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ABSTRACT 
Frequencies of mutant sites are modeled as a Poisson random  field in  two  species that  share a 

sufficiently  recent  common  ancestor. The selective  effect of the new  alleles  can  be  favorable, neutral, 
or detrimental. The model is applied to the  sample  configurations of nucleotides  in the  alcohol 
dehydrogenase  gene (Adh) in Drosophila  simulans and Drosophila  yakuba. Assuming a synonymous 
mutation rate of 1.5 X lo-' per  site  per  year  and  10  generations  per  year, we obtain  estimates  for  the 
effective population size (N,  = 6.5 X lo')), the species  divergence time (tdiv = 3.74 million years),  and 
an average  selection  coefficient (u = 1.53 X 1O"j per  generation  for  advantageous or mildly detrimental 
replacements),  although it is conceivable  that  only  two of the  amino  acid  replacements  were  selected 
and  the  rest  neutral. The analysis,  which  includes a sampling  theory  for the independent  infinite sites 
model  with  selection,  also  suggests the estimate  that the number of amino  acids  in the enzyme that 
are susceptible to favorable mutation is in the  range 2-23 at any one  time. The approach  provides a 
theoretical basis for the use  of a 2 X 2 contingency  table to compare  fixed  differences  and  polymorphic 
sites  with silent sites and amino acid  replacements. 

I T has been more  than 25 years since LEWONTIN 
and HUBBY (1 966) first  demonstrated  high levels 

of molecular polymorphism in Drosophila  pseudoob- 
scura. This  finding  had two strong  immediate  effects 
on evolutionary genetics: it stimulated  molecular  stud- 
ies of many other organisms, and it led to a vigorous 
theoretical debate  about  the significance of the ob- 
served polymorphisms (LEWONTIN 199 1). The exper- 
imental  studies soon came to a consensus in demon- 
strating widespread  molecular  polymorphism in 
numerous species of plants,  animals, and micro- 
organisms. The theoretical debate was not so quickly 
resolved. One viewpoint (KIMURA 1968,  1983) held 
that most observed  molecular  variation within and 
among species is essentially selectively neutral, with at 
most negligible effects on survival and  reproduction. 
Opposed was the classical Darwinian view that molec- 
ular polymorphism is the raw material  from which 
natural selection fashions evolutionary  progress, and 
that  the newly observed  molecular  variation was un- 
likely to  be any  different (LEWONTIN 1974). The two 
viewpoints could  not  have  been more  at  odds,  and a 
great controversy  ensued. To a  large  extent  the issue 
has been clouded by inadequate  data (LEWONTIN 
1974,  199 1). Observations  of  natural  populations are 
snapshots  of  particular places and times, and  the  re- 
sulting  inferences about  the long-term  fate  of molec- 
ular polymorphisms can be  challenged by neutralists 
and selectionists alike. By the same  token,  laboratory 
experiments  capable  of  detecting selection coefficients 
as small as are likely to  be  important in nature  are 
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currently  impractical  (HARTL and DYKHUIZEN 198 1 ; 
HARTL  1989),  although some  large effects have  been 
documented [see POWERS et a l .  (1 99 1) for a review]. 

In  the  1980s,  the increasing use of DNA sequencing 
in evolutionary genetics gave some hope  that  the 
impasse could be overcome.  Direct  examination of 
genes, rather  than  the  electrophoretic mobility of 
gene  products, yields  vast amounts of information 
consisting of hundreds  or thousands of nucleotides. 
The data are also of a  different  quality, since the DNA 
sequences are unambiguous and contain  both synon- 
ymous nucleotide  differences and differences that 
change  amino acids. To the  extent  that synonymous 
differences are subjected to weaker selective effects 
than  amino acid differences,  comparisons between the 
two types of polymorphisms can serve as a basis of 
inference.  Synonymous polymorphisms are more 
common than  amino acid polymorphisms (KREITMAN 
1983),  and also appear  to  be  more weakly affected by 
selection (SAWYER,  DYKHUIZEN and  HARTL  1987). 

With  data  from only one species, the level of syn- 
onymous and  replacement polymorphism must  be 
substantial in order  for statistical analysis to have 
enough power to  detect selection (SAWYER,  DYKHU- 
IZEN and HARTL 1987;  HARTL  and  SAWYER 1991). 
Most eukaryotic  genes are not sufficiently polymor- 
phic to allow this  approach. An alternative  approach, 
pioneered by HUDSON, KREITMAN and  AGUAD~ 
(1  987), is based on  comparing polymorphisms within 
species with fixed  differences  between species. This 
approach has been  applied to  the Drosophila fourth 



1162 S. A. Sawyer and D. L. Hart1 

chromosome  (BERRY, AJIOKA, and KREITMAN 199 1) 
as well as to  the  tip of the X chromosome  (BEGUN and 
AQUADRO  199 l) ,  both of  which are regions of reduced 
recombination. The level of polymorphism in these 
regions is also reduced,  and  the analysis suggests 
strongly  that the reduction is the result of a genetic 
hitchhiking associated with periodic selective fixa- 
tions. 

Comparison of molecular variation within and be- 
tween species is also the  crux of a statistical test 
proposed by MCDONALD and KREITMAN (1  99 la).  The 
test is for homogeneity of entries in a 2 x 2  contin- 
gency table based on  aligned DNA sequences. The 
rows in the contingency table are  the  numbers of 
replacement or synonymous nucleotide  differences, 
and the columns are  either  the  numbers of fixed 
differences between species or else of polymorphic 
sites within species. Here polymorphic sites are defined 
as sites that  are polymorphic within one  or  more of 
the species, and Fxed dijferences are defined as sites 
that  are monomorphic  (fixed) within each species but 
differ between species. The term silent refers to nu- 
cleotide differences in codons  that do not  alter  the 
amino  acid,  and replacement refers  to  nucleotide dif- 
ferences within codons  that do alter  the  amino acid. 
The  McDonald-Kreitman test compares  the  number 
of silent and replacement polymorphic sites with the 
number of silent and replacement fixed differences. 
When  30 aligned DNA sequences from  the alcohol 
dehydrogenase (Adh) locus of three species of Dro- 
sophila were compared (MCDONALD and KREITMAN 
1991a), there were too few polymorphic replacement 
sites ( P  = 0.007, two-sided Fisher exact test). MC- 
DONALD  and KREITMAN (1991a)  argues  that  the most 
likely reason for  the discrepancy is that some of the 
amino acid differences were fixed as a result of posi- 
tive selection acting  on  replacement  mutations. The 
possibility that  the fixed differences could have re- 
sulted  from  a combination of slightly deleterious al- 
leles (OHTA  1973), coupled with a dramatically chang- 
ing population size, was also considered by  MC- 
DONALD  and KREITMAN (199  la)  but considered 
implausible because this would seem to require ex- 
traordinarily  fine  tuning  among  a  large  number of 
independent  parameters. 

Although the McDonald-Kreitman test has consid- 
erable intuitive appeal, little quantitative  theory exists 
for  the comparison of intraspecific polymorphism with 
interspecific divergence in the  presence of selection. 
In this paper we present such a  theory.  Among other 
things, it addresses the question of whether the im- 
balance in the Adh contingency table could have re- 
sulted from the random fixation of  mildly deleterious 
alleles over an  extremely  long  time in a  population of 
constant size, rather than fixations of advantageous 
alleles in a shorter period of time. The theory also 

provides an  estimate of the average  amount of  selec- 
tion required  to  produce  the discrepancy observed, as 
well as an  estimate of the  rate  at which favorable 
mutations  occur (or, equivalently, an estimate of the 
average  number of amino acids in the protein  that are 
susceptible to a  favorable  mutation at any one time). 
Several objections to  the details of the  implementation 
of the McDonald-Kreitman test have been raised 
(GRAUR  and LI 1991; WHITTAM and NEI 199 l),  and 
these are also addressed briefly. 

RATIONALE  AND  RESULTS OF THE ANALYSIS 

The first step in our method is to analyze the sample 
configurations of the nucleotides occurring at synon- 
ymous sites in the  aligned DNA sequences under  the 
assumption that  the synonymous variation is selec- 
tively neutral.  This  information is used to estimate the 
mutation rate  at silent sites and  the divergence time 
between pairs of species. The divergence  time is crit- 
ical because, if the  divergence  time between species is 
sufficiently long,  then conceivably all  of the fixed 
amino acid differences between species could be due 
to the fixation of  mildly deleterious alleles, and  the 
significance of the McDonald-Kreitman contingency 
table might be  an  artifact of saturation at silent sites. 
Using the estimated values of the silent mutation  rate 
and  the divergence  time, the  numbers of synonymous 
polymorphic sites and fixed differences  predicted 
from  the  neutral  configuration  theory  are  compared 
with the observed numbers. These estimates fit the 
observed Adh data very closely for all three pairwise 
species comparisons, which suggests that  the configu- 
ration  distributions at synonymous sites are roughly 
consistent with an  equilibrium  neutral model. 

