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ABSTRACT 
We compare  the utility of two methods  for  estimating  the  average  levels of gene flow from DNA 

sequence data.  One  method is based  on  estimating FST from frequencies at polymorphic  sites,  treating 
each site as a separate  locus. The other method is based on computing the minimum number of 
migration events consistent with the  gene  tree inferred from their  sequences. We compared  the 
performance of these two methods on data  that  were  generated by a computer  simulation  program 
that  assumed  the  infinite sites model of mutation and  that assumed  an  island  model of migration. We 
found  that in general when there is no recombination,  the  cladistic  method  performed  better  than 
FsT while the reverse was true for  rates of recombination  similar to those found in eukaryotic  nuclear 
genes,  although FST performed  better for all recombination  rates  for very low levels of migration 
(Nm = 0.1). 

I N this paper, we will compare  the  performance of 
two methods  for  estimating the average level of 

gene flow from DNA sequence  data. We will be con- 
cerned with a  data  set  that consists of a list of se- 
quences  for homologous segments of DNA from in- 
dividuals sampled from  different  geographic loca- 
tions. We assume that in each chromosome sampled 
either  the region of interest has been completely 
sequenced or that  presence or absence of numerous 
polymorphic  restriction sites are known. There is 
already  an  abundance of such data available for mi- 
tochondrial DNA (AVISE et d .  1987)  and some data 
for nuclear  genes, primarily in Drosophila (e.g., 
KREITMAN  1983;  RILEY,  HALLAS and LEWONTIN 
1989; SCHAEFFER and MILLER 1991). One question 
that arises is how these  data can be used most effec- 
tively to infer  something about population structure. 

There  are currently two methods available for using 
sequence  data to estimate the average level of gene 
flow. One method  treats each polymorphic site as  a 
separate locus and  then estimates FST from  the  fre- 
quencies of alleles at each locus in different  geo- 
graphic locations. Calculating FST for this kind of data 
was first suggested by NEI (1  982)  and later by TAKA- 
HATA and PALUMBI (1  985)  and by LYNCH  and CREASE 
(1  990). We will discuss later  the  differences between 
these ways of estimating FST from  sequence  data.  From 
the estimate Of FsT, the level of gene flow as measured 
by the  product Nm can be  computed  from WRIGHT’S 
(1  95 1) result  for haploid organisms in an island model 
of population structure. For this model, WRIGHT 
found  that 

Genetics 132: 583-589 (October, 1992) 

1 
1 + 2Nm FST 

where N is the  number of individuals in each subpop- 
ulation and m is the fraction of migrants in each 
subpopulation in each generation. An estimator of 
Nm, which we will denote ( N m ) F ,  can be  obtained by 
solving (1)  for Nm, 

( N m ) F  = L(1- 2 FST l), 

where FST in this equation is actually an  estimate of 
FST. Equations 1 and 2 are appropriate  for haploid 
organisms or mitochondrial DNA  which can be 
treated as a haploid genome.  For  mitochondrial DNA 
and assuming that  inheritance is strictly maternal, N 
in Equation  1 is the effective number of females in 
each subpopulation.  For diploids the 2 in Equation 1 
is replaced by a 4, and N in this case is the effective 
number of diploid individuals in each subpopulation. 
We note  that estimates of FST can be expressed in 
terms of average  divergence between pairs of  se- 
quences within subpopulations and average diver- 
gence between pairs of sequences randomly  drawn 
from  the whole population  (SLATKIN  1991). For this 
reason we refer  to  the  method of estimating Nm based 
on FST as  a pairwise method. 

SLATKIN and MADDISON (1  989)  introduced  a second 
method  to  estimate Nm from  sequence  data. With 
their  method,  the first step is to use the  sequence  data 
to  infer  the  gene  tree of the samples. Then a parsi- 
mony criterion is used to obtain s, the minimum 
number of migration  events consistent with the  gene 



584 R. R. Hudson, M. Slatkin and W. P. Maddison 

tree  and  the geographic locations from which the 
samples were taken. SLATKIN and MADDISON (1989) 
carried  out extensive simulations to show that  the 
value of s could be used to estimate Nm. The estimator 
based on s will be  denoted (Nm) , .  

