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ABSTRACT 
Diffusion  methods  were  used to investigate  the  fixation  probability,  average  time  until  fixation  and 

extinction,  and  cumulative  heterozygosity  and  genetic  variance  for  single  mutant  genes in finite 
populations  with  partial  inbreeding. The critical  parameters in the  approximation are the coeffici- 
ent of inbreeding  due  to  nonrandom  mating ( F )  and  the  effective  population  size (Ne),  which  also de- 
pends  on F and  the  variance  of  family  size.  For  large Ns, the  fixation  probability (u) is u = 2(N,/N)s 
( F  + h - Fh), where N is the  population  census, s is the  coefficient  of  selection  of  the  mutant 
homozygote and h is the  coefficient of dominance.  For  Poisson  family  size  (independent  Poisson 
distributions of selfed  and  nonselfed  offspring  with  partial  selfing,  and  independent  Poisson  distribu- 
tions of  male and  female  numbers with partial sib mating), Ne = N / (  1 + F ) ,  and  the  time  until  fixation 
is approximately  equal  to N,/N times the time to fixation  with  random  mating,  but  this  relation  does 
not hold,  however,  for other distributions of  family  size. The cumulative  nonadditive  variance until 
fixation or loss for  dominant  genes is reduced with increasing F while for  recessive  genes it is increased 
with intermediate values  of F. The average  time  until  extinction  of  deleterious  mutations is reduced 
by increasing F. This  reduction, when  expressed  as a proportion, is approximately  independent of 
the  initial  gene  frequency as well as the  selective  disadvantage if this is large. 

A LTHOUGH most population  genetics  theory has 
been  developed on  the assumption of random 

mating,  a substantial amount of nonrandom  mating 
may be  present in natural populations. Many plants 
engage in substantial self-fertilization [see e.g., reviews 
by JAIN (1976)  and SCHEMSKE and LANDE  (1985)l. 
Predominant selfing and  predominant outcrossing 
have  been shown by theoretical analysis to be the 
two  alternative  stable  states of the mating system in 
most plant  populations  (LANDE and SCHEMSKE 1985). 
This result is supported by empirical information 
(SCHEMSKE and  LANDE  1985),  though a great variation 
in the  proportion of selfing may exist. In some animal 
species, mating  between close relatives, especially full- 
and half-sibs,  may also be  common [see e.g., FUTUYMA 
(1986, pp. 124-128) for references]. This raises the 
question of how partial  inbreeding affects the  fate  and 
properties of non-neutral  mutants  arising in finite 
populations. 

Recessive mutants with a  large  effect on quantitative 
traits occasionally appear in selection experiments  (for 
example in that of CABALLERO, TORO and LOPEZ- 
FANJUL 1991).  These recessives are, however, likely 
to be lost  if the population size is large.  CABALLERO, 
KEICHTLEY and HILL  (1 99  l),  referred  to  henceforth 
as CKH9 l., studied  a variety of population  structures 
and breeding systems  in order  to find an optimal 
design for maximizing fixation probabilities of reces- 
sives without impairing  those for non-recessives or 
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delaying times to fixation. The most  successful scheme 
analyzed consisted of practicing individual selection 
and mating full-sibs whenever possible, otherwise at 
random. Accurate  predictions of the fixation proba- 
bility of mutant  genes with this breeding system were 
made by means of diffusion approximations, the main 
parameters  being  the coefficient of inbreeding  due  to 
nonrandom  mating  and  the effective population size. 
The lack of an equation  for  correctly  estimating ef- 
fective size, however,  impeded  a  complete  prediction, 
but  subsequently an  appropriate formula has been 
obtained (CABALLERO and HILL  1992).  In this paper, 
fixation probabilities of single mutant genes in popu- 
lations with partial  inbreeding are  further investigated 
with diffusion methods making use of this predictive 
equation. 

POLLAK (1987,  1988)  undertook  a  theoretical analy- 
sis of some consequences of such partial  inbreeding in 
finite  populations,  including the probability of ulti- 
mate survival of mutant alleles initially present in 
single copy.  His calculations were based on  an  approx- 
imation of  the model by a  branching process assuming, 
in the case of selfing, that each individual carrying the 
mutant  gene gives rise to a line that develops inde- 
pendently of lines descended  from other individuals 
of the same  generation. His equation  for the fixation 
probability contains  a mistake and,  after  correction, 
gives a valid approximation [this paper  and POLLAK 
and SABRAN  (1992)J  For  the case  of partial full-sib 
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mating the same argument was applied  but couples 
rather  than individuals were considered as reproduc- 
ing units for  the  branching process theory. 

The probability of survival of a  mutant  gene is 
essential in studies of evolution for calculating the  rate 
of  substitution, and in artificial selection schemes it 
gives the asymptotic rate of response due  to new 
mutations. Nevertheless, other  parameters  are also 
relevant  both  from  an  evolutionary and practical point 
of view. It is important to know  how long it will take 
the  mutant  to be  fixed and, in combination with its 
fixation rate, how much  genetic variation will be con- 
tributed  to  the  population  during its lifetime. These 
relevant  parameters are also investigated here by 
means of the same diffusion approach. 

In plants, the major selective force  maintaining 
outcrossing  appears to  be  inbreeding depression in 
the fitness of inbred  offspring due  to  the expression 
of  deleterious  mutations in homozygotes (see e.g. ,  
CHARLESWORTH and CHARLESWORTH 1987). Thus, 
the genetic load present in normally outbred popula- 
tions has been shown empirically to be due  to mod- 
erately  detrimental  partial recessives (BARRET and 
CHARLESWORTH 199 1). Inbreeding increases the  rate 
of extinction of this type of mutant (SIRKKOMAA 1986; 
BERG and CHRISTENSEN 1990)  and  therefore it can 
purge  the population of such mutant alleles. This has 
been shown as an increase in the relative survivorship 
of the  products of selfing in outbreeding  plants with 
each  generation of selfing (LEVIN  199 1). In this paper, 
the decrease in the time until extinction of deleterious 
mutations by inbreeding is quantified  for varying pro- 
portions of inbred matings. 

Stochastic simulation has been  carried  out  both  to 
check the diffusion approximations and  the generality 
of  their predictions. 

DIFFUSION APPROXIMATIONS 

The probability of fixation u(q) of a  gene with initial 
frequency q in a  finite  population can be calculated as 

where 

and Max and va, are  the mean and  the variance of the 
change in gene  frequency, x, per  generation (KIMURA 
1962). 

The possibility  of nonrandom  mating in Equation 
1 was accounted  for by CKH9  1,  but  the  derivation is 
summarized here  to make this paper self-contained. 
Let us assume a locus has two alleles A and A ’, and 
that  the relative fitnesses of the  three genotypes AA, 
AA’ and A’A’ are 1, 1 + sh and 1 + s, respectively, s 

being the coefficient of selection and h that of domi- 
nance.  When  nonrandom  mating is allowed in the 
population, the expected genotypic frequencies are 
(1 - x)* + x(l - x)F, 2x(1 - x)(l - F) and x* + x(1 - 
x ) F ,  respectively, where x is the frequency of allele A ’ 
and F is the correlation  between  uniting gametes due 
to nonrandom  mating,  the FIs defined by WRIGHT 
(1969,  pp.  294-295).  In  infinite  populations, it is the 
total asymptotic coefficient of inbreeding  attained 
when the  reduction in heterozygotes caused by the 
inbreeding is counteracted by their increase caused 
by the  random mating. Both in finite and infinite 
populations, this asymptotic value is more quickly 
reached  the smaller is the  proportion of inbred mat- 
ings (GHAI  1969; CROW and KIMURA 1970, pp. 92- 
94). Alternatively, it is a  measure of the deviation 
from  the  Hardy-Weinberg  proportions when correct- 
ing  for the finite size by adding  the deviation with 
random  mating, this value being  approximately -1/ 
(2N - 1) (KIMURA and CROW  1963; ROBERTSON 
1965),  where N is the population size. 