The second step is to develop equations  for  the 
expected  number of polymorphic sites and fixed dif- 
ferences between a pair of species  in terms of the 
magnitude and direction of selection, the  mutation 
rate  to new alleles having a given (constant) selective 
effect, and  the divergence time. From these  equations 
we estimate the  amount of selection needed  to explain 
the  observed deficiency or excess  in the  number  of 
replacement polymorphisms. We  also estimate the 
rate of new mutations  resulting in amino acid replace- 
ments (or, equivalently, the  number of amino acid 
sites in the protein  product at which favorable or 
mildly deleterious  substitutions are possible at any one 
time). While the configuration analysis takes into ac- 
count  the possibility  of multiple mutations at  the same 
site, the second step assumes that this does  not  occur; 
i.e., that  the genetic locus involved has not been satu- 
rated by mutations since the  divergence of  the two 
species. This assumption was checked in two different 
ways. First, the expected  number of silent polymor- 
phisms was calculated by both  methods and  found  to 
agree within 12%. Second, the expected  number of 
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synonymous sites with two or  more  neutral fixations 
since the species diverged was estimated  as less than 
two in  all  cases. There  are  no silent site polymorphisms 
with three  or  more nucleotides in the  data  considered, 
and only one silent site (between Drosophila  melano- 
gaster and Drosophila yakuba) is polymorphic in both 
species. 

Most  of our analysis depends  on  the assumption of 
linkage equilibrium or independence between sites. 
There is considerable linkage disequilibrium in Adh 
around  the Fast vs. Slow electrophoretic polymor- 
phism in D. melanogaster (but  not in Drosophila simu- 
lans and D. yakuba). Possible balancing or clinal  selec- 
tion  on this polymorphism may not only affect nucleo- 
tide  configurations in D.  melanogaster, but also may 
not be  appropriate  for  the model of genic selection 
that we apply below. Among the  three species for 
which MCDONALD and KREITMAN (1991a)  have Adh 
sequences, we are most confident in applying the 
analysis to the D.  simulans vs. D.  yakuba comparison. 
The  resulting analysis of the  joint nucleotide config- 
urations  at silent sites for D.  simulans and D.  yakuba 
leads to  the following estimates for  the scaled silent 
mutation rate p, (summed  over synonomous sites) and 
the species divergence  time t& 

p, = 2.05  and tdiv = 5.8 (1) 

both scaled in terms of the haploid effective popula- 
tion size N e .  That is, ps = u, X Ne, where us is the 
nucleotide  mutation rate  per  generation  summed over 
all synonomous sites within amino acid monomorphic 
codon positions in Adh other  than those  coding for 
leucine and  arginine (i.e., at  “regular” silent sites; see 
below). Analysis  of the  numbers of replacement poly- 
morphisms and fixed differences  then leads to the 
following minimal estimates for  the effective aggre- 
gate replacement  mutation rate p, and average selec- 
tion coefficient y : 

pr = 0.01 3ps and y = 9.95 (2) 

again scaled in terms of the haploid effective popula- 
tion size. The quantity pr is the  aggregate base muta- 
tion  rate causing advantageous or mildly deleterious 
amino acid changes. The estimate of p, in (2) includes 
a  correction  factor to account  for silent polymor- 
phisms that  are destined to be fixed but  are  not yet 
fixed. The quantity y is the estimated  average selec- 
tion coefficient among  these  amino acid changing 
~nutations, where  “average” here means that y is the 
selection coefficient required  to  produce  the  same 
numbers of replacement polymorphisms and fixed 
differences if all replacement  mutations  had the Same 
selective effect. The quantity is scaled in terms  of 
the effective population size; ie. ,  y = ON,, where g is 
the same selection coefficient per  generation. In this 
case,  the estimates of y and u are  the minimum 

amount of selection required. Since there  are no 
replacement polymorphisms between D .  simulans and 
D.  yakuba in the McDonald-Kreitman data, any larger 
value than y = 9.95 in (2), along with a  correspond- 
ingly smaller value of pr ,  would explain the  data  just 
as well. 

The estimated  aggregate  mutation  rate at silent sites 
of ps = 2.05 in (1) is based on  212  regular  amino acid 
monomorphic  codon positions (see below). This esti- 
mate  therefore corresponds to 2.05/212 = 0.0097 
silent nucleotide  changes  per synonomous site per I?, 
generations in the Adh sequence. Assuming a silent 
nucleotide  substitution rate of 0.0 15  per synonomous 
site per million years (Myr) at  the Adh locus, estimated 
from  data  on Hawaiian Drosophila (ROWAN  and  HUNT 
1991), N,  generations is 0.645 Myr. Therefore, tdiv = 
5.8 in (1) implies a  divergence  time of 3.74 Myr 
between D.  simulans and D.  yakuba. This value is  in 
the middle of a  range 1.6-6.1 Myr implied by single- 
copy nuclear DNA hybridization data (CACCONE, 
AMATO and POWELL 1988),  where  an  estimated  diver- 
gence  time between D. melanogaster and D.  simulans 
of 0.8-3 Myr (LEMEUNIER et al. 1986) is used as the 
standard of comparison. As a consistency check,  the 
same analysis was carried  out with the Adh data from 
D. simulans and D. melanogaster. This analysis yielded 
p, = 2.07 for 2 13 monomorphic codon positions and 
a value of tdjy = 1.24,  from which the  estimated 
divergence time is 0.80 Myr. This estimate is at  the 
low end of the  range suggested by LEMEUNIER et al. 
(1 986). 

Assuming 10 generations  per year for D.  simulans 
and D.  yakuba, and a value of 0.645 Myr for Ne 
generations,  the  estimated haploid effective popula- 
tion size of either species is I?, = 6.5 X 1 O6 (and hence 
3.25 X lo6 for  the diploid population size). This 
estimate is  in excellent  agreement with the value of 2 
X lo6 suggested for D.  simulans by BERRY, AJIOKA 
and KREITMAN (1991). The value y = 9.95 in (2) 
implies that  the  average selection coefficient for  ad- 
vantageous or mildly deleterious  amino acid replace- 
ments in Adh is u = r/Ne = 1.53 X 1O”j  per  generation. 
That is,  only a very  small average selection coefficient 
is required  to  account  for  the observed lack of replace- 
ment polymorphisms (or, equivalently, the excess of 
fixed replacements) in the comparison of D.  simulans 
with D. yakuba. 

Incidentally, the estimate of 1.5 X 1 O-’ mutations 
per silent site per  generation,  derived  from  ROWAN 
and  HUNT  (1  991)  and  the assumption of 10  genera- 
tions per year,  compares well with the  rule of thumb 
(DRAKE  1991)  that, in metazoans, the overall mutation 
rate is roughly one mutation per genome per gener- 
ation.  For  the Drosophila genome of 165 million  base 
pairs, this implies 6.1 X 1 O-’ mutations  per nucleotide 
pair  per  generation.  These estimates are quite close, 
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particularly since there might be a slightly smaller 
substitution  rate at silent sites within coding regions 
than  for  arbitrary nucleotides. 

The analysis  of the Adh data can also be interpreted 
in another way.  If the  rate of replacement  mutations 
is uniform across the coding  region of Adh, then  the 
overall replacement  mutation rate of p, = 0 . 0 1 3 ~ ~  
implies that an average of only about 5.7 codons in 
the molecule are susceptible to a  favorable  amino acid 
replacement at any one time, with all other replace- 
ments at that time being strongly deleterious. The 
estimate of 5.7 amino acid positions is based on  equal 
mutation  rates of each nucleotide. If the  mutation 
rates vary according to nucleotide,  the  estimated  num- 
ber of amino acids susceptible to favorable replace- 
ment  at any one  time is between 2 and 23 (see discus- 
sion below). 

The remainder of this paper focuses on  the  techni- 
cal details pertaining to  the estimates and conclusions 
summarized above. The main themes are, first,  the 
analysis of joint nucleotide  configurations at silent 
sites from a pair of species in order to  estimate  the 
mean mutation rate  at silent sites and  the species 
divergence time; and, second, the analysis  of the ex- 
pected probability density of polymorphic site fre- 
quencies and of fixed differences  at the population 
level  in order  to estimate the  amount of selection 
required if all favorable and weakly deleterious  re- 
placement mutations have the same selective effect. 
The  population estimates are discussed in the  next 
section, with  most  of the  detail deferred  to later in 
the paper. We then discuss the numerical estimation 
of y and p,, carry out  the analysis  of joint nucleotide 
configurations, and finally give some supplementary 
comments  on  certain criticisms of the McDonald- 
Kreitman  test. 

