpreted as “merely showing domi- 
nance” by those who define  heterosis  from the  better 
parent. Such authors have used terms such as “com- 
bination  heterosis” (HAGBERG 1952), “complementary 
gene  action” (WILLIAMS and GILBERT 1960), or “com- 
ponent  interaction” (ADAMS and DUARTE 1961), 
which actually include  both kinds of multiplicative 
effects. GEIGER and WAHLE (1 978) separated  the two 
effects in complex  traits  made up of two or three 
components. The approach  extends  the  situation con- 
sidered in (1). Let the respective F1 levels in the two 
component  traits  be X* = xfx and Y* = v y ,  where f x  
andfy are  Fl/midparent ratios  for the components. In 
- the complex trait,  then,  one can write F1 = X*Y* = 
XYfXfy and, as before, P = (X’Y’ + X”Y”)/2 = xy + 
(X’ - X”)(Y’ - Y”)/4, so that heterosis takes the form 

F1 - P = E(f& - 1) - 
(2) 

(X’ - X”)(Y‘ - Y”)/4. 
Formula (2) splits the heterosis of the complex trait 
into two parts: part 1, m(fxfy - l), combines compo- 
nent heterosis in a multiplicative way,  while part I1 is 
due  to multiplicative interaction between component 
differences in the parents. GEIGER and WAHLE, ana- 
lyzing several traits in hybrids of rye, found  part I1 to 
be of negligible size and as  often negative as positive. 
This result and similar findings in  maize (SODEN- 
FRAUNHOFEN 198  1) corroborate RICHEY’S (1 942) es- 
timate. BECKER (1984) compiled data  from various 
plants to illustrate that multiplicative interaction may 
be of greater  importance in inbreeders  than in out- 
breeders because of the smaller total  heterosis in the 
former. 

The quantitative-genetic  description of heterosis 
by means of a  linear model allowing for epistasis was 
first undertaken by JINKS and JONES (1 958). Consid- 
ering a cross between two inbred lines, they expressed 
the superiority of the F1 over the  better  parent in 
terms of “components of means” which sum up vari- 
ous  genetic  effects  including two-factor interactions. 
MATHER and JINKS (1971) used a slightly modified 
parameter system to give similar expressions, which 
include  terms due  to  three-factor interactions. COCK- 
ERHAM’S (1954) factorial model of gene effects and 
interactions was used by SCHNELL and GEIGER (1 970) 
to identify those types of epistasis up to  n-factor  inter- 
actions which in a cross of two homozygous lines 
contribute  to  heterosis  measured  from  the  midparent. 
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TABLE 1 

Genotypic  values of a  two-locus diallelic model specifying 
multiplicative  action between loci 

BIB2 OT 
B I B ,  BZBI BzBz 

A I A I  allbll a l h z  a I Ib22 

AIAa or A ~ A I  a12h1 a12312 a12322 

AzAa annbl I a22312 a22322 

Two classes of contributing  interactions  were  identi- 
fied. Class I comprises all interactions the nomencla- 
ture of which involves no “additive” term,  but includes 
“dominance”  an  odd  number of times. Class I1 com- 
prises all interactions involving “additive” an even 
number of times, whether  “dominance” is involved or 
not. Class  I1 interactions  contribute to  the  midparent, 
but not to the FI.  Further, each such interaction  as 
often increases as decreases  heterosis in the 2” com- 
pletely heterozygous  hybrids  that  can be  formed with 
n diallelic loci. The importance of (a X a)-interactions 
was emphasized because they would reflect multipli- 
cative gene effects in the linear  model.  ARUNACHALAM 
(1977)  inferred  from  the study  of  a cross between 
arbitrarily  inbred  parents  that  heterosis can result 
from (a  X a)-epistasis without the presence of domi- 
nance.  HILL  (1982)  derived  formulae for  predicting 
generation means and heterosis of crosses among pop- 
ulations in terms of “composite effects” defined  from 
contrasts in the F2-population. Extensions to multiple 
alleles and  to  more  than two loci were also given. 
WILLHAM and POLLAK (1985)  derived similar predic- 
tions  including linkage in terms of effects defined  for 
the two-locus multiallelic model of KEMPTHORNE 
( 1  957). 