In this paper we will apply both of these  methods 
to simulated data  to  determine how well each per- 
forms  under known conditions. We will be particularly 
concerned with the effects of recombination. 

METHODS 

Simulation program: The data to which the two 
methods were applied  were  produced by a  computer 
program  that first generates  the genealogy of a sample 
of genes, and  then places mutations  randomly on  the 
genealogy to  produce  a sample. The program  gener- 
ates  data  under  a  Wright-Fisher  neutral model with 
population subdivision. We have assumed a  finite is- 
land model, in  which each of d subpopulations receives 
equal  numbers of migrants  from  each other subpop- 
ulation. In addition, it is assumed that recombination 
can  occur at any of a  large number of equivalent sites 
in  the genetic  region  being  examined. All mutations 
are assumed to occur at previously unhit sites, i. e., we 
assumed  an infinite-sites model. T o  generate samples 
under this model two previously described  algorithms, 
that of STROBECK (1  987)  and  that of HUDSON (1  983), 
are combined. STROBECK (1987) has described  a 
method  for  generating  gene genealogies under  the 
island model. HUDSON (1  983)  described how to gen- 
erate genealogies under models in which recombina- 
tion is possible between any of a  large number of sites. 
To incorporate  both  recombination and migration is 
a straightforward  extension of these  methods. Copies 
of  the  program  are available on request. It is impor- 
tant  to note  that we are assuming a steady state model 
with continuous levels  of gene flow, and  that this is 
quite distinct from models in which subpopulations 
are now completely isolated but were  derived  from 
ancestral  populations at some time in the past. \, 

In all the simulations reported  here, it was assumed 
that  the  number of subpopulations, d,  is 10, and  that 
samples of  size 16 were taken  from two of the subpop- 
ulations. It was assumed that a  homologous  genetic 
region was sequenced in each of the  32 sampled  genes 
and that  a  total of 128 polymorphic sites were  found 
in  the sample. Four  different  migration  rates  were 
used, Nm = 0.1, 1 .O, 5.0 and 10.0. Five different 
recombination  rates  were used, namely, N r  = 0.0,2.0, 
4.0,S.O and 16.0. The levels  of recombination consid- 
ered here  are well within the  range  estimated  for 
natural populations. For each combination of param- 
eter values, 1000 replicate samples were generated 
and hence 1000 estimates of Nm were  obtained using 
each of two methods. 

Data analysis: For  each sample, FST was estimated 
by 

where H, is mean number of differences between 
different sequences sampled from  the same subpopu- 
lation, and H b  is the mean number of differences 
between sequences sampled from  the two different 
subpopulations sampled. In  other words, for each 
generated sample in our simulations, H, is the average 

of the 240 (= 2( 7)) pairwise comparisons of se- 

quences within subpopulations. Hb is the average of 
256 (= 16’) pairwise comparisons of sequences from 
the two different  subpopulations sampled. This esti- 
mator of FST is numerically identical to t? of WEIR and 
COCKERHAM (1984)  for  the case of random  union of 
gametes with equal sample sizes from each subpopu- 
lation, and where the information  from each poly- 
morphic site is combined as WEIR and COCKERHAM 
recommend  for  combining  information  from  differ- 
ent loci. Our estimator is also almost the same as NST 
of LYNCH and CREASE (1990), differing only in not 
performing  a  Jukes-Cantor  correction. We do not 
apply a  Jukes-Cantor  correction because we assume 
an infinite-sites model which does  not  require any 
correction  for multiple hits. Our estimator is slightly 
different  from NEI’S (1982) y . ~  because in computing 
H ,  our estimator  does  not  include  a comparison of a 
sampled sequence with  itself  while Y S T  does. Our esti- 
mator is also slightly different  from  that of TAKAHATA 
and PALUMBI (1  985) which was designed for applica- 
tion to differences in the  number of polymorphic 
restriction sites. TAKAHATA and PALUMBI assume that 
a  restriction site must be  detected as polymorphic 
before it is counted. That assumption leads to  a slight 
difference between their  estimator and Equation 3. 
Both NEI’S and TAKAHATA and PALUMBI’S estimators 
differ  from (3) by terms of order  l/n where  n is the 
number of sequences sampled from each subpopula- 
tion. 