MUTATIONAL  FLUX  AND  FIXED DIFFERENCES 

Suppose that new mutations arise with probability 
vN > 0 per  generation in a  population of haploid size 
N .  Let X?' be the frequency of the descendants of the 
ith new mutant allele in the population,  where k = 0, 
1 ,  2 ,  . . . is the  number of generations  that have 
elapsed since the original mutation  occurred. We  as- 
sume  that  the processes ( X 6  : i = 0, 1 ,  . . .\ are 
noninteracting, as would be the case if the mutations 
occurred  at distinct sites that  remain in linkage equi- 
librium, or if the mutations were sufficiently well 
spaced in time. The mutations could be selectively 
advantageous, disadvantageous, or neutral,  but in any 
event we assume that the site frequency processes 
{ X %  1 are stochastically identical Markov chains. (That 
is, they have the same transition matrices.) Note  that 
Xro  = 1/N for each i, since each new process begins 
with a single mutation. The states 0 and 1 are absorb- 

ing  states  that  represent, respectively, the loss of the 
new allele and its fixation. 

Define Tila = min(K : X $  = a )  as the  number of 
generations until the  ith process attains  the  frequency 
a for the first time,  and  set TTa = 00 if the allele is 
fixed or lost before this occurs. For the sake of brevity, 
let X: = X %  and TC = Tila refer  to a typical process 
X $ .  Then P(TY < T;) is the probability that a new 
mutant allele is fixed in the population before it is 
lost. 

We apply a diffusion approximation  for  the  discrete 
processes { X &  1. The diffusion process is denoted { X l  1, 
where  time is scaled  in units of N generations (i.e., t 
= k /N for  large N ) ,  and  the infinitesimal generator of 
( X , )  is assumed to be of the form 

1 d' d L, = - b ( x )  - + c(x) - 
2 dx' dx  

where b ( x )  and C(X) are continuous functions on [0, 
11. The operator L, in ( 3 )  can be written in the  form 

d d  L,="-- 
dm(x) d s ( x )  

by introducing  an  integrating  factor. The functions 
dm(x) and s(x) are called the speed measure and  the 
scalefunction  of L,, respectively (EWENS 1979).  Later 
in the  paper we derive a diffusion approximation  for 
the  expected  number of processes (XfiR1 at equilibrium 
whose allele frequencies are in the  range ( p ,  p + d p ) ,  
and we also calculate the  equilibrium  rate  at which 
mutant alleles become fixed. 

Now, assume that  the processes ( X r h )  correspond  to 
two-allele haploid Wright-Fisher models (without mu- 
tation) in which organisms carrying  a new mutant 
allele have fitness WN = 1 + UN relative to those 
carrying  the  non-mutant allele. If N U N  + y as N -+ CQ, 
then  the  conditions  for  a diffusion approximation hold 
with 

b ( x )  = b x ( 1  - x) and C(X) = yx( 1 - x) ( 5 )  

(EWENS 1979).  The scale and speed measure (4) are 
then 

where s(x) is normalized so that s'(0) = 1. 
In  general,  the  hitting times T, = min(t : X ,  = a )  for 

a diffusion process X ,  and  the scale function s(x) in (4) 
are related by the identity 

If {x&) are  the two-allele haploid Wright-Fisher 
models of (5-6) ,  then as N -+ 03 
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TABLE 1 

- S(1IN) - 40) - 27 
s(1) - s(0) N 1 - e-’” 

(MORAN 1959; recall that X ;  = l / N ) .  Note that (7) 
does  not follow from  standard diffusion approxima- 
tion  theory, which implies only that  the difference 
between the two probabilities in ( 7 )  converges to zero. 
In this case, this is trivial because the two terms in (7) 
converge to zero individually. Whether (7) holds for 
general diploid or dioecious two-allele selection-and- 
drift models, even those with the same diffusion ap- 
proximation  (5), is apparently still an  open  problem 
(MORAN  1959; T. NAGYLAKI, personal communica- 
tion). 

Next, assume 

V N - ~  as N + m  (8) 

so that EL is the limiting mutation rate  per  generation 
at which  new mutant alleles arise. For  arbitrary proc- 
esses {X?’) satisfying ( 7 )  and s’(0) = 1, we prove  later 
in this paper  that  the limiting density of polymorphic 
mutant alleles with population  frequencies in the 
range (x, x + d x )  is 

for s(x) and dm(x)  in (4). This means that  the  expected 
number of mutant alleles with population  frequency 
p in the  range 0 < P I  < p < p z  < 1 is the integral of 
(9) over the interval ( P I ,  p 2 ) .  (More precisely, the 
limiting distribution of the population  frequencies of 
surviving non-fixed  mutant alleles is a Poisson random 
field with (9) as its mean density.) We also show that 
the limiting flux of the processes { X 6 1  into  the  state 
I ( i e . ,  into fixation) is given by 

in the time scale of the diffusion. That is, (1 0) is the 
limiting number of mutant alleles per N generations 
that become fixed. Note  that V N  and p in (8)  are 
expressed as rates  per  generation, whereas (10) is the 
rate  per N generations. The difference in time scale 
reflects the fact that most of the new mutant allele 
processes become lost  in the first few generations. 

Frequencies of Wright-Fisher alleles: For the two- 
allele Wright-Fisher model (5-6) with y # 0, the 
equilibrium flux of fixations (10)  and  the limiting 
density (9) of non-fixed mutant allele frequencies  take 
the respective forms 

where y > 0 indicates that  the  mutant alleles are 

Population  fixational flux and polymorphic densities 

Equilibrium flux  Limiting  density of frequen- 
Population of fixations  cies of mutant  nucleotides 

Neutral ; d x  

favorable and y < 0 that they are unfavorable.  In  the 
neutral case (y = 0), the limiting fixational flux and 
polymorphic frequency density in (1 1) are 

d x  
p and 2 p  - (12) 

respectively. The expressions in (1 1) and (12) are 
displayed in Table 1. Finally, from  (1 2), the  expected 
number of neutral alleles  with freqeuencies p in the 
range p l  < p < p-4 is given by 

X 

2P log( PZlPl).  
This expression differs from the corresponding ex- 
pected value in the  infinite alleles model (EWENS  1972, 
1979).  However,  the Poisson random field model of 
the preceding section is not  the same as the infinite 
alleles model. The alleles in (1 2) do not  compete with 
one  another,  and  there  are no  constraints on  the sum 
of the frequencies {x$! .  The processes { Xfik ) are also 
unaffected by subsequent  mutations. This model also 
differs  from  the infinite sites model of WATTERSON 
(1975), since the processes {X? , )  are assumed to be 
independent (ie., in linkage equilibrium). A model of 
unlinked or independent sites might be preferable  on 
general  grounds to  the tightly linked sites of the 
infinite sites model,  not only because of chromosomal 
recombination,  but also because of the likely frequent 
occurrence of short-segment  gene conversion events 
in both  prokaryotes and eukaryotes  (SAWYER  1989; 
SMITH, DOWSON and SPRATT 199  1 ; HILLIKER,  CLARK 
and CHOVNICK 199 1). 

For  more  general processes {xrk 1, where the con- 
nection condition (7) may not  hold, the relations  (9) 
and (1 0 )  are still  valid provided  that vN in (8) is divided 
by the  ratio of the two probabilities in (7). SEWALL 
WRIGHT  (1938)  derived a distribution similar to  (9) as 
an  approximation to a quasi-stable distribution  for 
one allele under selection and irreversible mutation. 
WRIGHT’S (1 938)  problem involved a  transient distri- 
bution for a single allele, and does  not  carry over to 
the equilibrium  distribution (3) for  a  random field of 
alleles. 

Between-species  comparisons: In order  to analyze 
differences between species, we assume that a single 
population  had become separated  into two disjoint 
and reproductively isolated subpopulations or species 
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at a time tdjv in the past, measured in terms of the 
diffusion time scale ( i e . ,  the split occurred tdjv X N 
generations  before  the  present). Both subpopulations 
are assumed to have haploid effective size N .  If mu- 
tations  that  occur  after the population split can be 
distinguished, and if the  number of fixations that have 
occurred in the two species can be  approximated by 
2t,li, times the  equilibrium flux of fixations, then  the 
number of mutations  that  correspond to fixed differ- 
ences between the two species is 2tdiv times the first 
expressions in ( 1   1 )  and (1 2). An important  quantity is 
the ratio of the expected  number of polymorphic 
alleles in the  frequency  range (x, x + dx)  to  the 
expected  number of fixed differences, which equals 

(s( 1) - s (x) )dm(x)  - ( 1  - e-2y(1--X))dx - 
2 tdiv tdiv2y(l - x)x * 

In  the  next section we will use this expression as a 
basis for estimating the  average value of y for replace- 
ment differences between species. 