Hence, the general  formula  for  the mean change in 
gene  frequency  (correcting  a typographical error in 
Equation  3 of CKH91) is 

Max = X(1 - X)s[h X ( l  - 2h) (3) + F(l - X - h + 2xh)], 

and if the sole factor causing random  fluctuations in 
the  mutant  frequency is random sampling of gametes 
(which would be applicable when s is small as assumed 
in the diffusion approximation), the variance of this 
change is 

v a x  = x( 1 - x)/2Ne, (4) 

where Ne is the effective population size. Thus, by 
substituting  (3) and (4) into  (2)  and  integrating, G(x) 
becomes 

G(x) = exp(-PN&SF + (1 - F )  (5) 
(x + 2h - 2xh)l) 

(CKH91). 
Nonrandom  mating clearly affects the fixation 

probability both  through  the magnitude of F in Equa- 
tion  3 and  the effective size  in Equation 4. 

The value of F can be calculated for  different 
systems  of partial  inbreeding  and  random  mating  pro- 
vided we know the  proportion  (or  average  proportion) 
of inbred matings per generation (0). Thus,  for partial 
selfing 

F = P/(2 - P),  (6) 

a  result first obtained by HALDANE  (1  924). With par- 
tial full-sib mating 

F = P/(4 - 3P) (7) 
(GHAI 1969; LI 1976, p. 245) and, with partial half- 
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sib  mating  where  mothers of half-sibs are themselves 
half-sibs, 

F = P/(8 - 7P) (8) 

(GHAI and KEMPTHORNE 197 1 ; HEDRICK and COCK- 
ERHAM 1986). Values of F for  other systems of partial 
inbreeding can also be calculated (HEDRICK and COCK- 
ERHAM 1986), but  for  more  distant relatives the rele- 
vance of partial  inbreeding is lessened. Equations 6, 7 
and 8 are only valid asymptotically and,  therefore,  the 
population must have undergone  partial  inbreeding 
since the  mutant  gene first occurred in single copy. 
The  asymptote is, nevertheless, quickly reached  for 
small values of F, as pointed out above. 

A  correction  for the finite size is formally necessary 
when applying these  equations  for P is the  propor- 
tional excess of inbred matings over  that  expected 
with random  mating, namely one with selfing and full- 
sib  mating and  three with half-sib mating  where  moth- 
ers of  half-sibs are themselves half-sibs. This correc- 
tion is, however, small, when the population census is 
large. 

From Equations 6, 7 and 8, it can be seen that  the 
increase in F is not  proportional to  the increase in the 
proportion of inbred matings, as already  noted by 
GHAI ( 1  969) for  the  partial full-sib mating case. This 
effect is more  marked with  less intense  inbreeding 
and so, for  example, 18% selfing, 31% full-sib mating 
or  47% half-sib mating is needed  to achieve F = 0.1. 

Nonrandom  mating causes a  reduction in Ne be- 
cause there is a  correlation between the genes of 
related  parents  and  between  genes within inbred in- 
dividuals which will increase the genetic  drift. In a 
population of constant size where  inbreeding is due 
to selfing, Ne is defined by 

4N 
2(1 - F) + S,' ( 1  + F ) '  

Ne = 

where S,' is the variance of the  number of successful 
gametes (KIMURA and CROW 1963; CABALLERO and 
HILL 1992). Analogously, in a  population with equal 
number of  sexes where  inbreeding is due  to  mating 
of relatives without selfing, Ne is defined by 

4N 
Ne = 

2(1 - F) + Sk2(1 + 3 F )  (10) 

(CABALLERO and HILL 1992), where Sk2 is the variance 
of family  size. For Poisson distribution of successful 
gametes  (independent  distribution of selfed and  non- 
selfed offspring, i . e . ,  s,' = 2 + 28, where P is the 
proportion of selfing) in the first case, and  uncorre- 
lated Poisson distributions of male and female  num- 
bers (Sk' = 2) in the second case, both  equations  reduce 
to Ne = N/(1 + F ) .  

Substitution of Equations 9 or 10 into (5) and nu- 
merical integration of Equation l allows, therefore, 

computation of the fixation probability for a  gene 
with initial frequency q and selective advantage s for 
a  population with  size N ,  variance of  family  size 
S h 2  and  inbreeding F. Some results can, however, 
be  directly  obtained  from  Equation 5. A  general  ap- 
proximation  for the fixation probability with large 
N(Ns > 1)  can be  deduced  from this equation.  After 
rearrangement, if follows that G(x) = 
exp(-2N&x + 2h*(1 - x)]), i .e . ,  the same as with 
random  mating  but with h* = (F + h - Fh) instead of 
h. Thus,  the probability of fixation can be  approxi- 
mated by 

u = 2(Ne/N)sh* = 2(Ne/N)s(F + h - Fh). ( 1   1 )  

Hence,  for Poisson number of successful gametes or 
progeny  where Ne = N/(1 + F), if h = 0.5 it follows 
that u = s irrespective of F, because the mean and 
variance of the  change in gene  frequency  both  change 
in proportion  to (1  + F). For h = 0, h* = F and, 
therefore,  the fixation probability for a completely 
recessive gene when there is inbreeding  to  the  extent 
F is the same as for  a  gene with the same selective 
advantage in the homozygote but  degree of domi- 
nance F/(1 + F) and  random mating. When F = 1 ,  
u = s for any gene  action. 

Other relevant calculations can also be made using 
diffusion theory  where  account is taken of the non- 
random  mating. The cumulative expected value, 
C[f(x)], of any arbitrary  function, f ( x ) ,  during  the 
lifetime of a  gene with initial frequency q is given by 

(KIMURA 1969), where 

and u(x) and G(x) are defined by (1 )  and (5), respec- 
tively. The average  number of generations until fixa- 
tion ( t l [ q ] )  of a  gene with initial frequency q is given 
by 

tl(4) = C[u(x)l/u(q) (14) 
(KIMURA and OHTA 1969a) and, analogously, the av- 
erage  number of generations until extinction of such 
a  gene (to[q]) is 

to(q) = C[1 - u(x)l/ll - 4 q ) I  (15) 
(KIMURA and OHTA 1969b). 

By means of (1  2) we can also evaluate other param- 
eters which determine  the  contribution of a  mutant 
gene in a  population,  for  example,  the cumulative 
heterozygosity rendered by the  mutant  during its 
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lifetime is obtained by settingf(x) = 2x( 1 - x)( 1 - F ) .  
Likewise, the total  genetic variance contributed by 

the mutant can also be calculated. Let us assume that 
the genotypes AA, AA ’ and A ’A ’ have genotypic val- 
ues for  a  metric  trait -a, d ,  and a ,  respectively. The 
genotypic mean equals a(2x - 1) + 2dx(l - x)(l  - F )  
and  the genotypic values deviate  from it by -2ax - 

F ) ]  and 2 4 1  - x) - 2dx(l - x)(l - F ) ,  respectively. 
From these values the genotypic variance (Vc) is 

Vc; = 2a2x( 1 - X)( 1 + F )  + (484 1 - x ) F  

2dx( l  - x)(l - F ) ,  -42x - 1) + d[l  - 2 4 1  - x)(l  - 

(1 6) + [ 2 d x ( l  - x)(l - F)]2)(1 - F)/(1 + F ) ,  

where (Y is the  average effect of a  gene  substitution 
making allowances for  the  nonrandom  mating  and is 
expressed by LY = a + d (  1 - 2x)( 1 - F)/(l + F )  (see, 
e.g. ,  FALCONER 1985).  Equation  16 equals Equation 
19 of GHAI  (1969) with a  different scale for  the 
genotypic values. Its first term  denotes  the  additive 
variance while the  remaining includes the  dominance 
variance plus covariances between  additive and  non- 
additive values due  to  nonrandom  mating. Using 
Equation 16 or its terms separately asf(x) in Equation 
13, the genetic variance (or its components)  accumu- 
lated during  the lifetime of the  mutant can be com- 
puted. 