Using Equations 3 and 2, one finds the following 
expression for our estimator: 

The statistical properties of (Nm)F as estimated  from 
our simulations are shown in Table 1. H, is an estimate 
of the average  divergence time of pairs of genes 
sampled from within a  subpopulation and H b  is an 
estimate of the average  divergence  time of genes 
sampled  from  different  subpopulations. If H b  is  less 
than or equal to H,, then ( N m ) F  is negative or infinity. 
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TABLE 1 

Comparison of statistical  properties of ( N m ) p  and (Nm).  

Nr p d d  Mean (Variance) C(0.025)  C(0.05)  C(0.5)  C(0.95)  C(0.975) 

Nm = 0.1 
0.0 

2.0 

4.0 

8.0 

Nm = 1.0 
0.0 

2.0 

4.0 

8.0 

16.0 

Nm = 5.0 
0.0 

2.0 

4.0 

8.0 

16.0 

Nm = 10.0 
0.0 

2.0 

4.0 

8.0 

16.0 

0.999 

1 .ooo 

1 .ooo 

1.000 

0.976 

0.997 

1 .ooo 

1.000 

1 .ooo 

0.781 

0.948 

0.968 

0.989 

0.996 

0.628 

0.836 

0.860 

0.909 

0.941 

0.340 
0.157 
0.17 
0.077 
0.17 
0.066 
0.13 
0.036 

4.96 
1.47 
1.89 
1.39 
1.60 
1.22 
1.41 
1.03 
1.31 
0.71 

31.2 
11.8 
15.6 
10.0 
43.8 

10.7 
9.62 

8.33 
8.91 
7.48 

41.7 
29.6 
60.4 
24.98 
36.4 
25.46 
45.7 
22.51 
31.1 
20.10 

(1.23) 
(0.27) 
(0.094) 
(0.036) 
(0.044) 
(0.051) 
(0.017) 
(0.016) 

(754) 
(2.9) 
(6.63) 
(1.58) 
(2.40) 
(1.34) 
(1.06) 

(0.553) 
(0.544) 

(32,600) 
(346) 
(2,810) 
(207) 
(748,000) 
(168) 
(666) 
(158) 
(171) 
(1  16) 

(1.10) 

(39,300) 
(1,640) 
(342,000) 
(1,590) 
(27,400) 
(1,440) 
(63,700) 
(885) 
(28,600) 
(857) 