SAMPLING FORMULAS AND PARAMETER 
ESTIMATES 

Suppose that two species diverged  generations 
ago,  and that  both have the same haploid effective 
population size N e .  Assume that  the mutation rate  for 
silent sites  in the  coding  region of a  particular  gene is 
p, per  gene  per  generation, and  that  the  mutation  rate 
for nonlethal replacement  mutations is p, per  gene 
per  generation. Assume further  that (i) all  new re- 
placement mutations bestow equal fitness w = 1 + y/ 
N e ,  (ii) each new mutation since the divergence of the 
species occurred  at  a  different site (in particular, the 
gene has not been saturated with mutations), and (iii) 
different sites remain in linkage equilibrium. Under 
these assumptions, the fixational flux and  the ex- 
pected frequency densities of mutant  nucleotides at 
silent and  replacement sites in a single random-mating 
population are those given  in Table 1 .  

Assume further that  the  number of polymorphic 
sites at  the  present  time  that are destined to become 
fixed, and  the  number of site polymorphisms surviv- 
ing from the time of speciation, can be neglected in 
comparison with the  number of fixed differences be- 
tween the species and  the  number of sites that  are 
presently polymorphic. Then  the expected  numbers 
o f  fixed differences between the two species at  the 
present time are 

2pstdlv and 2Prtdiv 2-Y 
1 - (13) 

f o r  silent and replacement sites, respectively. Note 
that the second expression in (13) is much more 
sensitive to y if y < 0 than if y > 0. For  example,  the 
f k t o r  multiplying 2p,tdiv is 4.1 X lo-' if y = -10, but 
only  20 if y = 10.  Thus, if the two expressions in ( 1  3) 

are of comparable size, then y cannot be strongly 
negative. Note that P, S 1 0pS even if only 10% of the 
sites in a  coding  region are silent and all amino acid 
replacements are advantageous or mildly deleterious. 
If the two expressions in (13) are equal and p T / p s  < 
10, then 3 - 1.8 1. If is large and positive and  the 
two expressions are equal,  then p , / p S  = 1/(2y). 

Similarly, the expected  mutant  frequency densities 
at silent and replacement polymorphic sites are 

dus(x) = 2ps - and 
dx 
X 

respectively, in either  population. 
Now, suppose that we have aligned DNA sequences 

from m chromosomes  from the first species and n 
chromosomes  from the second species. The next  step 
is to  convert  the  population level estimates ( 1  3-1 4) to 
sample estimates. Suppose that  a  mutant nucleotide 
has population frequency x at a site. Then a  random 
sample of m chromosomes  from  that population will 
be monomorphic  for  the  mutant nucleotide with prob- 
ability qm(x) = xm, and will be polymorphic at  that site 
with probability p m ( x )  = 1 - xm - ( 1  - x)m. Thus  the 
expected  number of silent polymorphic sites in a  ran- 
dom sample of size m is 

m-l  ~ 

= 2Ps c 1 

k= 1 

for dv,(x)  in (14). In fact, assuming linkage equilibrium 
between sites, the  number of silent polymorphic sites 
is a Poisson random variable whose mean (and  hence 
also variance) is given by ( 1  5 )  (see below). The expres- 
sion ( 1  5) is the same as WATTERSON'S (1  975)  formula 
for  the  number of polymorphic sites in a sample of 
size m from the infinite sites model. However,  the 
variance in the infinite sites model is larger  than  the 
variance of the  number of silent polymorphic sites in 
our case. 

The number of silent polymorphic sites  in both 
samples together is then 

2Ps(L(m) + U n ) )  (16) 

where 
m-1 , 

The estimate (16) for  the  number of silent polymor- 
phic sites agrees with the observed numbers  to within 
7% of each of the  three pairwise species comparisons 
using the Adh data of MCDONALD and KREITMAN 
( 1  99 la), assuming the values of P, estimated  from the 
joint configurations in the next section. 
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Similarly, a silent site will be  monomorphic in a 
sample of  size m if it is fixed in the population, but 
may  also be  monomorphic in a sample by change if it 
is polymorphic in the population. Under  the assump- 
tions of (1 3), the  number of silent sites in a sample of 
size m that are monomorphic for a  mutant  nucleotide 
is  Poisson  with mean 

and  the  number of silent fixed differences between 
the two samples is 

However, the estimate  (1 7) is about  45%  too large  for 
D .  yakuba vs. D. simulans and D. yakuba vs. D. mela- 
nogaster, and it is more  than  5 times too large for D. 
melanogaster vs. D. simulans (see Table 9). The most 
likely reason for  these discrepancies is that  the silent 
polymorphic sites in the present  populations that  are 
destined to become fixed are counted in 2Pstdiv in (1 7) 
even  though they are not yet fixed. The discrepancy 
is not  large  except  for the comparison D. melanogaster 
vs. D. simulans, and it only affects the estimate of pr 
in (1-2). A  correction  for this overestimation is in- 
cluded in the calculation of pr in (2). 

By a similar argument,  the  number of replacement 
sites that  are monomorphic  for  a  mutant  nucleotide 
is Poisson  with mean 

27 
Pr e-2r tdiv + X " ' d V r ( X )  1 -  s' 

for dv, (x)  in (14). The number of replacement fixed 
differences between the two samples is then Poisson 
with mean 

9 CII 

& I  
2Pr 1 - e-2r (tdiv + C ( m )  + G ( n ) )  (18) 

where 
1 

G ( m )  = xm-l 1 2y(l - x )  

1 - , -2r ( l -x)  
dx.  

Note G ( m )  d l / m  for > 0. By the same reasoning, 
the expected number of polymorphic  replacement 
sites in a sample is 

2Pr(H(m) + H ( n ) )  (1 9) 
where 

1 - - (1 - x)" 1 - e-2Y(l--x)  
dx .  1 - e-2Y 

The expression H ( m )  varies by only a  factor of two 
for y > 0, since the inequality A c (1 - e"yA )/(I - e - 7  
d 1  for 0 < A < 1 implies 

L ( m )  S H ( m )  < 2L(m) ,  y > 0 

for L ( m )  = I l k .  However, H ( m )  will be smaller 
if y is large and negative. 

The ratio of the  number of replacement polymor- 
phic sites to  the  number of replacement fixed differ- 
ences is given by the  ratio of (1 9) to (1 8), which is 

where 

after  a  change of variables in x .  The four basic sam- 
pling formulas are summarized in Table 2. 

Note that F(m)  - L ( m ) / y  and G ( m )  -+ 0 as y -+ 03 

for L ( m )  = 2rL-l l / k  in (16). Thus  the expression in 
(20) is asymptotic to 

Estimating  parameters: We estimate y by setting the 
expression (20) 

F(m)  + F ( n )  
tdiv + G ( m )  + G ( n )  

- - Numb.  observed  repl. polymorphisms 
Numb.  observed  repl. fixed differences (22) 

for  the  ratio of the  numbers of the observed replace- 
ment polymorphic sites and replacement fixed differ- 
ences. (Note  that p, cancels in this particular  ratio. If 
y > 0 is sufficiently large, the approximation (21) can 
be used instead.) If the  number of replacement poly- 
morphic sites is zero (as it is for  the D. simulans vs. D. 
yakuba comparison),  then we use ?h as  a conservative 
value to replace the zero. For example, if there  are 
no replacement  polymorphic sites and 6 fixed replace- 
ment  differences (as is the case for D. simulans vs. D. 
yakuba), we set the expression in (20) equal to %/6 = 
'112 and solve for y. Using the estimate tdiv = 5.8 
derived in the next  section, the solution is y = 9.95. 
(The approximation (2 1) gives y = 1  1 .O in this case.) 
Since there  are  no replacement polymorphic sites for 
D. simulans vs. D. yakuba, this value is a lower bound 
for  the  average value of y. Any larger value would 
also be consistent with the  data. 

The replacement  mutation rate pr can be estimated 
by setting  the  ratio of the expected  numbers of re- 
placement and silent fixed differences in (1 8) and (1 7) 
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TABLE 2 

Sampling  formulas 

Population  Fixed differences Polymorphic sites 

Neutral 

Selected 

Expected numbers for samples of m genes from one species and n genes from a  second species. 

- Numb.  observed  repl. fixed differences 
Numb. observed silent fixed differences 

for  the  ratio of the  numbers of the observed replace- 
ment  and silent fixed differences.  Setting the  theoret- 
ical ratio (23) equal to  the observed  ratio 6/17 for D. 
simulans and D. yakuba yields p, = 0.037 = 0.018ps. 
(Recall that only regular silent sites are counted in the 
estimation of ps; see the  next section.) However, as 
noted  earlier,  both 2potdiv and (1 7) overestimate the 
observed  number of silent fixed differences, as well 
as  the estimated number of silent fixed differences 
using the probability distribution of joint configura- 
tions (see the  next section). In  both cases, the estimate 
(17) is too  large by a  factor of about 1.4 (see Table 
9). Since replacement polymorphisms with favorable 
mutant nucleotides are likely to become fixed  faster 
than silent polymorphisms, we apply a  correction  of 
1.4 to ps but  not to pr in (23). This correction leads to 
the estimate p r  = 0.0265 = 0.0 13p, for D. simulans vs. 
D .  yakuba. The interpretation of p r  in terms of an 
average of 5.7 amino acids susceptible to favorable 
replacement is discussed at  the  end of the  next section. 