Numerical integration of Equations 1 and 12 was 
undertaken by Simpson’s rule with 1,000 or 10,000 
intervals depending  on  the values for  the  different 
parameters. 

SIMULATION PROCEDURE 
Simulation was carried  out  both  to check the dif- 

fusion results and to show their validity for  different 
systems  of partial  inbreeding and distribution of prog- 
eny  number. Furthermore, some results for which 
diffusion theory is not very accurate  were  obtained in 
this way. 

Partial selfing with Poisson family size: A mon- 
oecious diploid model with a mix  of selfing and  ran- 
dom mating was chosen to check the diffusion results 
for different values  of F as the  proportion of selfing 
could be varied from 0 to 1 maintaining  a  constant 
selection pressure. 

In this model, a  mutant allele A ’ was randomly 
assigned to  one individual of a  population with  size N 
completely homozygous for  the  other allele, A. Selec- 
tion was performed by assigning probabilities of pro- 
ducing offspring with relative values 1, 1 + sh and 1 
+ s for  the AA, AA ’ and A ’A ’ genotypes, respectively. 
In order to  evaluate the genotypic variance accumu- 
lated over generations, genotypic values of 1 ,  1 + 2ah 
and 1 + 2a were assigned to  the  three  genotypes, 
respectively. Individuals were selfed or randomly 
mated with a fixed probability (p) and, in particular, 
random  mating, /3 = 0.67 or /3 = 1 were carried  out 
to achieve the  three values of F analyzed (0, 0.5,  and 

approaching  1;  see Equation 6). The distributions of 
selfed and nonselfed offspring were independent Pois- 
sons and thus the variance of  successful gametes was 
approximately s,‘ = 2 + 20. 

Simulation was continued until the  mutant was fixed 
or lost and this was typically replicated  10,000 times 
though,  for  the smallest selective advantage, 50,000 
replicates were performed  to  obtain  adequate preci- 
sion. 

Other  types of partial  inbreeding  and  distribution 
of offspring number: The model of partial self-ferti- 
lization permitted  a  complete  range of inbreeding 
values with a fixed selection intensity but only  Poisson 
family  size could be simulated properly.  In order to 
generalize,  a model with two sexes and truncation 
selection was also simulated. A mutant allele with 
effect 2a standard deviations as the difference be- 
tween homozygotes was randomly assigned to  one 
individual of the  total 200 (100 of each sex) scored 
every generation, so the initial frequency was 1/400. 
Standardized  random  normal deviates were assigned 
to each genotypic value to compute  the  phenotypes. 
Truncation selection of the best 50% was performed 
and  the  100 selected individuals were mated in cou- 
ples to  generate again 200 offspring. This model was 
compared  to  a diffusion approximation by using the 
corresponding selective advantage of the  mutant s = 
2ai/a (FALCONER 1989, p. 202), where i, the selection 
intensity (standardized selection differential) is ap- 
proximately 0.798  and a, the  phenotypic  standard 
deviation is 1. This  approximation,  however, holds 
only for values of s smaller than  about 0.5 (LATTER 
1965). 

Several different  alternatives were tested: 
Partial full-sib mating: In a model with equal  number 

of sexes in the  breeding  population  (50 males and  50 
females), full-sibs were mated whenever available, oth- 
erwise mating was at  random.  For instance, if two 
males and  one female were selected from  a family, 
one of the males was chosen at random to be  mated 
to his sister while the  other was outbred  at random. 
With this scheme, three kinds of distributions of prog- 
eny number were analyzed: 1 )  multinomial distribu- 
tion (S? = 2), when each  couple  randomly  contributed 
offspring to  the scored  population; 2) multihypergeo- 
metric  distribution (Si2 = I), when each couple con- 
tributed exactly two offspring  of each sex to  the scored 
population; and 3) a  distribution with S k 2  4, which 
was performed by assigning additional  differences in 
fertility, allocated randomly to each couple every gen- 
eration.  In  the first two  cases, the observed number 
of full-sib matings can be  predicted very accurately by 
noting  that selection increases this number very little 
with respect to the case  with no selection (CKH91). 
For  a  population with N/2 families with the  number 
of offspring of each sex (ij) independently  distributed 
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with probabilities p(i)  and p ( j ) ,  the maximum number 
of full-sib matings is 

N / 2  N/2 c c. p(i)fi(j)min(id, (17) 
i=O j -0 

where  p(i), p ( j )  are Binomial index N/2, probability 
2/N ( S k 2  = 2) or hypergeometric with sampling i, j 
from T with k per family ( S k 2  = 1). 

Partial half-sib mating: A model was set up where 
there was a biased sex ratio so that matings between 
half-sibs could also be  performed. Each generation, 
20 males and 80 females were selected from  the 200 
scored individuals, giving Ne = 64 with random mat- 
ing. Each male was mated  to 4 females such that 
matings were between half-sibs  whose mothers  were 
again half-sibs whenever this was possible, otherwise 
at  random. The distribution of progeny  offspring 
from each couple  approximated  a Poisson. 

For all these  truncation selection runs, simulation 
and calculations were made  as  described  above for  the 
selfing case, but only one  gene effect with a relatively 
large value was used,  a  difference  between homozy- 
gotes 0.063 of phenotypic  standard deviations, cor- 
responding  to s = 0.05, approximately. 

For completeness, the values of F and Ne were also 
evaluated by simulation for  these cases of partial sib 
mating. WRIGHT’S (1969, pp. 294-295) F statistics 
were calculated every generation in 300 runs  carried 
out with no selection. F was evaluated as the asymp- 
totic value of Fls calculated as FIS = 1 - [(l - FIT)/ 
(1 - FsT)] (WRIGHT 1969, p. 295), and Ne from  the 
asymptotic rate of change in FST (AFsT) as Ne = 
(1/2AFsT) - (1/2) (FALCONER 1989, p. 71). 

RESULTS 

Poisson distribution of family size: Figure l a  
shows the fixation probability (u )  based on numerical 
integration of Equation 1 for  a  mutant initially present 
in single copy in a population with  size N ,  Poisson 
distribution of family size (as defined above), three 
different  degrees of inbreeding  and a varying selective 
coefficient (expressed as Ns) with recessive (h = 0), 
additive ( h  = 0.5) or dominant (h = 1) gene  action. 
The fixation probability is scaled by N so that  the 
results apply approximately for any value of N and a 
constant Ns,  provided this is not  too  large.  This  fact, 
already  deduced intuitively by HILL and RASBASH 
(1  986), can be shown from  Equation 5 by noting  that 
when the initial frequency of the  mutant is small such 
that  square  terms can be  neglected, the  numerator in 
Equation 1 multiplied by N is approximately the same 
for all N if Ns is constant and small, while the  denom- 
inator is always constant  for  a  fixed Ns. This was 
checked  (data  not shown) to be valid for N 3 100 for 
the largest N s  investigated in this paper. 