RESULTS 

Linear  parameters for various  models 

The representation of multiplicative gene action 
is  often given in a form similar to the two-locus dial- 
lelic model shown in Table 1. There  the genotypes, 
AiAjBhBl (with i, j ,  k, 1 = 1, 2), have genotypic values 
equal  to  products agbkl, where ag and 6 k l  are numerical 
values assigned to phases A,Aj and BkB1, respectively. 
Obviously, multiplicative action is only between loci, 
not within them. To make the model completely 
multiplicative, we may replace the  products  ofaybkl by 
corresponding  products, A,AjBkBl say, where each fac- 
tor like A, now represents  a  numerical value assigned 
to that allele. On  the  other  hand,  gene action is 
completely arbitrary when only the genotypic value as 
a whole is given a  numerical value, xjkl say. It is for 
the  latter gene  action that genotypic values have been 
decomposed into linear  partitions such as the mean, 
additive and  dominance effects, and epistatic effects 
of various kinds. We wish to apply this linear descrip- 

tion to  the two multiplicative models considered 
above.  For the sake of simplicity, we shall confine the 
derivations to  the two-locus diallelic case, though  ex- 
tensions to multiple alleles and  to any number of loci 
would be possible throughout. The genotypes listed 
in the  Table  form  the  reference population in  which 
the  partitioning of genotypic values is to  be made.  Let 
the frequencies of genes A I ,  AS, B1, BP bepl,  P Z ,  41, q 2 ,  

respectively, with P Z  = 1 - P I  and q 2  = 1 - 41. 
Genotypic  frequencies are assumed to  be in Hardy- 
Weinberg  and linkage phase equilibrium. The con- 
vention to  be  adopted is that numerical values as- 
signed to phases or alleles are positive numbers with 
a l l  3 aZ2 and 611 3 622, or A l  3 A2 and B1 2 Bz,  
respectively. 

The linear partitioning of a  genotypic  value can 
be done by various methods. It meets our purpose to 
employ KEMPTHORNE’S (1 957)  approach, which starts 
from  algebraic  identities such as 

Ai = (E PmAm) + (Ai - E & A m ) .  
m m 

With only two alleles (i, m = 1, 2) this reduces to 

A; = (PIA1 + P d 2 )  + r8(A1 - A2), 

where r1 = p 2  and r2 = -p1. Similarly, 

Bk = (q1B1 + q$z) - Bz), 

where s1 = q2 and s2 = -q l .  Corresponding expressions 
are  for Aj and Bl. Then we can write as an algebraic 
identity, 

AApkBl = (MA + riAA)(MA + r j A ~ )  
(3) 

.(ME + sAB)(MB + s~AB) ,  

where MA = PIA1 + pzA2; AA = AI + AB;  MB = q1B1 + 
q2B2; AB = B I  - BP.  We may interpret  the left side of 
(3) as the genotypic value for whatever model we are 
studying. The right side of (3) then makes sense only 
after being  developed  into  functions of genotypic 
values of the model under study. We  shall do that in 
two steps. For the  present, we expand  the  right side 
of (3) without resolving individual terms like M A  or 
A,. This supplies the linear  partitioning of the geno- 
typic values, 

A;AjBkBl = /A + (Ti r j ) a ~  + rirj6~ + ( S t  + S ~ ) C Y B  

+ S g d B  + (Ti  + r j ) (Sk  + S1)aCYAB (4) + (Ti  + rj)SkSlCY6AB + rjrj(Sk + Sl)bCYAyAB 

+ Tir jSd&6AB,  

where  the mean (JL) and  the genetic effects (aA, SA, 
. . ., 6 6 A ~ )  have the formal  definitions given in the 
second  column of Table 2. The nomenclature of the 
effects should  be apparent because CY and 6 read  “ad- 
ditive” and  “dominance,” respectively, and subscripts 
( A ,   B )  denote  the loci referred  to. Actually, the genetic 
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TABLE 2 

Linear  parameters of the  two-locus diallelic model,  formal 
definitions, and  values for two models of multiplicative gene 

action (for explanation see text) 

Definition and Value  for 
value  for  multi- completely 
plicative action multiplicative Linear pa- 

rameter  Formal  definition between locia action 

fi  M A X M A X M B X M U  paph=p Ir 

6, AA X AA X MB X MB dapb = 6A d / r  

6 11 M A  X MA X An X AB pa6b = 6n ff27p 

@A AA X MA X Mu X MB aapb = CXA f f A  

( Y I ~  MA X MA X AB X MA = (YB f f B  

ffff.4/{ AA X MA X AB X M B  ffaffb = a A f f B / p   a A f f B / p  

f f 6 ~ ~  AA X MA X AB X AB ffd6b = a A d B / p  a A d / / L 2  

6a.4, AA X AA X AB X MB 6,ab = 6 A a n / p  aXaB/p2 
6 6 , ~  AA X AA X AB X An 6,6b = 6,6,/p a:&p3 