Under  our assumptions, the  numbers of silent and 
replacement fixed differences and polymorphic sites 
are independent Poisson random variables (see be- 
low). Maximum likelihood estimators  for p r  and y 
(along with associated confidence intervals) can  be 
found by setting  the expressions (1 8 )  and (1  9) (respec- 
tively) equal to  the observed  numbers of replacement 
fixed  differences and replacement polymorphic sites. 
The  maximum likelihood estimator  for y is the same 
as the  estimator (22) for y. However, we prefer  to 

- (23) 

TABLE 3 

Nucleotide  frequencies  at 4-fold degenerate  sites  in  the Adh 
region 

Species Sequences Sites T C A G 

D. simulans 6 109 0.18 0.62 0.06 0.14 
D. melanoguster 12 108 0.17 0.60 0.07 0.16 
D. yakuba 12 110 0.14 0.61 0.07 0.18 

~~ 

Data from MCDONALD and KREITMAN (1 99 la). 

estimate p, in terms of ps and  the  more  numerous 
silent site data  rather  than use the maximum likeli- 
hood  estimator  for pr in this case. 

DIVERGENCE TIMES  AND  MUTATION  RATES 

We treat a K-fold degenerate silent site as a  neutral 
Wright-Fisher model with K types, no selection, and 
mutation rate uq per generation  from type i to type j .  
If ug = uj depends only on j, and if ug = N,u,~ = v, = 
Neuj is the scaled mutation rate where Ne is the effec- 
tive haploid population size, then WRIGHT'S (1949) 
formula states that  the equilibrium  population  fre- 
quencies p , ,  . . . , p ,  of the  K types are random with 
probability density 

for  large Ne. In (24), aj = 2vj = 2Neuj, a = c:l a;, 
and r(a)  is the gamma function.  It follows from (24) 
that ,?(pi) = ai/a for all i. If a1 = ap = . . . = aK, then 
a = K a i  and E ( p ; )  = 1/K for 1 S i S K .  

However,  nucleotide  frequencies at third-position 
sites in fourfold  degenerate  codons  tend  to be far 
from  uniform (see Table 3). Assuming that  the sites 
are independent,  departures  from  an even distribu- 
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tion are highly significant in all cases  in Table 3 ( P  < 
lo-", 3  d.f.),  although the observed  nucleotide  fre- 
quencies do not  differ significantly among  the  three 
species ( P  = 0.10, 6 d.f,). The mutation model (24) 
with variable ai provides  a significantly better fit to 
the distribution of nucleotides at silent sites in the Adh 
data than  does  (24) with ai = a1 ( P  < 3  d.f., in 
a l l  three species, assuming independent sites). Al- 
though  a  mutation model with rates that  are a  function 
of  the final nucleotide, rather  than  the original, is 
somewhat artificial, it is reasonable in the analysis of 
these  data since only the existing nucleotide sequences 
are known. Furthermore, since the initial and final 
nucleotides may very well be  correlated (e.g., because 
of a  transition or transversion bias), the model with 
variable a, is probably reasonably robust.  In any event, 
it provides a significantly better fit to  the Adh data. 

Assuming Wright's model (24) at K-fold degenerate 
silent sites, the equilibrium  distribution of population 
nucleotide  frequencies is a K-type Dirichlet distribu- 
tion  (24) with parameters ai = 2N,u,, where Ne is the 
haploid effective population size.  If a sample of size m 
is randomly chosen from this model, the probability 
that  the sample will contain m, nucleotides of type i 
for 1 < i < K is then 

m! nf=, af"J 
, = + . . . + a K  (25) 

ml!mp! . . . mK! d m )  

where a(") = a(a + 1) . . . (a  + m - 1). Examples of 
(25)  for some particular  configurations are given in 
Table 4. 

There  are two types of twofold degenerate sites. At 
sites of the first type, the nucleotide can be either of 
the two pyrimidines T o r  C ,  for which (25) holds with 
K = 2.  At sites of the second  type, the nucleotide can 
be either of the two purines A or G ,  and  (25) holds 
with K = 2 and a I ,  a2 replaced by a s ,  a4. The only 3- 
fold  degenerate  amino  acid, isoleucine, has third- 
position synonomous nucleotides T, C ,  and A .  Since 
the codon ATA is almost entirely  absent in the Adh 
sequences, we treat 3-fold degenerate sites as 2-fold 
degenerate in the analysis of silent site distributions, 
and ignore silent codon positions containing an  ATA. 
Synonymous sites within leucine and  arginine codons 
are of variable degeneracy, since silent mutations in 
the first (or  third) codon position can change  the 
degeneracy in the  third (or first) position. Codons  for 
serine fall into two nonoverlapping classes, one 4-fold 
degenerate  and  one 2-fold degenerate; we treat  these 
two classes as separate  amino acids. We define a reg- 
ular silent site as either any 2-fold or 4-fold degenerate 
third-position site in an  amino acid monomorphic 
codon position that  does  not  code  for leucine or 
arginine, or else as  a  third-position site in an  amino 
acid  monomorphic isoleucine codon position that does 
not contain  an ATA codon  (SAWYER,  DYKHUIZEN, 

and HARTL 1987).  Regular isoleucine silent sites are 
considered 2-fold degenerate. The analysis  of nucleo- 
tide variation at silent sites is restricted to regular 
silent sites. 

The scaled mutation rate  to nucleotides of type j is 
vj = aj/2. Since E ( p , )  = a,/a by (24),  the overall mean 
mutation rate  at 4-fold degenerate silent sites is 

4 

p4 = (Y,((Y - (Y,)/~(Y, (Y = ( Y I  + . . . + ( ~ q  (26) 
,= 1 

with the  rates 

PTC = a ~ a z / ( a ~  + az) and 

PAC = a s a 4 / ( a 3  + a 4 )  (27) 

at 2-fold degenerate sites. The aggregate silent mu- 
tation rate  per individual at regular 2-fold and 4-fold 
degenerate sites is then 

P ,  = NZ,TCPTC + NZ,AGPAC + N 4 ~ 4  (28) 

where N2,Tc and N ~ , A G  are  the numbers of regular 2- 
fold degenerate silent sites of each type (TC or AG) ,  
N4  is the  number of regular 4-fold degenerate silent 
sites, and 3-fold degenerate sites are counted in NZ,TC 
unless the codon position contains an  ATA. 

Table 5 gives the within-species maximum likeli- 
hood estimates for a l ,  . . . , a4 based on  the configu- 
ration probabilities (25)  at  regular silent sites  with  all 
four  ai's varied independently in the maximization. 
The last two columns in Table 5 give the resulting 
estimates for p4 in (26)  and ps in (27-28). Inferred 
95% confidence intervals are generally on the  order 
of plus or minus half the size of the  estimated MLEs. 
Table 6 gives one-dimensional maximum likelihood 
estimates for  the single-a model as a1. While the 
values for p 4  and ps  in Table 6 are essentially the same 
as in the  four-a  model,  the model with variable ai 
provide  a significantly better fit to  the  data in  all three 
species. 

An  estimate of divergence  time: A  time-dependent 
version of Wright's  formula  (24) was derived by GRIF- 
FITHS (1979). Assume that two equilibrium  Wright- 
Fisher K-type populations diverged tdiv X Ne genera- 
tions ago, where Ne is the haploid effective population 
size. The ancestral  population and  both offshoot pop- 
ulations are assumed to have the same haploid effec- 
tive population size and  the same mutation  structure 
uq = u,. Given present  nucleotide  frequencies pl ,  . . . , 
PK in one of the  populations,  then  the  present  fre- 
quencies 41, . . . , qK in the  other population are  ran- 
dom with probability density 
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TABLE 4 

Sample  configurations 

Configuratiorl Probability from Equation 25 

TTCAAG 6! a,(a1 + I)ana3(aa + I)a, 
2!1!2!1! .(a + l ) (a  + 2)(a + 3)(a + 4)(a + 5) 

TCC<:CC 
cccccc 

6! a:i(aa + I)(.> + 2)a4(a4 + ])(a4 + 2) 
0!0!3!3! a(a + 1)(a + 2)(a + 3)(a + 4)(a + 5 )  

6! aq. . .(a2 + 4)a3 
0!5!1!0! a(a + 1)(a + 2)(a + 3)(a + 4)(a + 5) 

12! 0 1 ) .  . . ( a i l  + 4)a2(012 + l)as(aa + 1)(aa + 2)a4(a4 + 1 )  
5!2!3!2! .(a + I)(a + 2). . .(a + 11)  

12! 
1!11!0!0! 

a,a2(a:, + 1). . .(a2 + 10) 
a(a + I)(a + 2). . .(a + 11) 

TABLE 5 

MLEs from Wright's formula Equation 25 

I). simulans 0,0101 0.00326 0.0021 0.0096  0.0156 2.33 
I ) .  melanogaster 0.0082 0.00259  0.0020  0.0083  0.0130 1.92 
I ) .  yakuba 0.0063 0.00281 0.0025 0.0100 0.0135 1.93 

V;~lurs are estintated from regular silent sites (see text). 