Three interesting  points in this graph, already  de- 
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FIGURE 1 .-Diffusion approximations for the fixation probability 

(u)  of a single mutant arising in a population with  size N ,  Poisson 
distribution of  family  size, varying degree of inbreeding ( F ) ,  varying 
selective advantage (s) expressed as Ns and coefficient of dominance 
( h )  for  the  mutant gene. In b and c, Ns = 5 .  

duced  from  Equation 11, are as follows: firstly, the 
fixation probability for  an additive  gene is independ- 
ent of the value of F .  Secondly, for  a recessive gene it 
increases with increasing F up  to  the value for additiv- 
ity which is reached when F = 1. And  thirdly,  for  a 
dominant  gene, it decreases to  the same extent. 

In  Figure 1, b and c, fixation probabilities for  the 
particular case of Ns = 5 are  represented  for varying 
values of F and h, respectively. Figure l b  shows that 
the fixation probability for non-additive genes is not 
exactly linear in F ,  changing  faster  for smaller values 
of F. 

In Figure 2 is shown the effect on  the fixation 
probability of increasing N while maintaining s con- 
stant (0.05, in particular).  For all but only small  values 
of N ,  the same fixation probabilities are obtained  for 
all types of gene  action and value of F, except  for 
complete recessives and  random mating  where  the 
fixation probability is reduced by increasing N. 

Figure 3 shows the average  number of generations 
until fixation (tl,  scaled by 4N in order to apply for 
any value of N )  of a single mutant  computed by 
numerical  integration of Equation 14 for  the same 
situations as those  represented in Figure 1. With ran- 
dom  mating ( F  = 0) and a  mutant  gene with positive 
selection coefficient, the time to fixation increases 
with the  magnitude of the coefficient of dominance 
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FIGURE 3.-As in Figure 1 for  the average time to fixation ( t l )  
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scaled by 4N. 

because the  larger  the effect of the  heterozygote,  the 
longer it takes to lose the unfavorable allele. The 
opposite  happens with negative s though  the  chance 
of survival is then very small  (see Figure la). The 
effect of an increasing F is both to  reduce  the time to 
fixation and  the differences among  different  gene 
actions until they completely disappear when F = 1 .  
The reduction caused by an enlarged F can be illus- 
trated when s = 0. In that case, Equation 14 reduces 
to approximately 4Ne = 4N/(1 + F) and so the time 
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FIGURE 4.-As in Figure 1 for the  expected heterozygosity ac- 

cumulated during the mutant gene's lifetime ( C [ H ] ) .  

to fixation is halved when F approaches  one.  It is 
worth  pointing  out  that  for additivity, the time to 
fixation scaled by 4Ne is the same for all values of F, 
i . e . ,  the slope of the  continuous curve in Figure  3b 
corresponds  to  the  reduction in Ne with increasing F. 
For  non-additive  gene  action this holds only approxi- 
mately, however. In other words, for neutrality or 
additivity and, approximately for nonadditivity, 

tl = ( N e / N ) t l R ,  (18) 

where t l R  is the time  until  fixation with random mat- 
ing. 

Figure 4 shows the heterozygosity accumulated dur- 
ing  the  mutant's lifetime evaluated by numerical  in- 
tegration  of  Equation 12 with the  expected heterozy- 
gosity ( 2 4  1 - x][l - F]) asf(x) in the  term  (13). As 
in Figures 1 and  3,  the results apply for any value of 
N not  too small (this was checked but  the  data  are  not 
shown).  With random  mating,  the  expected cumula- 
tive heterozygosity is approximately 2 for  neutral or 
nearly  neutral  genes (KIMURA 1969). For  genes  acting 
additively it approximates 4 for large Ns (KIMURA 
1969; HILL and KEICHTLEY 1988), the asymptotic 
values for recessive and  dominant genes  being  much 
lower and  much  higher, respectively. The effect of an 
increasing F is, of course,  a quick reduction in heter- 
ozygotes with a  corresponding  reduction in the differ- 
ences for  different  gene  actions. 

Figures 5 and 6 show the cumulative  genotypic 
variance and its components  evaluated by numerical 
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FIGURE 5.-As in  Figure 1 for the expected additive ( C [ V A ] )  and 
nonadditive (C[   Vc - V,  I) genetic variances  accumulated during the 
mutant gene's lifetime (2a = 1). 
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FIGURE 6.-As in  Figure 1 for the expected genotypic  variance 
( C [ V c ] )  accumulated  during the mutant's  lifetime (2a = 1) .  

integration of Equation 12 by including Expression 
16  or its components as f ( x )  in the term (13). For 
simplicity  values are given for genes  with  effects  2a = 
1. As above, the results  apply for all  values of N .  The 
graph for c[vA] (Figure 5a) would also give the ex- 
pected final  response to selection  scaled by the inten- 

sity of selection, this  being  equal to s as the phenotypic 
standard deviation and the difference between  homo- 
zygotes  were one. This graph has,  of course, the same 
relative pattern as Figure la, for  the expected final 
response  would  also equal the probability  of fixation. 

The result  shown  in Figure 5a  of the variance 
accumulated during  the lifetime of an additive gene 
being independent of the level  of inbreeding appears 
surprising, as it was for  the fixation probability, when 
we bear in mind the well  known  increase  in the genetic 
variance due  to inbreeding with additive gene action 
and illustrated by 

Vc = 2a2x(1 - ~ ) ( l  + F) .  (19) 

Thus, inbreeding increases the genetic variance by 
increasing the between-family  variance but, at  the 
same time, it reduces the frequency of heterozygotes. 
When accumulated over generations these  two  effects 
offset each other for Poisson  family  size and  the 
genetic variance remains the same for all F. This can 
be  seen  as  follows. If we calculate the cumulative  value 
of 2x( 1 - x) (the expected heterozygosity  with random 
mating) by including it in (1 3) and solving  (1  2), 
we obtain that for additive genes, C[2x(1 - x ) ]  = 
4[u(q) - q]/[s(l + F ) ] ,  which for large Ns reduces to 
C[2x(1 - x)] x 4/(1 + F ) .  Thus, substituting this into 
(19),  the cumulative  genetic  variance is C[VC] 4a2 
and,  therefore, independent of F.  Likewise, for neu- 
tral or quasi-neutral mutants, C[2x(l - x)] x 2/(1 + 
F ) ,  and C [ V c ]  z 2a2. 

The cumulative  value  of Vc - V A  (Figure 5 ,  b  and 
c), which  includes the dominance variance  plus  covar- 
iances  between additive and non-additive  values due 
to  the inbreeding, is always reduced with  increased F 
for dominant gene action. For  recessive  genes,  how- 
ever,  there is an increase  with intermediate values  of 
F ,  to finally  diminish  as F approaches unity,  in agree- 
ment with ROBERTSON (1952). As a result of this, the 
genetic variance contributed by completely  recessive 
mutants when F is intermediate is very  close to that 
contributed by additive genes  (see Figure 6). 

LYNCH and HILL (1986) showed that  the equilib- 
rium variance maintained with random mating in the 
absence  of  selection is very  little  affected by domi- 
nance. Figure 6 is in accordance with  this prediction 
for recessive gene action, but with complete domi- 
nance, however, there is a substantially higher vari- 
ance than for the additive case. 