U 

pa = pya, ,  + 2plp.raln + p h ,  
01, = ~ I ( ~ I I  - a]?)  + p,(al, - ann) 
6, = a l l  - 2aln + ayp 
ph = q?bll + 2qlqnbIn + q%bm 
a h  = ~ I ( ~ I I  - ~ I P )  + qJ(bln - bnn) 
6 h  = bll - 2612 + bnn. 

effects are contrasts which  in the diallelic case deter- 
mine respective effects or interactions of individual 
genes. For example, the additive effect of the  gene A, 
is ?-@!A, which specifies p z a ~  and - p l a ~  as respective 
additive effects of the alleles A I  and Az. Note  that 
dominance effects (hA, 68) bear  the  relation 6 = -2d 
to the customary dominance  parameter d which meas- 
ures  the  heterozygote deviation from homozygote 
average. 

Linear  parameters for multiplicative  action be- 
tween  loci are obtained by further  expanding  the 
formal definitions listed in Table 2 .  Each of the nine 
definitions is the  product of two A terms like (p1Al + 
pPAz) or (Al - A*), and two similar B terms.  Expanding 
such a  product  and  replacing genotypic symbols by 
genotypic values of the model under study results in 
the quantitative  definition of the respective parame- 
ter. For example,  replacement by arbitrary genotypic 
values, Ylj.kl, yields the definitions implied in the linear 
descriptive model. In our case, genotypic values them- 
selves are  products aybkl, where ay and b k l  are uncor- 
related in occurrence. The formal  definitions,  there- 
fore, need  expanding only separately with respect to 
A-term products and B-term products. This  amounts 
to computing  a  mean,  additive and  dominance effect 
for each locus  singly. For  example,  expanding the 
product (MA X MA) = (PIA]  + p 2 A ~ ) ~  and replacing 
phase symbols, AiA,, by uy values gives the mean of 
the  latter, pa = p:ull + 2 p 1 p ~ u 1 2  + p % ~ .  The various 
single-locus parameters, shown in the  footnote of 
Table 2 ,  are designated by usual symbols with small 
letter subscripts denoting  the locus, to distinguish such 
parameters  from  one-factor effects ( a A ,  6 A ,  as, 6,) and 
the general mean (p). Multiplication of two appropri- 

ate single-locus parameters  then  provides  the  quanti- 
tative definitions of the linear  parameters  for this 
model. The various definitions are interrelated in such 
a way that all epistatic effects are in fact restricted to 
nonlinear  function of one-factor effects and  the mean. 
We shall use these  functions as values of respective 
effects to  bring  out  the existing restrictions. The 
resulting  parameter values are presented  together 
with their  definitions in the  third  column of Table 2. 

Linear  parameters for completely  multiplicative 
action could  be  derived  from the foregoing model by 
treating  the special  case  in  which a12 = and 
b12 = Jb,,b,,. The direct  derivation  from the model 
AiAj&& is simpler, however. As the factors like Ai are 
uncorrelated in occurrence,  no expansion of the for- 
mal definitions is necessary. They themselves, written 
in full, represent  the  desired  quantitative  definitions, 

} (5 )  
. . . .  . . .  . . .  . . .  I 

The interrelations between the various definitions in 
(5) are of such a kind that epistatic effects as well as 
dominance effects are restricted to non-linear  func- 
tions of additive effects and  the mean. For example, 
6, = a i / p .  The full set of restrictions existing within 
a completely multiplicative model can be seen from 
the  parameter values given in the last column of Table 
2. Note  that  none of the  parameters  can  be negative. 
Any dominance must therefore be in the direction of 
the smaller homozygote ( c j  CHARLES and SMITH 
1939). Let ( d / a ) A  be  the  degree of dominance at  the 
A-locus and define it in the usual way. In  terms of 
factors Ai we find 