TABLE 6 

MLEs assuming ai = a, 

Species  Normal  theory 95% CI for al 8 4  P, 

D. simulans (0.0104 & 0.0065) = (0.0039, 0.0169) 0.0155 2.26 
D. melano- (0.0087 & 0.0052) = (0.0035, 0.0139) 0.0130 1.87 

D. yakuba (0.0085 ? 0.0051) = (0.0041, 0.0136)  0.0127 1.86 
gaster 

where a, = 2Neu, and a = al  + . . . + a K  (GRIFFITHS 
1979). The coefficients d b ( 2 t )  in (29) satisfy 

db( t )  = 
- (2R + a - l)(-l)*+(a! + b ) ( k - l )  

e -*A' (3 Oa) 
k=b k! 

if 6 2 1 and 

(2k + a - l)(-l)k-'a(k-')  
do(t) = 1 - e-',' (30b) 

h= I R! 

where d m )  = a(a + 1 )  . . . (a + m - 1 )  as before and 
~k = k ( ~  + a - 1)/2. Since & ( t )  = for  large 
h ,  the series (29) converges rapidly in b unless t is 
small. 

Equation 29 has a simple intuitive explanation (TA- 
V A R ~  1984). In the limit as N + W and Nu, 4 a,/2, 
a 1 1  individuals in an equilibrium  Wright-Fisher  popu- 
lation are  the  descendants of 6 < 03 "founding" ances- 
tors  that lived t x Ne generations  earlier. The expres- 
sion & ( t )  in (30a,b) is the probability distribution of 6 
for t in the diffusion time scale, under  the assumption 
that mutations break the line of descent (TAVAR~ 

1984). That is, & ( t )  is the probability that all individ- 
uals in the  present  population  either have descended 
without intervening  mutation  from  one of 6 founding 
individuals who existed t diffusion time units ago, or 
else are descended  from  a  mutant  ancestor  that arose 
within the last t time units. If  the  nucleotide  frequen- 
cies were pl ,  . . . , p K  in the ancestral population,  the 
probability that bi of the b founding  ancestral individ- 
uals were of type i for 1 < i S K is (6!/61! . . . b K ! ) l I  p : .  
The unmutated  descendants of these b individuals will 
have the same states at  the present time. Thus the 
nucleotide  frequencies 41, . . . , q K  at  the present time 
have a Dirichlet distribution (as in Wright's formula 
(24)) conditioned  on  a sample of size b having bi 
individuals of type i for 1 S i S K. However, a K-type 
Dirichlet distribution with parameters a,, conditioned 
that  a sample of  size 6 had b; individuals of type i, is 
Dirichlet with parameters 6, + a;. Finally, by time 
reversibility, the  joint distribution of two present day 
populations,  connected  through  an ancestral popula- 
tion t time units ago, is the same as the joint distribu- 
tion of one population and  an ancestral or descendant 
population 2t time units apart.  This completes the 
proof of Griffith's formula (29). 

Suppose that  a sample of size m is taken from  one 
species, and of size n from another, closely related, 
species. It follows from (29) that  the  joint probability 
that  the first sample has mi bases  of type i (1  S i S K ) ,  
and  that  the second sample has n, bases  of typej(1 S 
j G K ) ,  is 

m 

c,, d 4 2 t )  A x  
br 

b=O b,! . . . bK! 

where Cmn = m!/(ml! . . . mK!) X n!/(nl! . . . nK!) and d m )  

= a(a + 1 )  . . . (a  + m - 1 )  as before. 
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TABLE 7 

Drosophila  pairwise  comparisons 

1171 

Model with a, = at 

Species Ps td," 95% CI for td,% t,,., PA t d S Y  t,,,W 

D. simulans vs. D. yakuba 2.05  5.81 (3.28, 8.33) 6.72  1.98 5.55 6.46 
D. melanogaster vs. D. yakuba 1.85 7.08 (4.06, 10.1 1) 8.18 1 .so 6.54 7.85 
D. melanogaster vs. D. simulans 2.07 1.24 (0.48, 1.99) 2.26 2.01 1.23  2.26 

Given an aligned sample of DNA sequences from 
two species, we estimate the divergence  time between 
the two species as follows. First, all regular silent sites 
(as defined  earlier) within the two species are pooled 
to find maximum likelihood estimates of a1, . . . , a4 
using Wright's  formula  (25)  for the configuration 
probabilities. Using the estimates values for a,, a max- 
imum likelihood estimate of td iv  is then  found using 
the likelihoods (31)  at  regular silent sites in the two 
species. Since (31)  depends  on t only through db(2t), 
arrays (a, + bi)@*) etc. can be  computed in advance 
once  the ai are known,  independently of t .   The most 
time-consuming part of the maximization is the com- 
putation of the coefficients multiplying db(2t) in (31) 
for K = 4 and large b. 

Estimates of td iv  using this method  and  the  data of 
MCDONALD and KREITMAN ( 1  99  la)  are given in Table 
7.  Note  that our method gives a  direct  estimate of 
species divergence times, rather  than of gene diver- 
gence times ( i e . ,  the time since the common  ancestor 
of a set of genes, which  may be considerably older 
than  the times since the species diverged).  In  practice, 
estimates of the average pairwise gene  divergence 
times tgene (Table 7) were computed as a  starting  point 
for  the maximization of the likelihood for td iv .  These 
estimates of tgene tended  to  be  larger  than td iv ,  partic- 
ularly when td iv  was small. Table 7 also contains 95% 
confidence intervals for td iv  based on the one-dimen- 
sional likelihood curvature  at td iv .  However,  these 
confidence intervals may overstate the accuracy of the 
estimates since the ai were held constant. The last 
three columns in Table 7 give estimates for td iv  based 
on the single-a model ai = a2. These were quite similar 
to the estimates in the  preceding  four columns based 
on  the four-cu model. 

WATTERSON (1985; see also PADMADISASTRA 1988) 
developed  a maximum likelihood method  for estimat- 
ing  the  divergence  time between two populations 
based on the  infinite alleles model at many unlinked 
loci. I f  mutation is sufficiently rare so that  recurrent 
mutation at polymorphic sites can be  neglected,  then 
this  method  should give estimates similar to  ours,  but 
i t  does not allow for  the possibility  of nucleotide- 
dependent mutation  rates. WATTERSON (1985) also 
discusses  five other methods of estimating species 

TABLE 8 

Bootstrap bias-corrected estimates 

Species td,, 95% CI 

D. simulans vs. D. yakuba 5.89  (3.50,  8.90) 
D. melanogaster vs. D. yakuba 7.20 (4.56, 10.52) 
D. melanogaster vs. D. simulans 1.26 (0.81, 1.92) 

divergence times and compares  them by computer 
simulation. 

We  also calculated bootstrap bias-corrected esti- 
mates and bias-corrected 95% confidence intervals 
(EFRON  1982)  for td iv  in the  four-a model (Table 8). 
These were based on  1000  nonparametric  bootstrap 
simulations for each species pair with ai fixed. The 
bias-corrected estimates are  quite similar to  the MLEs 
in Table 7, but  the  bootstrap  confidence intervals, 
particularly the lower limits, are shifted upwards. 

Comparisons with data: We  now compare  the ob- 
served  numbers of silent polymorphic sites and fixed 
differences with  two sets of theoretical estimates of 
these  numbers  (Table  9). The first set of theoretical 
estimates is as follows. Since whether or not  a site is 
polymorphic or a fixed difference  depends  on its joint 
configuration in the two samples, the probability that 
a silent site is polymorphic or a fixed difference can 
be  computed  from  the joint configuration probabili- 
ties (31)  once a, and td iv  are known. Estimates of the 
expected  numbers of silent polymorphic sites and 
fixed differences based on the  joint configuration 
probabilities (3 l ) ,  maximum likelihood estimates of ai 
and tdiv (Table 7), and  the  numbers N2,rC, N 2 , ~ ~ ,  and 
N4 of regular silent sites of various degeneracies, are 
given in Table  9.  These estimates fit the observed 
data very  closely,  which suggests that  the  neutral  joint 
configuration model (31) fits the data at synonymous 
sites. Note  that  a consistently expanding population 
or deleterious selection would tend  to  produce fewer 
polymorphisms than  predicted by neutrality, while a 
contracting  population or balancing selection would 
be likely to have more polymorphisms. 