The majority  of the results  shown so far relate to 
advantageous mutations and only  slightly deleterious 
effects are considered in the figures above.  For 
strongly deleterious mutations, fixation  probabilities 
and variance contributed become  negligible and  the 
only  critical parameter is the time until extinction of 
such mutants. In Figure 7a is shown the proportional 
reduction in time until extinction for varying  values 
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FIGURE 7.-a, Proportional reduction in the time until extinction 
( to )  relative to that with random mating. b, Proportional reduction 
for F = 0.5 relative to F = 0. 

of F relative to  that  for  random mating,  obtained by 
numerical  integration of Equation  15. In this case, the 
fate of mutants  segregating in the population at low 
frequency  appears to be  more  interesting  than single 
new mutations and hence, results refer  to  mutants 
with an initial frequency of 0.1, 

Inbreeding  reduces  the  time until extinction ( to)  to 
a  greater  extent  for smaller values of h. For  additive 
genes  the  reduction is the same for any selective 
disadvantage and it is verified that to = (N,/N)toR, 
where toR is the time until extinction with random 
mating. Therefore,  the continuous  curve in Figure 7a 
coincides with the  proportional  reduction in Ne with 
F .  For dominant  and recessive genes the  proportional 
reduction decreases or increases, respectively, for in- 
creasing values of s and  the above expression does  not 
hold.  However, this trend is progressively lessened 
such that  for very detrimental genes the  proportional 
reduction  for non-additive genes is approximately 
constant.  For  example  for  a lethal gene (s = -l), the 
proportional  reduction in time until extinction  for F 
= 0.5 relative to F = 0 is 0.74 (value obtained by 
simulation), which is not very different  from  the  cor- 

responding value for s = -0.2 shown in the  figure. 
The reduction in time until extinction is rather 

drastic for recessive genes, especially for  strong selec- 
tion. So, for lethal genes, 35% of the  reduction 
achieved with complete  inbreeding ( F  = 1) is obtained 
with only 18% selfing (F = 0.1)  and 60% of  it  with 
only 33% selfing (F = 0.2) (simulation data). 

Another  interesting  result showed by the diffusion 
analysis is that  the  proportional  reduction is essentially 
independent of the initial frequency, as can be seen 
in Figure 7b  for N = 100 and a  range of frequencies 
from  1/2N  to  0.1.  Thus,  the effect of nonrandom 
mating  on  the rate of elimination of deleterious reces- 
sive genes is similar both  for new mutants and for 
genes already established in the  population. 

Other distributions of family size: So far, all the 
discussion  has focussed on a Poisson distribution of 
progeny  number  defined by independent Poisson  dis- 
tribution of the  number of selfed and nonselfed off- 
spring (S,' = 2 + 2P) in the case  of selfing, and 
independent Poisson distributions of male and female 
offspring  per family ( s k 2  = 2 )  in the case  of sib mating, 
for  both of  which Ne = N/(1 + F ) .  For other distri- 
butions the results can be very different, however, 
and  are illustrated, in the sib mating case, for values 
of Si' of 1 and  4, Le.,  both smaller and  greater  than 
2.  This would correspond in the selfing case to values 
of S,' of 1 + P and 4 + 4p, respectively, but,  from 
now on, we only refer  to sk2 for simplicity. 

Fixation probabilities and times to fixation for these 
cases are plotted in Figures 8 and 9, respectively, in a 
similar manner  to Figures 1 and 3, for  comparison. 
For S: = 1, times to fixation are plotted only for 
values of Ns up to 6 because too much computing 
time is required  to accurately integrate Equation 14 
for  greater values. It  should  be  noted, firstly, that  the 
fixation probability for  additive genes is no  longer 
independent of F .  Increasing F yields an increase in 
the fixation probability for sk2 = 1 but a  decrease  for 
sk2 = 4. Secondly, the fixation rate  for recessive genes 
is enormously increased, and  that  for  dominant genes 
very little reduced, with increasing F for s k 2  = 1 and, 
again,  the opposite applies for Sk2 = 4. Of  course, the 
approximation  (1 1) for  large N S  still applies for sk2 
other  than 2 ,  provided the  appropriate value of N,  is 
utilized. 

It is evident,  therefore,  that with respect to fixation 
probabilities and comparing the  three cases analyzed 
( s k 2  = 1, 2 and 4), the most beneficial effect of inbreed- 
ing  for any gene effect comes with the smaller sk2 with 
which an increase in F produces an increase in fixation 
probability for  additive  genes,  the highest increase for 
recessives and  the smallest reduction  for  dominants. 

It is clear,  however,  that the smaller Sr2,  the longer 
the  mutant takes to be fixed and  the smaller is the 
proportional  reduction of this time with inbreeding. 
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Nevertheless, for relatively strong selection, the dif- 
ferences in this proportional  reduction  for  the  differ- 
ent s,' are largely reduced  and,  therefore,  the supe- 
riority of sk2 = 1  (among  the  three cases analyzed in 
this  paper)  remains when considering fixation rates 
and times to fixation jointly. T o  visualize this with a 
particular  example,  consider  the case for Ns = 5. 
Then,  the  increment (or decrement, if negative) in 
the fixation probability with F = 0.5 with respect to F 
= O is for s k 2  = 1, 2 and  4, respectively, 186%,  105% 
and  47%  for recessive genes, 28%, 0% and  -18%  for 
additive  genes, and  -12%, -31 % and -43%  for  dom- 
inant genes. The corresponding  reduction in time to 
fixation is much more  uniform, however, being 23%, 
30%  and  35%  for recessive genes, 28%, 33% and  41 % 
for additive  genes, and  39%, 43% and 47% for  dom- 
inant genes. These  are relative values, but in absolute 
terms  the result is not very different. For example, 
with F = 0.5 a recessive gene takes on average  176 
generations  to  be fixed with s k 2  = 1 (in the case N = 
100, s = 0.05), 140 with S: = 2 and  104 with S k 2  = 
4. Nevertheless, the fixation rate is 1.6 times larger 
with Sa2 = 1  than with S k 2  = 2 and  2.8 times larger 
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FIGURE 9.-As in Figures 1 and 3 for a  distribution of family 
size with variance S? = 4. 

than with sk2 = 4.  In  general,  Equation  18  does  not 
apply for values of sk2 other  than 2 (except in the 
neutral case) and,  for s k 2  < 2, tl c (N,/NR)tlR, while 
for S k 2  > 2, t l  > (Ne/NR)t lR,  where R denotes  random 
mating. 

Check on the diffusion approximation by simu- 
lation: Partial selfing with Poisson family size: Tables  1 
and 2 show a  comparison between simulation results 
(Sim), using a model of monoecious individuals and 
differences in fertility with varying proportions of 
selfing, and  the diffusion approximation (Diff) for  the 
fixation probability of mutant  genes  and  other param- 
eters analyzed, for  the cases given in Figure 1. In 
Table 1 are also shown the approximations  (Appr)  for 
large Ns to  the fixation probability by Equation  11. 
Simulation and diffusion results show a very good 
agreement even for values of s as large as 0.08  where 
the diffusion approach might be less accurate. 