We thus  expect ( d / u ) A  between the limits - 1  (for A2 

tending  to  zero)  and 0 (for A2 = AI). 
Extensions  to  more  than  two loci are straightfor- 

ward. With multiplicative action between n loci, the 
quantitative  definition of a given linear  parameter is 
a  product of n single-locus parameters.  These are 
additive or dominance effects from  those loci for 
which the  parameter in question involves such effects 
by nomenclature,  and single locus means from all 
other loci ( c j  COCKERHAM 1959). The resulting defi- 
nition leads to a  restricted  parameter value which is 
the  product of corresponding  one-factor effects, di- 
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vided by p""', where m is the  number of multiplied 
effects. We  shall exemplify the above  rules, assuming 
the inclusion of a third locus, C ,  say. In each instance, 
we give the  parameter,  the  quantitative  definition, 
and  the restricted  parameter value: ~ ( Y A B  = (Ya(Y& = 

6AaB6c/p2. The restricted  parameter values of this 
model can be  converted  into  those  for completely 
multiplicative action by replacing any dominance  ef- 
fect by the square of the respective additive  effect, 
divided by p. For  example, the value given last, 6Aa&/ 

p2, then becomes aiaBa%/p4. It  should  be  noted that 
restricted  parameter values of both multiplicative 
models do not  change  their  forms when additional 
loci are included in the model. Moreover, the inser- 
tion of such values into  equations (4) permits con- 
densed  forms of the partitionings.  For multiplicative 
action between loci we  may write 

aA(YB/C(;  6aBc = p a 6 b a c  = 6Bac/p; 6 a 6 A B c  = 6 a a b 6 c  = 

aIjh = PaIpiI, (7) 
where ah = { 1 + ( ~ i  + + A / p  + r i ~ j S A / p L ) ,  etc.  A similar 
form  for completely multiplicative action is 

AiAjBkBl = pA(AjB;B; ,  (8)  

where A: = (1 + riaA/p),  etc. The mean enters  for- 
mulae (7) and (8) as a  constant. Models involving a 
constant  factor have also been used for  representing 
multiplicative gene  action. 

Heterosis  expected  with  various  models 

The genetic  description of generation  means of 
two  parents,  their F1 and Fe ( c j  WILLHAM and POL- 
LACK 1985) is now to be  made in terms of the linear 
partitions (4). The parents, P' and P",  are  random 
mating populations in Hardy-Weinberg and linkage 
phase equilibrium. The genes A I ,  A2, B1 ,   B2  have 
respective frequencies p { = P I  + u, p;  = p 2  - u, q { = 
q1 + u, q ;  = 9 2  - u in parent P ' ,  and p;  = p l  - u, p;" 
= p:! + u,  q ;  = q 1  - u, q g  = 4 2  + u in parent P".  So, 
2u = p - p;  and 2u = q { - q ;  are  the differences in 
gene  frequency between the two parents  at  the A locus 
and  the B locus, respectively. Maximum differences, 
2u = +1 and 2u = +1, occur when the  parents are 
homozygous lines. Genotypic frequencies in each gen- 
eration  are  products of frequencies of uniting ga- 
metes. The latter  frequencies are products of respec- 
tive gene  frequencies in P ' ,  P", and  F1, assuming that 
in FI-genotype gametes AiBk came  from P ' ,  and ga- 
metes A,Bl came from p". For the F2 from random 
mating FI's, the F1-gametes AIBI,  A1B2,  A2B1,  A2B2 are 
determined to have respective frequencies ( p l q l  + D), 
( p l q 2  - D), ( p 2 q 1  - D), ( p 2 4 2  + D), where D = Xuu is 
the linkage disequilibrium and (1 - X)/2 is the recom- 
bination  fraction.  Genotypic  frequencies of a given 
generation are then used to  get  the respective gener- 
ation mean by taking  expectations of all linear  parti- 
tions specified in (4), and summing.  For  example, 

TABLE 3 

Linear  parameters of the two-locus diallelic model, and  their 
coefficients in generation means  indicated 

Generation mean 

parameter 
Linear 

P' P" F, F9 

P 1 1 1 1 
a A  2u  -2u 0 0 
6 A  U' U 2  -u' 0 
a B  2v  -2u 0 0 
6s U' V' -v' 0 
(YffAB 4uv  4uv 0 2xuv 
a 6 A B  2uu' -2uv' 0 0 
6 a A B  2U2U -2u'v 0 0 
6 6 A B  

u2u2 u2v,2 x'u'v' 

averaging the partition ria,., with the genotypic fre- 
quencies of generation P' yields the expectation, 

g { T z a A ]  = cccc p : p j q i q ; T i a A  = U a A ,  
r j k l  

where p( is the  gene  frequency of the  gene A, in P ' ,  
etc. We likewise have w r 1 a A L )  = UCYA, and thus  expect 
the  parameter aA to  enter  the generation mean P' 
with coefficient 2u. The coefficients of all nine  param- 
eters  for each of the generations means P ' ,  P",  F1,  F2 
are presented in Table 3. 