The second set of theoretical estimates are  the 
Poisson-random-field-based sampling estimates de- 
rived earlier. The number of silent fixed differences 
is estimated as follows. By time reversibility, data  from 
two species at  the  present time can be viewed as two 
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snapshots of a single species separated in time by  2tdiv 
time units. Under selective neutrality,  the rate p, of 
regular silent mutations per individual is the same as 
the long-term rate of fixations of regular silent differ- 
ences at  the population level, so that  the  expected 
number of silent mutations in the population  that will 
eventually become fixed differences is  2p,tdiv. How- 
ever, as we start with one  contemporary species and 
evolve through  the  ancestral species to  the  other con- 
temporary species, 2p,tdiv overestimates the  number 
of silent fixed differences by the  number of silent 
mutations  that are destined to become fixed in this 
process but which have not yet had time to fix. There 
is no corresponding  underestimate in the  number of 
polymorphic sites, since an initial polymorphic site in 
the first contemporary species cannot become a fixed 
difference as we proceed backwards in time  through 
the ancestral species and  then  forwards to the second 
species. (The site remains polymorphic in the present). 
Finally, the estimate 2p,tdiv is augmented as in (1 7) by 
an estimate of the  number of sites that  are fixed in 
the sample but polymorphic in the population. 

The estimate  (16)  for the  number of silent poly- 
morphic sites fits the observed  numbers  quite well. 
However, the predicted  numbers of fixed differences 
2p,tdiv and  (17)  overstate, by factors of between  1.4 
and 6.1,  both the observed  number of fixed  differ- 
ences and  the  number of fixed differences  predicted 
from  the sample configurations. The upward bias  of 
this estimate probably reflects the fact that  not all  of 
the new mutations  destined to become fixed have as 
yet become fixed. Based on this argument, we propose 
that  the total number of silent fixed differences in 
terms of p, is approximately the theoretical expression 
(1 7) divided by 1.4  for D. simulans vs. D. yakuba, and 
the ratio of the  number of replacement fixed differ- 
ences to silent fixed differences can be  estimated by 
1.4 times the ratio of (18)  to  (17).  Setting  the  latter 
expression equal to  the  observed  ratio of replacement 
and silent fixed differences yields the  corrected esti- 
mate p, = 0.0265 = 0.013pS of (2). 

Selective  constraints in Adh evolution: The low 
value of the  replacement  mutation rate pr, relative to 
the silent mutation rate ps, may reflect mutations 
occurring in  only a small number of codons at which 
a favorable amino acid change is possible, with  all 
other changes being strongly detrimental. The actual 
mutation rate  at this small number of susceptible sites 
may be the same as at silent sites. In the single a model 
cyi = a,  for pooled data  from D. simulans and D. yakuba, 
the mutation  rate  from one nucleotide to  another is v 
= a1/2 = 0.00465, which suggests that  the  average 
number of codons susceptible to a  favorable  amino 
acid  change at any one time is n = p,/v = 0.0265/ 
0.00465 = 5.7.  In  the  more  general  mutation  model, 
the mutation  rate  depends  on the nucleotide  produced 

by the  mutation,  and  the estimates ni = p,/(a,/2) = 
2p,./a, range  from  an  average of 1.8 susceptible co- 
dons  (for  mutations to C) to 23.1 susceptible codons 
(for  mutations to A). 

MUTATIONAL  FLUX AND FIXED DIFFERENCES: 
DERIVATIONS 

The purpose of this section is to derive  the limiting 
density of the processes ( x $ ]  in the  frequency interval 
[O, 13, and  the limiting rate  at which these processes 
are fixed at  the  state  1. For each N 3 1, let ( X y k ] ( i  = 
1, 2, . . . ) be  a  sequence of Markov chains on (0, 1/N, 
2/N, . . . , 1) with the same transition matrix. Assume 
that  one of these processes starts at X,16 = 1/N with 
probability vN > 0 in each time  step. The endpoints 
0 , l  are assumed to  be absorbing states for  the Markov 
chains. Given the initial states xN = j / N  + x, the 
processes (X” = X $ )  are assumed to satisfy the con- 
ditions 

lim NE((Xf++, - X”)’ I X?’ = x N )  = b(x)  (32) 
N-m 

uniformly  for O s x c 1  for some 6 > 0, where b ( x )  
and C(X) are continuous functions on [0, 11. Let drn(x)  
and s(x) be  the speed measure and scale function of 
the diffusion operator 

1 d 2  d 
L, = - b ( x )  7 + c(x) - 

2 dx d x  

(see Equation 4),  and assume that  the  endpoints 0, 1 
are accessible boundaries  for L, (or  for  the limiting 
diffusion process X t ) .  All of these conditions hold for 
the two-allele selection-and-drift haploid Wright- 
Fisher models discussed earlier (EWENS 1979). 

The probability vN that  a new process ( X S )  begins 
in any time  step is assumed to satisfy 

V N  - P 
NP(T$+ T$)(s(a) - ~(0)) 

as N (33) 

where TZ+ = min(k : X :  3 a )  and a > O(0 < a s 1) is 
arbitrary.  In  fact,  condition  (33) is independent of a 
for 0 < a 1 (see below). If the condition P(T?+ < 
Tg)  - P(T,  < To I X .  = 1/N) holds as N 3 UJ for Tt = 
minit : X ,  = a ]  and s’(0) = 1,  then  (33) is equivalent 
to VN -+ p. 

At equilibrium  for fixed N, the  expected  number 
of processes ( X % ]  at  the state x for 0 < x < N is given 
by 

m m 
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Observed silenta Estimated Estimated 
configurationb population‘ 

Species Ps td,“ Fixed Poly Fixed Poly Fixed Poly 

D. simulans vs. D. yakuba 2.05 5.81 17 21 16.0 19.9 24.8 21.8 
D. melanogaster vs. D. yakuba 1.85 7.08 18 21 17.5 20.5 26.9 22.4 
D. melanogaster vs. D. simulans 2.07 1.24 1 21 2.0 19.6 6.1 21.9 

a Regular  silent  sites only. 
Fro111 the  joint  configuration  probabilities  (Equation 3 1). 
FIxm  Equations 16 and 17. 

where k in (34)  represents  a time k generations in the 
past. Iff(.) is a  function on [o, 11 withf(0) = f ( l )  = 
0, then  the  expected number of processes ( X c )  in the 
open interval (0, l ) ,  weighted byf(x) where x is the 
present  frequency, is 

N -  1 m 

where Q f f ( x )  = E ( j ( X f )  I X:  = x ) .  Our first result is 
the limit theorem 

Theorem 1: Suppose under the above assumptions that 
f ( x )  is  continuous on [0, 13 and  that f ( x )  = 0 in the 
interval [0, a )  f o r  some a > 0. Then 

N -  1 m 

where s(x) is the scale and  dm(x) the speed measure of the 
limiting  d@usion. 

It follows from  (35)  that  the limiting expected  num- 
ber of processes ( X g ]  with frequencies in the  range 
p l  C p S p 2  is the integral of the  integrand  on  the 
right-hand side of (35)  over ( P I ,  p 2 ) ,  provided  that PI ,  
p 2  are points of continuity  for dm(x).  In fact, the 
limiting distribution of ( X 6 1  is a Poisson random field 
with this integrand as its mean density (see the  next 
section). 

Proof of Theorem 1: We first show that condition 
(33) is independent of a.  If 0 < 1 /N < a < 1 ,  then 
X :  must first cross a before  getting  to 1 .  This leads to 
the identity 

P ( T : < T : ) = P ( T ~ + < T : )  (36) 
E(P(T:<T: 1 x:=Y)) 

for Y = X?, where 1 = Tf+ is the first time at which 
the  frequency X 7  2 a .  For any fixed y < 1, 

I i m  P(T;Y<T: I X t = y )  
N-m 

(EWENS 1979; ETHIER and KURTZ 1986).  It follows 
from (37) and  (32)  that  the  “overshoot” in (36) can be 
neglected as N + 00; i.e., it is sufficient to take Y = a 
in (36).  Hence by (36)  and  (37) 

P ( T ~ + C T ~ ) ( s ( a ) - s ( O ) ) - P ( T ~ < T ~ ) ( s ( l ) - s ( O ) )  

as N + 00 for 0 a < 1, and  the condition  (33) is 
independent of a > 0. In  particular, if 

1 S’(0b 
.-  

N S( 1 )  - s(0) 

then  (33) implies that ZIN + p/s’(O). 
Similarly, for a > 0 in Theorem  1, before any of 

the processes ( X % ]  get to x 3 a ,  they must first cross 
a .  Thus  the sum in (35) equals 

\ 

by (33),  where Y = X? for 1 = T f +  3 a as before, since 
we can neglect the overshoot in (38) for  the same 
reasons as in (36). Now by (32)  and  Trotter’s  theorem 
(ETHIER and KURTZ 1986) 

uniformly for k /N * t and X N  * x .  Thus, if we can 
show that  the sum in (38) converges uniformly in N 
for k/N 2 C ,  then as N - 00 

= ( s ( a )  - s(0)) s’ ’(l) - S ( x ) f ( x ) d m ( x )  
a S( 1 )  - ~ ( 0 )  

(EWENS 1979) since f ( x )  0 for x < a .  Since this 
completes the  proof of (35), it remains only to prove 
that  the sum in (38) converges uniformly in N for k /  
N 3  C .  