0.0026 
0.0 
0.0048 
0.0 
0.0053 
0.0 
0.010 
0.0 

0.19 
0.0 
0.29 
0.0 
0.34 
0.0 
0.41 
0.0 
0.476 
0.0 

0.90 
1.3 
1.59 
1.3 
1.59 
1.3 
2.03 
1.3 
2.27 
1.3 

1.56 
3.24 
2.54 
1.99 
3.22 
3.24 
3.48 
1.99 
4.33 
1.99 

0.0041 
0.0 
0.0069 
0.0 
0.0073 
0.0 
0.0 16 
0.0 

0.29 
0.35 
0.37 
0.35 
0.43 
0.0 
0.49 
0.0 
0.576 
0.0 

1.23 
1.99 
1.92 
1.99 
2.1 1 
1.99 
2.3 1 
1.3 
2.66 
1.3 

2.04 
3.24 
3.21 
3.24 
3.66 
3.24 
4.21 
3.24 
4.78 
3.24 

0.094 
0.0 
0.091 
0.0 
0.104 
0.0 
0.1030 
0.0 

1.41 
1.3 
1.28 
1.30 
1.24 
0.75 
1.16 
0.75 
1.13 
0.35 

5.80 
4.95 
6.48 
4.95 
6.21 
4.95 
6.09 
4.95 
6.23 
4.95 

8.94 
15.88 
11.9 
15.88 
11.4 
15.88 
12.0 
15.88 
11.9 
7.93 

1.2 
0.35 
0.54 
0.35 
0.49 
0.35 
0.36 
0.35 

13.0 
3.24 
5.20 
3.24 
3.88 
3.24 
3.20 
3.24 
2.63 
1.99 

73.1 
36.6 
42.9 
36.57 
40.3 
36.57 
27.6 
36.57 
22.2 
15.88 

114 

151 

117 

124 

73.04 

73.04 

73.04 

73.04 
66.0 
73.04 

1 .6 
0.75 
0.73 
0.35 
0.64 
0.35 
0.49 
0.35 

22.1 
4.95 
7.19 
4.95 
4.97 
3.24 
3.92 
3.24 
3.10 
1.99 

162 
73.04 
64.7 
36.57 
94.7 
36.57 
41.7 
36.57 
31.9 
36.57 

238 
146.08 
226 

73.04 
198 
146.08 
22 1 
146.08 
109 
73.04 

~ ~ ~~~~ 

For each value of Nm and Nr, there  are  two  lines,  the  top line is for (Nm), and  the  second line is for (Nm),. PdcF is an estimate of the 
probability of the estimator (Nm), being  defined.  (If F,, is less than or equal to 0.0, the estimator is considered  undefined.) Everything to the 
right of Pdrf is conditional on  the estimator being  defined. C(x) is the estimated value for which the probability of the estimator being less 
than C(x) is x. (C(0.5) is an estimate of the  median.) All estimates are based on 1,000 samples. 

~~ ~~ 

When this occurred in a  replicate, we say that  the 
estimator is undefined  for that sample. 

To use SLATKIN and MADDISON’S (1989) cladistic 
method, we began by inferring  a  gene  tree of the 
samples using the  computer  program  PAUP (SWOF- 
FORD 1990) which applies a parsimony algorithm  to 
finding  the best gene tree. A fast heuristic  algorithm 
was used: simple addition  sequence with no branch 
swapping. (It seems unlikely that  a  more  thorough 
algorithm would have made  a  difference;  robustness 
is suggested by pilot studies with UPGMA trees  that 
gave qualitatively similar results.) If there is recombi- 
nation,  then  the history of the sample of genes  cannot 

in general  be  represented by a single gene  tree.  PAUP 
can,  however, still be used to infer  a  tree. Given the 
inferred  gene  tree, we then used the algorithm  de- 
scribed by SLATKIN and MADDISON for finding s, the 
minimum number of migration events. From  that 
value of s and  the simulation results of SLATKIN and 
MADDISON (1  989,  Table 1) we estimated Nm. Because 
s can  take only integer values, the estimates of Nm 
that  are possible for given sample sizes also take only 
discrete values. For 16 genes sampled from each of 
two populations, we interpolated  the values from 
Table 1 of SLATKIN and MADDISON (1989)  to  obtain 
the estimates of Nm shown in Table 1  here.  These 
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were  the values used  in analyzing the simulation re- 
sults. 

RESULTS 

Table 1 shows estimated  mean, variances and some 
percentiles of the two estimators, ( N m ) $  and (Nm),, 
for several migration rates and recombination  rates. 
The properties of the estimator ( N m ) p  are summa- 
rized first. The median of this estimator is within 40% 
of the  true value for all migration  rates and recombi- 
nation  rates  examined, and  for most parameter values 
the median is within 20%. When  recombination  rates 
are high the mean is also close to  the  true value, 
except  at  the highest level  of migration.  However, 
when recombination rate is  low and/or  the migration 
rate is high, the mean can be considerably higher  than 
the  true value. In  these cases, the variance is also very 
large  and  the  estimator is frequently  undefined. Fig- 
ure 1 shows that, with  low recombination, the distri- 
bution of the estimator is highly skewed with a  large 
tail to  the  right, indicating the substantial probability 
of very large values of the estimator. These large 
values of the estimator are clearly due  to cases where 
the denominator of the  right  hand side of (4) is near 
zero.  Figure  1 also shows that recombination has the 
effect of shrinking the large tail to the  right in the 
distribution of the  estimator,  reducing  the variance 
and the bias  of the estimator. 

The estimator based on s has a  discrete  distribution. 
When migration rates are low the estimator is zero  a 
large  fraction of the  time.  Recombination has a less 
drastic effect on this estimator,  reducing  the  mean 
and  the variance to some extent. Except when migra- 
tion  rate is very  low, recombination also improves this 
estimator,  reducing  the bias and variance. 