Heterosis  with  arbitrary  gene  action shall be con- 
sidered  first, because it represents  the  general case. 
Taking heterosis  as  the  difference between the re- 
spective averages of a cross (F1) and its two parent 
populations (P) ,  we find  from Table 3, 

F1 - P = - 2 u 2 6 A  - 2 U 2 6 8  - 4 u v a f f A B .  (9) 

On  the  right side of (9), two parts of heterosis will be 
distinguished: part I consisting of the  components due 
to dominance, and  part I1 due  to (a  X a)-epistasis. 
Part 11, other  than  part I ,  contributes  to P, but  not to 
F1. Moreover, only part I1 depends  on  the  differences 
in gene  frequency in sign, though  both  parts  are 
influenced by them in  size. Apparently,  the coefficient 
of the  (a X a)-effect, -4uu, is positive or negative 
according as the "best" alleles, A I  and B 1 ,  have their 
highest frequency in different  parent populations or 
not.  Nothing can be said about sign and size of the 
genetic effects involved. But note  that  dominance 
components make positive contributions  to heterosis 
when dominance effects are negative, i .e. ,  with domi- 
nance  going in the direction of the  larger homozygote. 
We  shall also include  a  brief  account of the difference 
(F2 - P). Although this difference  does  not  measure 
heterosis, it serves to exemplify how much F1 heterosis 
is retained in later  generations. We find 

F2 - P = - U 2 6 ~  - U 2 6 s  - 2(2 - X ) " Y ~ A B  
- 

(10) 
- (1  - X 2 ) u 2 V 2 6 6 A B .  

A more elucidating  form is 
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F2 - P = (Fl - P)/2 + (- 2( 1 - A)UVCXCXAB 
(1 1) 

- (1 - X2)~2~266AB). 

It shows the  difference (F2 - P) to be half the differ- 
ence  (FI - p) plus a  quantity known as “recombination 
loss” (DICKERSON 1969). This quantity is often  found 
negative, but is obviously not necessarily so. Its two 
components each become largest in absolute value 
with X = 0, but vanish  with X = 1, i.e., if complete 
linkage prevents  recombination. 

Heterosis with multiplicative action between loci 
can be described in a  more specific way  by inserting 
the parameter values of this model into  formulas  (9) 
and  (1 1). The new versions are 

F] - p = -2u26A - 2v26B - 4u#aAaB/pL, (1 2) 
- 

F2 - P = (FI - F)/2 + {-  2(1 - X)U#D(YA(YB/~ 

- (1 - X2)U‘v26A6,/p]. (13) 

While the epistatic effects now have their multiplica- 
tive values, no changes  appear with the  dominance 
effects. Nevertheless, part I of heterosis is also affected 
by multiplicativeness. Consider the  generation means 
written in terms of single-locus parameters, 

F1 = papb - u26&b - v2pa6b + U2v26a6b 

- (pa - u aa)(Pb - v26b), - 2 } (14) 

- 
P = (pa + u26a)(Pb + v‘66) + 4uvffaab. 

The expressions given in brackets obviously are F1 or 
P means described with a single-locus model, i e . ,  in 
terms of either ag or bkI  values alone.  For  short we 
write those F1 means as a* = (pa - u26,) and b* = 
( p b  - v26b), and  the P means as ci = (pa + ~‘6 , )  and b= 
( p b  + v26b), respectively. Further,f, = U * / G , J  = b*/b 
are corresponding  Fl/midparent  ratios, Such a  ratio 
exceeds unity when the  dominance effect involved is 
negative, i .e . ,  when single-locus heterosis is positive. 
Then we can write theZeneration means (1  4) as F1 = 
a *b* = 255 and p = ab + 4uva,ab, and hence, 

F1 - p = a b ( j &  - 1) - 4uvaaab. (15) 

Formula  (1  5), being analogous with the splitting for- 
mula (2), reveals multiplicative specialities in both 
parts of heterosis, v i z .  multiplicative accumulation of 
single-locus heterosis in part I ,  and multiplicative (a 
X a)-interaction in part 11. Both specialities arise be- 
cause the  linear  parameters  for this model are prod- 
ucts of single-locus parameters. Since for  example the 
effect is equal to  and p b  in part  depends on the 
dominance  measured by 66, the two dominance effects 
clearly influence each other in a multiplicative way. 
Note  that this affects the  absolute size of dominance 
effects, but  not  corresponding  degrees of dominance 
( c j  MOLL, KOJIMA and ROBINSON 1962). 