The average  time until extinction of deleterious 
mutations was also checked by simulation and al- 
though diffusion values were slight overestimations 
(given the large values of s), the  proportional  reduc- 
tions shown in Figure  7 were exceptionally accurate. 
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TABLE 1 

Fixation  probabilities (%) of a single mutant gene with selective  advantage s and  degree of dominance h in an  isogenic  population with 
size N = 100, Poisson  distribution of successful  gametes  and coefficient of inbreeding F 

~~ ~ 

h = O  h = 0.5 h =  1 

F = O  F = 0.5 F - 1   F = O  F = 0.5 F -  1 F = O  F = 0.5 F-1 

s = 0.005 
Sim 0.67 0.7 1 0.81 0.80 0.7 1 0.80 0.93 0.8 1 0.78 
Diff 0.67  0.75  0.79  0.79  0.79  0.79 0.92 0.83  0.79 

s = 0.02 
Sim 1.10 1.50 1.90 2.07 2.02 1.80  3.17 2.41 1.97 
Diff 1.13  1.68 2.02 2.02 2.02 2.02  3.25  2.39  2.02 

APPr 0.00 0.33 0.50 0.50 0.50  0.50 1 .oo 0.67 0.50 

APPr 0.00 1.33 2.00 2.00 2.00  2.00 4.00 2.67 2.00 
s = 0.08 

Sim 2.25 5.10 6.87 8.01 7.14 7.41 13.94 9.65 7.91 
Diff 2.26 5.61 7.69 7.69 7.69 7.69 14.29 9.87 7.69 
APPr 0.00 5.34 8.00 8.00 8.00 8.00 16.00 10.67 8.00 

Sim:  Simulation data based on 10,000 replicatesa for s = 0.02 and 0.08 and 50,000 for s = 0.005. Diff: Approximation by diffusion 
methods.  Appr:  Approximation  for  large Ns. 

Standard  errors of  fixation  probability with 10,000 replicates: 

TABLE 2 

Time  to fixation (t , ,  scaled by 4N, SE up  to 0.06), cumulative  heterozygosity (C[H], SE up  to 0.23) and  cumulative  genetic  variance (100 
X C[V,], SE up  to 0.09) of a single mutant gene  with  selective  advantage s and  degree of dominance h in an isogenic  population with 

size N = 100 and coefficient of inbreeding F 

h = O  h = 0.5 h =  1 

F = O  F = 0 . 5  F - 1   F = O  F = 0 . 5  F - + l  F = O  F = 0 . 5  F + 1  

s = 0.005 
t1/4N Sim 0.96 0.61 0.49 0.98 0.63 0.49 1 .oo 0.65 0.5 1 

C[HI Sim 2.01 0.69 0.02 2.33 0.72 0.02 2.72 0.83 0.02 

c [VG I Sim 0.55 0.61 0.63 0.59 0.61 0.58 1.44 0.98 0.62 

Diff 0.93 0.64 0.49 0.98 0.66 0.49 1.02 0.67 0.49 

Diff 1.97 0.73 0.00 2.31 0.77 0.00 2.72 0.81 0.00 

Diff 0.51 0.59 0.59 0.58 0.58 0.58 1.46 0.89 0.58 

t1/4N Sim 0.38 0.26 0.20 0.41 0.27 0.21 0.52 0.28 0.20 
Diff 0.39 0.27 0.20 0.41 0.27 0.20 0.5 1 0.28 0.20 

Diff 1.32 0.89 0.00 3.59 1.20 0.00 8.38 1.57 0.00 

Diff 0.34 0.79 0.90 0.90 0.90 0.90 2.69 1.48 0.90 

s = 0.08 

C[HI Sim 1.33 0.80 0.02 3.76 1.16 0.02 8.48 1.60 0.02 

C[VCl Sim 0.33 0.74 0.83 0.89 0.90 0.85 2.59 1.53 0.94 

Simulation data based on 10,000 replicates for s = 0.08 and 50,000 for s = 0.005. 

For  example,  for the largest s (-0.2), diffusion results 
for  the reduction in time until extinction with F = 0.5 
relative to F = 0 were 0.67, 0.33 and 0.14 for h = 0, 
0.5 and 1, respectively, while simulation results were 
0.65, 0.31 and 0.11. 

Other types of partial  inbreeding  and  distribution of 
family size: The diffusion approximation  for any dis- 
tribution of  family  size and type of partial  inbreeding 
can be obtained by using the  appropriate values of F 
and Ne. This was checked by simulation for  the cases 
of partial full-sib mating and partial half-sib mating 
and distributions of offspring  number  larger and 
smaller than  the Poisson expectation. 

In  Table 3 are presented cases where  inbreeding 
was achieved by partial full-sib mating ( F S )  and partial 
half-sib mating  where  mothers  of half-sibs were again 
half-sibs (HS) ,  with distribution of  family size with S? 
= 1, 2 or 4. In each case, full-sib or half-sib mating 
was practised between the selected individuals when- 
ever they were available. The average  number of full- 
sib matings performed every generation  for S h 2  = 1 
and 2 was very close to its expectation without selec- 
tion by Expression 17. With the  proportion of inbred 
matings, the  corresponding values of F were calcu- 
lated using Equations 7 and 8. These  expected values 
(in parentheses) were very similar to  the observed 
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TABLE 3 

Comparison  between simulation  results  and  expected  values or diffusion approximations (in parentheses) for the  case of partial full- 
sib mating (FS) and  partial half-sib mating (HS) with S b p  = 1 , 2  or 4 

FS s,? = 2 HS s,z = 2 

NIM 24.03  (24.03)  40.01 
F 0.177 (0.176) 0.093  (0.097) 
N, 84.8 (85.0) 58.4  (58.3) 

h=O h = 0.5 h =  1 h = O  h = 0.5 h =  1 

4%) 1.25  (1.27) 2.20  (2.47) 3.94  (3.93) 0.65  (0.84) 1.56  (1.59) 2.90  (2.59) 

C[HI 0.68  (0.69) 1.14  (1.24) 2.20  (2.14) 0.41  (0.50) 0.92  (0.88) 1.68  (1.54) 
C[V, ]  0.11  (0.11) 0.16  (0.17) 0.43  (0.42) 0.05  (0.07) 0.1 1 (0.10) 0.30  (0.28) 

t1/4N  0.44  (0.44)  0.48  (0.47)  0.53  (0.53)  0.31  (0.36)  0.41  (0.41)  0.46  (0.47) 

FS sr' = 1 FS sr? = 4 

NIM 31.37  (31.38)  27.46 
1.01  (1.01)  4.05 

F 0.287 (0.279) 0.217 (0.2 19) 
N, 120.1 (121.3) 48.42  (48.35) 

h = O  h = 0.5 h =  1 h = O  h = 0.5 h =  1 

4%) 1.99 (2.1 1) 3.52  (3.80) 6.00 (5.70) 0.96  (0.92) 1.55  (1.47) 2.23  (2.15) 

C[HI 0.88  (0.95) 1.47 (1.60) 2.71  (2.56) 0.43  (0.41) 0.68  (0.62) 1.08  (0.95) 
C[VGI 0.19  (0.20) 0.26  (0.28) 0.63 (0.60) 0.07  (0.07) 0.09  (0.09) 0.24  (0.22) 

t1/4N  0.47  (0.49)  0.49  (0.51)  0.56  (0.55)  0.32  (0.32)  0.35  (0.35)  0.42  (0.39) 

SE: NIM (0.05-0.09), Sn2 (0.00-0.08), F (0.01), u(%) (0.08-0.36),  t1/4N  (0.01). C [ H ]  (0.03-0.12), C[V, ]  X 100 (0.01-0.02). 
Two hundred scored individuals, N = 100, s = 0.05, 2a = 0.063.  NIM number of inbred matings. Other definitions as  in tables 1 and 2. 

values obtained  from the computation of F WRIGHT'S 
statistics in 300 runs carried  out with no selection. 
Substituting the  predicted values of F and S h 2  in Equa- 
tion 10 [with the  appropriate modifications from 
CROW and DENNISTON (1988) in the case of different 
number of males and females], the Ne estimated (in 
parentheses) was  in very good  agreement with its 
simulated value from  these  runs. Fixation probabili- 
ties, times to fixation and cumulative heterozygosity 
and genotypic variance obtained by simulation agreed 
very well with diffusion approximations  incorporating 
the expected values of F ,  N ,  and s. 