Comparing the two estimators, we see that if migra- 
tion  rate is very low, the estimator based on FST is 
clearly superior. With moderate to high migration 
and low recombination, the estimator based on s is 
clearly better, having less bias and much lower vari- 
ance. With higher levels  of recombination, the situa- 
tion is  less clear.  For  moderate  migration and high 
recombination, the two estimators are statistically very 
similar, with the  estimator based on FST being  perhaps 
slightly better. With higher levels of migration, and 
with high recombination,  Figure  1 shows that  the two 
estimators have very similar distributions.  However, 
with low probability the estimator based on FST can 
take  quite  large values, which leads to a  larger bias 
and variance than  the  estimator based on s. 

DISCUSSION 

We can understand  these  results by considering the 
kinds of information used by each of these  methods 
and the effects of recombination. First, to understand 
why (Nm)F works better  than (Nm), when N m  is small 

consider the following argument. If the migration rate 
is sufficiently small, then most of  the  time all the 
sequences coalesce in each subpopulation  before any 
migration  events  occur (as one  proceeds back  in time 
tracing the history of the sampled sequences). That is, 
samples from the  different localities form clades con- 
nected by relatively long  branches (SLATKIN 1989). In 
this case, only one migration  event will be required in 
a parsimonious reconstruction of  the history of the 
sampled sequences. This is a  migration  event  bringing 
an ancestor of the sample from  one locality to  the 
locality of the  other sample. One is the minimum 
number of migration events possible for samples from 
two localities. Therefore,  for  the estimate based on s, 
there is no way to distinguish small rates of migration 
from very  small rates of migration, they both usually 
require only one migration  event. On the  other  hand, 
FST depends on the length of the branch  that  connects 
the two clades, which is dependent on the value of 
Nm, especially for Nm small (SLATKIN 1991). The 
estimate, utilizes that  dependence  and  there- 
fore  outperforms ( N m ) ,  for Nm small. 

We can also see, at least in part, why the  estimator, 
(Nm),, is better with higher levels  of recombination. 
If there is no  recombination,  then each sample of 
genes has a simple unique  gene tree which differs 
from  replicate to replicate. In calculating FsT, only 
some information  from  that  gene tree is extracted, 
namely the average  divergence times of genes sampled 
from  the same and  from  different populations. As 
discussed by FELSENSTEIN (1  992)  and  others,  the  prob- 
lem  with using average  divergence times in such cases 
is that they are very strongly  effected by the deepest 
branch in the  gene  tree. The cladistic method of 
SLATKIN and MADDISON (1989), on the  other  hand, 
uses more information  from  the  gene tree, namely the 
relationship between its topology and  the geographic 
locations from which the genes are sampled. That 
method still does  not use all the  information because 
it ignores  branch  lengths. 

With recombination, there is no longer  a single 
simple gene  tree of the genes sampled. Instead, each 
non-recombined  segment of DNA has its own,  par- 
tially independent,  gene  tree. The FST method bene- 
fits from  the fact that it averages over events at 
different sites which have different  and partially in- 
dependent trees. It is still based on estimates of aver- 
age  divergence times of genes but  the estimates of 
divergence times will be less variable because they are 
in effect averaged  over  different realizations of the 
process that  generates  trees. The cladistic method on 
the  other  hand  depends on inferring  a single gene 
tree  and with some recombination the  inferred  gene 
tree  cannot  represent  the actual history of the sampled 
genes. Instead it represents some kind of average  of 
the  gene  trees of the  nonrecombined segments. For 
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the cladistic method, there is no benefit from this 
averaging and apparently little increase in accuracy 
because the estimate of Nm is still  based on a single 
number. 

Recombination could be accounted for in the clad- 
istic method by identifying the locations of the recom- 
bination events using HEIN’S (1990) or some other 
method. Then an estimate of Nm could be obtained 
from each nonrecombined segment and those esti- 
mates averaged. The cladistic method will almost cer- 
tainly perform better if it is used  this way because we 
have  already  shown that it will perform better  for 

100 1000 

X 

FIGURE 1 .--Estimated cumula- 
tive probability distributions of the 
two estimators, ( N m ) F  and ( N m ) , .  
The dashed vertical line in each plot 
indicates the true value of Nm. These 
distributions are based on  the same 
simulations used to generate  Table 
1. 

each nonrecombined segment. However, it seems 
likely that it will take a  rather large amount of data 
for this  modification  of the cladistic method to be 
practicable. 