Heterosis with completely multiplicative action 

must be definitely bounded since the  degree of dom- 
inance is restricted to negative values. The limits of 
heterosis are calculable as follows. Insertion of the 
parameter values of this model into  formulas  (9) and 
( 1  1) results in respective versions which can be written 
in the  form 

F1 - P = -2p(U2 + V2 + 2UV), (1 6) 

F~ - P =  (F] - F)/2  (17) 

+ p{-  2(1 - X)W - (1 - XZ)U2V2], 

where U = u ( Y A / ~  and V = vaB/p. From the definitions 
(5) we have ~ A / P  = (A1 - Az)/(plAl + PZAZ), for 
example. Given P I ,  the value of aA/p approaches  a 
maximum, l/pl, when A2 tends to zero. In  that case 
U goes to u/pl = ( p i  - p { ) / ( p ;  + p i ) ,  which  has  two 
extremes, -1 and +l .   The  substitution of these ex- 
tremes  for U and Vas well gives the limits of heterosis, 

-8p 5 (F1 - P)  5 0. (18) 

So, any heterosis with this type of gene  action can 
only be negative. The lower limit in ( 1  8) results for 
W = 1. This is the hypothetical case when the values 
A2 and B2 both  tend  to  zero with either p i  = q {  = 1 
or p {  = q {  = 1, i .e. ,  with homozygous parents  one of 
which carries  both  favorable alleles, A I  and B1. In this 
case the difference (F2 - p) also goes to a negative 
extreme, - 4 7  - 2X - A’). The upper limit  in (18) 
results from  the case W = -1, but is seen to be 
reached whenever the  sum, (U + V), happens to be 
zero, i .e. ,  with U = -V. The difference ( F g  - p) is 
positive in such cases, consisting of the recombination 
loss only. We may write the recombination loss  in the 
form, -p(l - X)W(2 + (1 + X)W), to see that it comes 
to positive values with X < 1  whenever U and V differ 
in sign, i.e., when the highest frequency of A1 and of 
B1 is in different  parent populations. 

Heterosis without dominance means that  a non- 
zero  difference between FI  and p arises from part I1 
alone,  part I being  absent. This is possible  with any 
model provided all genetic effects involving domi- 
nance in the  nomenclature  are zero. The condition 
for  that in the two-locus diallelic model with otherwise 
arbitrary  gene action is Y12k[ = ( Y l l k l  + Y22k[)/2 and Yg12 

= (YgIl  + Yq22)/2. The analogous  condition with mul- 
tiplicative action between loci is a12 = (a11 + a22)/2 
and b12 = ( b l l  + b22)/2. The (a X a)-effect then 
simplifies to (YCXAB = ik!a(Yb = (a] 1 - a22)(bll - b22)/4. SO, 
MINVIELLE’S (1987) results follow, 

FI - P = -UV(UI I - UZ~)(~II - bzz) ,  (19) 

F2 - p = (F1 - P)(2 - X)/2. (20) 

The occurrence of heterosis in (19)  depends on the 
(a X a)-effect  being  non-zero. Now, two substantial 
additive effects lead to a  nonzero  (a X a)-effect  not 

- 
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only when interacting multiplicatively, but also under 
any  other type of nonadditive  action between them. 
For  an  example, we briefly consider  diminishing re- 
turn interaction. Such a  type of gene  action was first 
studied by RASMUSSON (1933). He proposed the 
model, 

Y = A + a(k” - l)/(k - l), (0 a k S 1) 

where Y is the genotypic value, A and a are constants, 
k measures the  degree of interaction, and x is the 
number of favorable  factors  present in the genotype. 
We used this model to construct  the  four  double 
homozygotes, Y l l l  I = A + a(k3 + K 2  + k + 1); Y l 1 2 2  = 
YzZl1 = A + a(k + 1); Y 2 ~ 2 ~  = A ,  assuming the  number 
of favorable factors in them to be  4,  2, 2, and 0, 
respectively. Further, we put all remaining  genotypes 
to intermediate values within rows and columns. Dom- 
inance is then  absent  again,  but the (a X a)-effect is 
found  to  be (YaAB = a(k + 1)(k2 - 1)/4, so that heterosis 
amounts to 

FI - P = - U V U ( ~  + 1)(k2 - 1). (21) 
(Oaks 1) 

Note  that  the (a X a)-effect in (21) can only be nega- 
tive, whereas it was positive in ( 1  9). 