Other approximations to the fixation probability: 
POLLAK (1987,1988)  obtained approximations for  the 
probability of ultimate survival of mutant alleles in 
finite populations with partial  inbreeding by means of 
branching process methods. His equation  for the case 
of partial selfing was incorrect because it did not 
properly  take  into  account the effective population 
size. After  correction,  however, it leads to Equation 
11, i e . ,  the  correct  approximation for large Ns.  This 
mistake has  also been  noticed by POLLAK and SABRAN 
(1 992). 

POLLAK'S equation for calculating the fixation prob- 
ability with partial full-sib mating  cannot  be used in 
our case because it apparently  relates  to  a  different 
model to  that  dealt with  in this paper. POLLAK consid- 
ered couples rather  than individuals as reproducing 
units and selection was applied as differential viability 
of such couples. In  our model (exemplified by the 
simulation), selection operates  on  differential viability 

of individuals (by truncation selection) and those se- 
lected individuals are then  mated. Thus, our model is 
compatible with that used for  partial selfing (where 
selection is  always made  on individuals) and  the mean 
change in gene  frequency with selection (Equation 3) 
is the same in both cases. Therefore, in this paper, 
there is no distinction between models for selfing and 
full-sib mating or other types of inbred matings if 
expressed as a  function of F ,  and  both  the diffusion 
results and Equation  1  1 are general.  Hence, simulated 
values identical to those shown in Table 1  for  partial 
selfing would also be  obtained  for  the case of mixed 
full-sib and  random  mating with, in particular,  ran- 
dom  mating ( F  = 0) ,  80% of  full-sib mating ( F  = 0.5)  
or 100% of full-sib mating ( F  z 1) (see Equation 7), 
provided S k 2  is maintained equal to 2, so that Ne is the 
same in both models. 

DISCUSSION 

Fixation probabilities, average times to fixation and 
extinction and heterozygosity and genetic variance 
contributed by single mutant genes in finite popula- 
tions where there is partial  inbreeding have been 
investigated by means of diffusion methods. 

The key parameters in the prediction are  the equi- 
librium coefficient of inbreeding  due  to  nonrandom 
mating, which can  be  derived  from the  proportion of 
inbred matings, and  the effective population size 
which, in turn,  depends on the  former  and  the vari- 
ance of family  size. If considered  separately,  these two 
parameters have a similar effect on the fixation prob- 
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ability, i.e., an increase in any of them causes an 
increase in the fixation probability. However, increas- 
ing F generally reduces Ne and,  therefore, they coun- 
teract each other partially or even completely. When 
the variance of  family  size corresponds to a Poisson 
distribution  the offset is complete  for  additive  genes 
and their fixation probability is independent of F.  
This might tentatively be seen as an extension of 
MARUYAMA’S (1970) result that subdivision of a  pop- 
ulation does  not affect the fixation rate of an additive 
gene  provided there is no change in mean  gene  fre- 
quency in the  population,  although there is no such 
subdivision in the situations discussed in this pa- 
per.  Other distributions of family offspring  change 
this result for  additive  genes,  leading to  an increase 
(sk2 < 2) or decrease ( s k 2  > 2) in their fixation proba- 
bility with an  increment in the  degree of inbreeding. 
This is caused by a  proportionally smaller reduction 
in N ,  with inbreeding when S k 2  is smaller (see Equation 
1 1 ) .  For example, in the  three cases analyzed in this 
paper, i . e . ,  Sk2 = 1 ,  2 and 4, the  reduction in Ne with 
F = 0.5 relative to F = 0 is 14%, 33% and 46%, 
respectively. This  proportional  reduction in Ne quickly 
approaches  an  asymptote of around 60% as sk2 further 
increases, such that  for values of S: greater  than 4, it 
is not very different  from  the case  with S k 2  = 4. 

Inbreeding increases the fixation probability of re- 
cessive genes and decreases that  for  dominant genes. 
The effect of an  increased F on increasing the  change 
in mean gene  frequency (see Equation 3) is now much 
more  important  than its corresponding effect on  re- 
ducing Ne and  the variance of that  change  (Equation 
4) for recessive genes (as shown by CKHSl), and  the 
opposite happens with dominant genes. The highest 
increments  for recessives are achieved with smaller S: 
and  the highest decrements  for  dominants with larger 

Increasing inbreeding  for recessive genes  not only 
implies an increase in additive variance (which would 
be caused by the increase in fixation probability), but 
also an increase in non-additive variance with inter- 
mediate  degrees of inbreeding as shown by ROBERT- 
SON (1952) for  neutral recessives. As a  consequence 
the cumulative genetic variance for completely reces- 
sive genes is very  close to  that  for  additive genes when 
F is intermediate. The genetic variance accumulated 
during  the mutant’s lifetime can alternatively  be 
viewed as proportional to  the  equilibrium variance 
maintained due  to a steady flux of mutations and, 
therefore,  the results can  be generalized to  the vari- 
ance maintained in the  population when many genes 
are segregating simultaneously by multiplying the cu- 
mulative variance by the mutation rate  and summing 
over loci. 

Partial inbreeding also causes a  reduction in the 
time  to  fixation. This  reduction is  less marked  for 

Sk2. 

smaller values of S b 2  though,  for relatively large values 
of Ns, the differences  among S: values are largely 
reduced.  This has the implication that  for  strong 
selection, and considering fixation probabilities and 
time to fixation jointly,  the case  with SA2 = 1 is the 
most favorable  among the  three studied in the effect 
of inbreeding  on  the fixation of mutant genes. 

Only three values of S k 2  have been investigated in 
this  paper,  but they can  be  considered as suitable 
representatives of the whole range. The extreme case 
of sk2 = 0 was not analyzed because the model inves- 
tigated assumes individual or mass selection. With 
only within-family selection (obligatory with sk2 = O), 
the time to fixation would be increased with inbreed- 
ing. In  a  breeding system  with individual selection 
and where the population is maintained with a fixed 
structure,  the smallest variance of family  size would 
be around  one, achieved when couples contribute two 
offspring of each sex to the  scored  group. A greater 
or more variable contribution would yield higher 
values of Sk2 and,  therefore,  the case  of S: = 1 can be 
considered as a lower limit in the present  study. Like- 
wise, as pointed out above,  higher variances than 4 
would not cause important  additional  differences be- 
cause the  proportional  reduction in Ne is, then, ap- 
proximately constant. 

Stochastic simulation has been useful in showing the 
high accuracy of the diffusion methods even for  the 
cases  with strong selection, as well as in illustrating its 
generality  for  different  distributions of offspring  num- 
ber  and systems of partial  inbreeding. HILL (1985) 
already checked the validity  of the diffusion approxi- 
mations for  the case of additive  mutant  genes with 
artificial selection and  random  mating  and CKH91 
did the same for some of the cases investigated in this 
paper,  though  simulated values of Ne were used in- 
stead of their  predictions. 

LANDE and SCHEMSKE (1985) showed that, in the- 
ory,  predominant  outcrossing ( F  = 0) and predomi- 
nant selfing ( F  = 1) are  the two stable states of  the 
mating system  in plants. This prediction was born  out 
empirically and  the distribution was found markedly 
bimodal with the classes B < 0.20 and P 0.80 more 
frequent  than  expected,  though  a  great variation 
could be observed in some taxa (SCHEMSKE and  LANDE 
1985). If this is true, it would mean that in completely 
selfed plants advantageous  mutations would behave 
as additives irrespective of their  gene  action.  Thus, if 
recessive mutations affecting a  certain  quantitative 
trait in a  determined  direction were more  frequent 
than  dominants, the average fixation rate  and  the 
average cumulative genetic variance would be  higher 
in selfed than in random  mating plants and vice versa. 
In any case, the time until fixation of  all favorable 
mutations in a selfed plant would be  approximately 
half  of that in a  random  mating  plant.  For strongly 
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deleterious  mutations, when fixation rates and cu- 
mulative variance are negligible, the time until their 
extinction in a selfed plant would be around 80% 
shorter  than in a  random  mating  plant,  though  a  large 
part of this reduction  could  be  achieved with a small 
proportion of selfing. Thus,  the  rate of evolution of 
selfing plants may exceed that of outcrossers. 