1174 S. A. Sawyer and D.  L. Hart1 

Since the  endpoints 0, 1 are accessible exit  bound- 
aries  for L, or  (Xt], we can choose t > 0 and 6 > 0 
such that 

m a x P ( T o A T 1 > t I X o = x ) = 1 - 6 < 1  

where X A Y = min(X, Y ] .  However, by (39)  withf(x) 
= 1, 

osx-2 1 

l i m P ( T ~ A T Y 3 k ) X ~ = x N ) = P ( T o A T 1 3 t I X o = x )  
N-m 

uniformly for k/N + t > 0 and xN + x .  Thus  there 
exists constants C > 0 and 6 > 0 such that 

su  max P( T t  A TY 3 CN I X :  = j / N )  2 OSjSN 
(40) 

s 1 -6/2< 1. 

The  Markov property implies that if CN in (40) is 
replaced by mCN, then  the  right-hand side of (40) can 
be replaced by (1 - 13/2)~.  Thus  there exists some u > 
0 such that if I f ( x )  I C M for 0 S x S 1, 

I Q ~ ~ ( ~ ) I ~ M P ( T : A T ~ ~ ~ I X ~ = X ) ~ M Q ~ - ” ~ ’ ~  

for some constant Q .  This provides the necessary 
uniformity in (38). 

We  now compute  the limiting flux into  the  absorb- 
ing  state 1. In any one time  step, the probability that 
a new process Xrh is begun with X?, = 1/N and is then 
eventually is absorbed at 1 is 

by (33) with a = 1. Since one time unit in the diffusion 
time scale equals N discrete  time steps, we have shown 

Theorem 2: Under the above conditions, the limiting 
expected number of processes { x f k  1 that  are absorbed at 1 
in one time unit  in the dflusion time scale is 

P 
s(1) - s(0) * 

POISSON  RANDOM FIELDS AND  A  SAMPLING 
THEORY FOR INDEPENDENT  SITES 

Since the ( X % )  are  independent Markov processes 
that arrive in a limiting Poisson stream,  the limiting 
distribution of the  frequencies ( X C ]  form  a Poisson 
random field by classical arguments (KARLIN and 
MCGRECOR 1966;  SAWYER  1976; KARLIN and TAY- 
LOR 1981). In particular, the limiting distribution of 
the numbers of frequencies ( X $ ]  in any given set, as 
well  as the  number of processes that have been fixed 
at 1 by any  given time, are Poisson random variables 
that  are  independent for  nonoverlapping sets. 

Given a sample of  size m, the population  frequencies 
{X$) of mutant nucleotides at those sites that  are 
polymorphic in the sample form  a  “randomly  cen- 

sored” version of the original Poisson random field, 
where  a process is “censored” if its site is monomorphic 
in the sample. If the censoring mechanism is inde- 
pendent  for  different sites (which follows  in this case 
from linkage equilibrium),  then the censored random 
field is also a Poisson random field. In  particular, 
given a sample of  size m, the  numbers of silent and 
replacement fixed and polymorphic sites all have Pois- 
son distributions. 

Similar arguments show that, if one has  two or more 
random  censoring mechanisms that  are  independent 
for  different sites but mutually exclusive ( i . e . ,  a site 
cannot survive censoring by more than one mecha- 
nism), then  the respective censored  random fields are 
independent Poisson random fields. As one  example, 
given a sample of  size m, the  number of monomorphic 
sites in the sample and  the  number of polymorphic 
sites in the sample are  independent Poisson random 
variables. In this example,  a site is censored by the 
first mechanism if it is polymorphic in the sample and 
censored by the second mechanism if it is mono- 
morphic in the sample. (The number of sites that are 
fixed in the population  form  a  separate  independent 
Poisson  class.) It follows from this that, if one has 
samples of  sizes m and n from two populations,  then 
the  number of fixed differences between the two 
samples and  the  number of sites that  are polymorphic 
in either sample are realizations of independent Pois- 
son random variables. 

As a second example, given a sample of  size 5 from 
a single population, the  number of  sites that display a 
“(32)” polymorphism (i .e. ,  with three sequences having 
one nucleotide and two sequences having a second 
nucleotide) and  the  number of sites that display a 
“(41)” polymorphism ( i . e . ,  with four sequences having 
one nucleotide and  one sequence with a second nu- 
cleotide) are  independent Poisson random variables. 
Here  the censoring mechanisms are to  reject  a site if 
it does  not have a  (32) [respectively (41)] nucleotide 
polymorphism in the sample, where the  mutant nu- 
cleotide could be either  nucleotide. 

DISCUSSION AND  ADDITIONAL  COMMENTS 

The approach  to polymorphism and divergence 
presented in this paper provides a  framework for  the 
quantitative analysis and  interpretation of  DNA  se- 
quence variation within and between species. I t  also 
provides a  theoretical basis for  the use of a recently 
proposed  2 x 2 contingency table test for DNA se- 
quences  that  compares polymorphisms and fixed dif- 
ferences with silent sites and amino acid replacements 
(MCDONALD and KREITMAN 199 1 a), as well as provid- 
ing estimates for  the  relevant  parameters. Hypothesis 
tests for 2 X 2 contingency table data  are well under- 
stood and  quite  robust,  and this approach may be  the 
most powerful and generally applicable test yet de- 
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vised for  detecting  whether or not selection has been 
active in the  recent  evolutionary history of particular 
proteins. 

On the  other  hand,  the sample nucleotide config- 
urations also contain  a  tremendous amount  of infor- 
mation that can be interpreted as in the  approach 
presented  here.  In  particular,  the  joint sample config- 
urations at silent sites can be used to estimate  both 
the synonymous mutation rate p, and  the species di- 
vergence time t d i v .  Both parameter estimates are scaled 
in terms of the effective population size N e ,  and if 
independent  information is available (as it is  in this 
case from Hawaiian Drosophila), then all three param- 
eters can be estimated. Given tdiv, the 2 X 2  contin- 
gency table  provides estimates of p , / p s  (the  ratio of 
aggregate  mutations  rates  for synonymous and re- 
placement sites) and  for y (the average selection coef- 
ficient among  favored and mildly deleterious replace- 
ment mutations). Our analysis is based on the assump- 
tion  that  the  nucleotide sites are independent (ie., in 
linkage equilibrium).  Whether this assumption holds 
to an acceptable approximation has to be determined 
by appropriate statistical tests on  a case by case  basis. 

Other approaches to  the analysis  of  DNA sequence 
variation within and between species were suggested 
as alternatives to  the 2 X 2 contingency table test by 
GRAUR  and LI (1 99 1) and WHITTAM and NEI (1  99 1). 
These tests appear  to be less powerful statistically than 
the 2 X 2 contingency table  test, and may be subject 
to objections about  their  underlying  genetic assump- 
tions (MCDONALD and KREITMAN 1991b).  Further- 
more,  the test statistics in the proposed  alternatives 
are assumed to have a sampling distribution  that is 
normal, when in fact the sampling distributions are 
unknown in  most  cases. As one  example, GRAUR  and 
LI (1991) compare the observed  number (k = 2) of 
replacement polymorphisms within  all three species 
in MCDONALD and KREITMAN'S (1991a) data with the 
value of a test statistic K = K 1  + K:! + K 3  (our  notation), 
where each K ,  is the  number of segregating sites in an 
infinite sites model (WATTERSON 1975).  Separate pa- 
rameter estimates are used within each species, and 
the random variables Ki  are independent. WATTERSON 
(1 975) gives the mean and variance of Ki  in terms of 
its parameters. WATTERSON also  gives a  moment gen- 
erating function  for K ,  that can be used to  infer its 
exact  distribution (as a sum of  independent  geomet- 
rically distributed  random variables with different 
parameters),  from which the exact one-sided P-value 
P(K 6 2) can be calculated. For one set of parameter 
values used by GRAUR  and LI (1991), K = 10.32 & 
4.04 (mean and  standard deviation), so that  a  norma] 
approximation for K leads to a one-sided P-value, P = 
0.020,  for  the observed K = 2, while the exact P ( K  c 
2) = 0.0098 1 from the theoretical  distribution. In this 
example  the  difference in the P-values is only twofold, 

but it is  in the direction of making the  Graur  and Li 
statistic less powerful, and  the discrepancy might be 
larger in other cases. Similar problems arise for  a test 
proposed by WHITTAM and NEI (1 99 I), which is based 
on a  ratio of test statistics each of whose sampling 
distributions is known only approximately. For ratio 
statistics, there is no guarantee  that  approximate P- 
values will even be conservative. In general,  one 
should  be  careful  about using a  normal  approximation 
for P-values  unless one is sure that  the sampling dis- 
tribution of the test statistic is at least approximately 
normally distributed. 
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