DISCUSSION 

Multiplicative  models for the  study of heterosis 
are worth  consideration in their own right. We dealt 
with multiplicative action between loci and besides, 
two special  cases having restrictions on dominance.  In 
terms of the model a& the restrictions were of the 
type a12 = 6 in the completely multiplicative 
model, and a12 = (a1 1 + a22)/2 in the study of heterosis 
without  dominance. Both special  cases seem less well 
suited  for inquiries into  heterosis, because a  fixation 
of  the  degree of dominance to negative values or zero 
hardly meets what may be the  rule in reality. In spite 
of  that, those cases were occasionally studied out of 
theoretical  interest (CHARLES and SMITH 1939; MIN- 
VIELLE 1987),  and we included  them for  the same 
reason. On  the  other  hand, multiplicative action be- 
tween loci  with arbitrary  dominance  not only is one 
of  the classical types of nonadditive  gene  action,  but 
also may come close to many real situations. This 
mainly concerns  the  numerous  characters which  in 
plants and animals are products of several subcharac- 
ters.  Provided each subcharacter is controlled by a 
different set of genes, the genetic system of the com- 
plex character will show multiplicative action between 
genes  belonging to different sets, but will be  arbitrary 
within sets. A partial multiplicativeness in this sense 
may exist approximately  even  though there is univer- 
sal pleiotropy, if  in each subcharacter  different sets of 
genes exert  predominant effects. KACSER and BURNS 
( 198 1) estimate  that  enzyme-dependent  characters are 

influenced far above  average by those genes which 
specify enzymes more directly involved in the respec- 
tive biosynthetic pathways. For such reasons, multi- 
plicative action between loci seems particularly worth 
investigating for  consequential effects on heterosis. 

Multiplicative  specialities in the two parts of het- 
erosis were seen to result from  the  linear  parameters 
being  products of single-locus parameters. The two 
specialities are different, however, and so are their 
consequences. This becomes clearer when we extend 
the description of heterosis to include  a  third locus, 
C, at which the  difference in gene  frequency is  2w. 
Dealing with arbitrary  gene action first, we obtain the 
extension of (9), 

F1 - P = -2u26A - 2V26~ - 2W26c 
- 

- 2u2v2w2666ABC - 4uvffffAB 

- 4uwaffAc - 4mffaBc (22) 

- 4um2ffa6ABc - 4uV2wa6ffABC 

- 4u2vw6aaABC. 

Here  the  three dominance effects together with their 
three-factor  interaction, 666A~c, form part I, while part 
I1 consists of the residual terms due  to (a  X a)- or 
(a  X a X d)-types of epistasis (cf: SCHNELL and GEIGER 
1970).  For  a multiplicative version of (22), we only 
give the extension of (15). Note  that  for  example  the 
pair of components, (-4ut)~mAB - 4%2m2ff~hABc), re- 
ceives the  form, (-4uVffaabP, - 4Uvw2a,(Yb&) = 
-4uva,abE, where E = p, + w26, is the midparent at 
locus C .  In this way we get the version 

FI - P = abc(f&& - 1) - (4uVaaabc (23) + 4UWff,ff,b + 4mff&4, 

which is analogous with GEIGER and WAHLE’S (1  978) 
formula for splitting heterosis in a  character  made  up 
of three subcharacters.  In comparison with (22), ver- 
sion (23) displays the two multiplicative specialities in 
extended forms. Part I shows multiplicative accumu- 
lation of the  three  FJmidparent ratios which reflect 
the heterosis  present at individual loci. Part I1 now is 
a sum of three components, each of which  involves a 
multiplicative (a X a)-interaction. So the  number  of 
part I1 components, which was  six  in (22),  reduced  to 
one  for each possible pair  of loci  in  (23). Then what 
are  the consequences of multiplicativeness? Evidently, 
multiplicative action between a number of loci (or 
similarly: subcharacters) can produce spectacular 
amounts of heterosis via part I ,  provided  that  the 
multiplied F,/midparent  ratios each exceed unity. In 
part 11, however, similar dramatic effects are not likely 
to occur. To see that we must have a closer look at 
the genetic role of  part I1 in general. 