Of  course  these  predictions refer only to single 
mutants,  the case dealt with in this paper.  Other 
problems such as linkage have not been  studied. Link- 
age disequilibrium among alleles at different loci  is 
also  common in populations of inbreeding plants 
(BROWN  1979)  affecting  the  equilibrium  genotypic 
frequencies [see WEIR and COCKERHAM (1 973)  and 
references  therein], and this may deserve further in- 
vestigation. 

The Poisson distribution of family  size,  usually used 
as a simplifying model,  needs  careful definition with 
partial  inbreeding, however. In this paper, in the case 
of selfing it has referred  to  independent distributions 
of selfed and nonselfed offspring and thus S,' (the 
variance of  successful gametes) is necessarily depend- 
ent on  the  proportion of selfing offspring (@) such that 
S,' = 2 + 28. For the cases of partial sib mating, 
however, it has referred  to  independent distributions 
of male and female  offspring because selection pre- 
ceded  the  formation of pair matings. Thus, sh2 has 
been  maintained at 2 irrespective of @ at  the expense 
of  the restriction of a maximum number of sib mat- 
ings. In this situation, the results  obtained  for  partial 
selfing and partial sib mating are  the same because 
both  the model of selection (on individual genotypes) 
and Ne are identical. There  are, however, alternative 
models where sh2 is also a  function of the  proportion 
of sib matings. For example, if selection is applied 
after formation of pair mates, @ can increase to 1 but 
sk2 cannot  be  maintained at 2 unless the  number of 
males and females per family is subject to some restric- 
tions and, in general, there will be a  correlation be- 
tween the  proportion of sib matings and  the variance 
of family  size. Thus, if the  number of male and female 
pairs of offspring  that sib mate is Poisson  with index 
@ and  the  number of male and female  offspring that 
d o  not is independently Poisson with index  1 - @, s k 2  

= 2 + 28 analogously to  the partial selfing case. Hence, 
with @ = 1 there  are equal  numbers of males and 
females per family and Sk2 = 4 because there is a  unit 
covariance of male and female  numbers. In this situ- 
ation,  the results in this paper would be  different 
because, for  instance, with @ = 1, Ne would be  N/4 
instead of N/2  as with Sk2 = 2 and,  therefore,  the 
fixation probability with additivity would drop with F 
= 1 to half the value with F = 0, instead of remaining 
constant.  Moreover, the selection model would also 
be different  from  that with selfing, and  the models 
would not  be  comparable. 

Among several alternative  breeding schemes, 
CKH91  found  that  the most successful  in increasing 
fixation probabilities for recessive genes without im- 
pairing that  for nonadditive genes or delaying times 
to fixation would consist of practising individual selec- 
tion and mating full-sibs whenever possible, otherwise 
at  random.  In particular, the best scheme was achieved 
with a  multihypergeometric  distribution of  family off- 
spring  (constant number of scored individuals from 
each family), in accordance with the results of this 
paper. Both from  that  and  the present  study, it may 
be  concluded  that  partial  inbreeding is useful in in- 
creasing fixation rates of  new advantageous  mutations 
affecting  a  quantitative  trait when the  gene action is 
additive to complete recessive (in the case  of sk2 < 2) 
or only recessive (partial or complete, in the case  of 

Information  about  the  gene  action of mutants af- 
fecting  quantitative  traits is scarce. Direct evidence 
comes from  recent studies on  spontaneous polygenic 
mutation in Drosophila. CABALLERO, TORO and Lo- 
PEZ-FANJUL (1 99 1) artificially selected for  abdominal 
bristle number  starting  from  a completely homozy- 
gous  population and analyzed a  number of mutations 
arising during  the course of the  experiment.  In only 
two cases the  gene  action could be  ascertained, and 
additivity and complete recessivity were found. More- 
over,  the recessive mutant  had  the highest effect on 
the selected character. By maintaining 200 inbred 
lines without selection, starting  from  the same isogenic 
population, E. SANTIAGO, J. ALBORNOZ, A.  DOMIN- 
GUEZ, M. A. TORO and C. LOPEZ-FANJUL (unpublished 
data) isolated a number of mutants  affecting bristle 
number  and wing length and width. Mutations 
showed a high level of pleiotropy among  the  three 
characters,  ranging in their  gene actions from additiv- 
ity to complete recessivity. Only one  mutant showed 
incomplete  dominance for  one  trait  but was additive 
for  the two others. Mutations with recessive gene 
action were among  those with the highest effect. P 
element  inserts have also been shown to be partially 
recessive in their effects on bristle number (MACKAY, 
LYMAN  and JACKSON 1992). 

These observations would suggest a  great  advantage 
of inbreeding in fixing advantageous  mutants quickly. 
However, there is an association between genes with 
large recessive effects and deleterious pleiotropic ef- 
fects on fitness. CABALLERO, TORO and LOPEZ-FANJUL 
(1 99 1)  found  that,  although some mutations behaved 
as  neutrals, most were lethal and  the recessive with 
the highest score was semilethal. In  the unselected 
inbred lines referred  to above, the recessive mutations 
were deleterious while those  additive were usually 
neutral. P element  insertions causing extreme bristle 
effects in MACKAY, LYMAN  and JACKSON (1992) were 
also greatly del'eterious. But even in this situation 

S h 2  = 2). 
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partial  inbreeding may be useful. HILL (1982) sug- 
gested that strongly deleterious  mutations, such as 
lethals in Drosophila, should  be better eliminated 
from  breeding  programs.  Partial  inbreeding sharply 
decreases the time until extinction of strongly  delete- 
rious  mutants, especially  recessives, and  therefore, it 
would also be useful in this aim. Thus, while increasing 
the probability of picking up possible neutral  advan- 
tageous  mutants, it also would serve to  get rid of those 
with some effect on  the  trait  but strongly detrimental 
in homozygosis. 

The increase in the fixation probability caused by 
inbreeding indicates an increase in the additive vari- 
ance  and in the asymptotic response to selection. 
While this statement may be  correct if isogenic pop- 
ulations and values of mutational variance usually 
obtained are considered (CKHSI), something very 
different  might  happen in outbred populations  where 
inbreeding has not  been  strong  before.  Inbreeding 
reduces the within-family variance and its use in prac- 
tical terms has been  questioned (DICKERSON and 
LINDHE 1977). These  doubts  come, however, from 
considerations relative to cyclical inbreeding in alter- 
nate  generations,  where specific problems such as a 
reduced intensity of selection are present.  Inbreeding 
depression is expected to cause initial fitness problems, 
though  after elimination of strongly  deleterious  mu- 
tations and, if the population survive such a process, 
response can be  quicker  than in a  corresponding  ran- 
dom  mating  population (MACNEIL et al. 1984). In- 
creased  inbreeding is also expected to cause an in- 
crease in variation of response which  may be of im- 
portance in  small populations. On  the  contrary, partial 
inbreeding decreases the time to fixation of new mu- 
tants  and,  therefore, increases short-term responses, 
which is more valuable in breeding schemes. On 
the whole, therefore,  the possible usefulness of the 
schemes illustrated by CKH91 or in this paper in 
practical breeding  management still remains an  open 
question. 
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