The results in Table 1, show that  the estimator, 
( N m ) F ,  is biased  even  in the best  of  circumstances. 
This is,  in large part,  due  to  the large variance of the 
denominator in the expression on the right hand  side 
of (4). But  even  when the variance  of the denominator 
is  small  some  bias  remains. This can be seen by ex- 
amining the ratio of the expectations of the numerator 
and denominator of the right hand side  of (4). Using 
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the expectation of H, and H b  under  the  neutral island 
model (LI 1976a), we find that  ratio of the expecta- 
tions is [d/(d - l ) ]Nm,  where  d is the  number of 
subpopulations.  (Note  that  d is the actual  number of 
subpopulations,  not the  number of subpopulations 
sampled.) Thus, for our simulations where  d  equals 
10, a bias of about 10% is expected even under  the 
best conditions. If d is known, better estimates might 
be obtained using the result of LI (1976b), 

1 

1 + (&) 2Nm 
FST 2 ( 5 )  

instead of (1) and estimating FST by 

If one solves ( 5 )  for Nm and replaces FsT by the 
estimate in (6), one arrives at  the estimator 

=" d - 1 1  H ,  
d 2 H b  - H,' 

which differs  from (Nm)F by the factor  (d - l)/d. 
Under  the finite island model, the  ratio of the expec- 
tations of the  numerator  and  denominator of the  right 
hand side of (7) is Nm. For  the  situation that we 
considered,  where  d equals 10,  the bias of ( N m )  is 
somewhat less than  that of ( N m ) F  and  the variance is 
about 20% less. Thus when the  number of subpopu- 
lations is known and small, the estimator ( N m )  would 
appear to be better  than ( N m ) F .  

Finally we note  that, everything else being  equal, 
genetic regions with recombination  provide better 
estimates of Nm than  regions  without  recombination. 
This is true  for  both estimators,  although for ( N m ) ,  
the effect of recombination is not so great. 

CONCLUSIONS 

We conclude that available methods can be applied 
to within-species DNA sequence  data to provide  rea- 
sonably accurate estimates of the average level of gene 
flow, as measured by Nm. However, if Nm is large 
then  the distributions of the estimators are very 
skewed toward  large values. In this case, the esti- 
mators  can  be very biased with high variance,  though 
the median values of the estimators  remain close to 
the  true values.  If the region  sequenced has little or 
no recombination, as in the case of mitochondrial 
DNA in animals, then SLATKIN and MADDISON'S 
(1 989) is likely to be  more  accurate  than  a  method 
based on estimating FST from  polymorphic sites. If 
there  are very low levels  of gene flow, the cladistic 

method would probably yield a  zero  estimate of Nm, 
which would mean  that samples from each geographic 
location formed  a single clade in the  unrooted  gene 
tree.  In  that case, FsT would give a  nonzero  estimate 
of Nm that would give a  better  although somewhat 
biased estimate of  how  low the level  of gene flow  is. 

For higher levels  of recombination, as found in most 
parts of the nuclear  genome, the FST estimator is 
generally better. The difference between FST and  the 
cladistic method is surprisingly small, given how badly 
the assumptions underlying the cladistic method are 
violated when recombination  rates are high. The clad- 
istic method  does  not  tend  to  be biased upwards as 
much as the FST method. 

We do not  think  that  either of the methods  de- 
scribed here  are  the best possible, only that they are 
available now and  are relatively easy to use. The 
method based on estimating FST uses only the average 
pairwise differences between sequences and does  not 
make  any use of the topological structure of the  gene 
tree  or  trees  that  more completely describe the data. 
The cladistic method makes use  only  of the topological 
structure of a single inferred  gene  tree  and  not  the 
branch  lengths or any variability among  gene  trees 
describing  a single data  set. 
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