The  role  and  expected  size of part I1 of heterosis 
emerge  from conclusions reached by SCHNELL and 
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GEIGER (1970). As was visible from  the descriptions 
(9) and (22), any component of heterosis is influenced 
regarding sign only by those differences in gene  fre- 
quency which refer  to a locus represented by “addi- 
tive” in the  nomenclature of the respective genetic 
effect.  Part 1 effects do not involve any such “additive” 
terms,  but  part I1 effects do. Now let the differences 
in gene  frequency  be modified by changing  their signs 
to all  possible combinations. With n loci under consid- 
eration,  there  are 2” such combinations,  each of which 
leads to the same Fl mean,  but  defines  a  differently 
composed midparent.  Heterosis  produced by all  pos- 
sible pairs of parents  thus has a  constant part I ,  but 
varies in part 11. In  fact,  each effect in part 11 occurs 
equally often with its coefficient being positive and 
negative, SO canceling in the average.  Hence part I 
measures the heterosis  averaged  over all midparents 
which lead to  the same F1 proportions of allelic phases 
at all  loci considered.  Part 11 then measures the bal- 
ance, i e . ,  the  difference between average and actual 
midparent. With a given cross, heterosis may be in- 
creased by some part 11 components and decreased 
by others,  depending also on  the signs of the genetic 
effects involved. This applies likewise with multipli- 
cative action between loci.  Assume additive effects to 
be positive, and consider the  part I1 component in 
( 1  5), -4uua,ab. For it to increase heterosis, the coef- 
ficient -4uv must be positive, requiring  that  the high- 
est frequency of A ,  and of B1 be in different  parent 
populations. Similar requirements  can simultaneously 
be fulfilled only for two out  of  the  three components 
which form part I1 in the three-locus case (23). With 
larger  numbers of loci (or similarly: subcharacters) the 
maximum fraction of positive part I1 components 
quickly goes down to  one half. Positive and negative 
components will then mostly cancel out  to a  large 
extent. So, part I1 of heterosis will seldom be  large, 
whether  gene action is arbitrary or multiplicative. 

The  relations of multiplicative  to  arbitrary  gene 
action, on which this investigation is based, are those 
of a special  case to  the general  one. This implies, of 
course,  that  the  linear  parameters can have such val- 
ues as result from multiplicative gene  action also with 
arbitrary  gene  action. So the very speciality of the 
former is not those parameter values but being re- 
stricted to them. The restrictions with multiplicative 
models undoubtedly are impediments to practical use 
for analysis,  yet remarkably enough, they can be use- 
ful in the theory of the unrestricted model. Consider 
the  (a X a)-effect, (Y(YAB. Its multiplicative form, C Y A ( Y ~ /  

p, gives  positive values supposing the genes A1 and 81 
are the most favorable alleles for additive effects. 
Under  the same supposition, however, the diminish- 
ing  return model produced  the negative (a X a)-effect 
in (21). The two cases can be distinguished as  certain 
degrees of complementary and duplicate  gene  inter- 

actions, respectively (MATHER 1967). Alternatively, 
one can imagine those cases being placed on a single 
continuous scale  which measures both sign and  degree 
of the non-additive gene action causing the (a X a)- 
interaction. The fitting of nonlinear  gene response 
curves (GILBERT 1961) is not necessary for  that. The 
desired scale is simply the  ratio, T = CYCY,+B/(CYA~~// .L),  

which  uses the  expected multiplicative value as a 
yardstick for  measuring nonadditivity of the actual 
value. No assumption is needed  about  the  orienting 
of (a X a)-effects with additive effects. In  fact, T will 
be negative, zero, or positive when the cooperation of 
the interacting effects is of the type of diminishing, 
constant, or increasing return, respectively. The meas- 
ure T ,  which is adaptable to multiple alleles, is  closely 
related  to TUKEY’S (1 949) interaction  constant in the 
two-way layout. Similar measures of nonadditivity can 
be  defined  for all epistatic effects, and  for  dominance 
effects as well  if expected values are for completely 
multiplicative action. So, all  allelic and nonallelic in- 
teractions in the genotypic value can be interpreted 
as respective products of an  expected multiplicative 
value and a coefficient measuring non-additivity. Only 
one application of such interpretation shall be men- 
tioned  here. Obviously, the coefficients of nonadditiv- 
ity are fixed to unity at least with  all epistatic effects 
in multiplicative models, but may  vary as to sign and 
size  in the  unrestricted  linear model. 

This investigation was supported in part by National Institutes 
of Health research grant GM 45344 from the National Institute of 
General Medical  Sciences. 
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