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ABSTRACT 
We study a two  locus  model with additive contributions to the phenotype to explore the relationship 

between  stabilizing  selection and recombination. We  show that if the double heterozygote has the 
optimum phenotype and  the contributions of the loci to the trait are  different, then any  symmetric 
stabilizing  selection  fitness function can  maintain genetic variability provided selection is sufficiently 
strong relative to linkage. We present results of a detailed analysis  of the quadratic fitness function 
which  show that selection need not be extremely strong relative to recombination for the polymorphic 
equilibria to be stable. At these polymorphic equilibria the mean  value  of the  trait, in general, is not 
equal to the optimum phenotype, there exists a large level  of negative  linkage  disequilibrium which 
“hides” additive genetic variance, and different equilibria can  be stable simultaneously. We analyze 
dependence of different characteristics of these equilibria on the location of optimum phenotype, on 
the difference in allelic effect, and on the strength of selection relative to recombination. Our overall 
result that stabilizing  selection does not necessarily eliminate genetic variability is compatible with 
some experimental results where the lines  subject to strong stabilizing  selection  did not have  significant 
reductions in genetic variability. 

S INCE the classical papers by WRIGHT (1935) and 
ROBERTSON (1 956) there has been a  general belief 

that in the absence of other factors stabilizing selection 
on an  additive  character  cannot maintain genetic var- 
iability in more  than one locus. T o  explain the main- 
tenance of genetic variability observed in natural pop- 
ulation, which presumably are  under stabilizing selec- 
tion,  a  number of models with additional  factors have 
been proposed. These factors  include  dominance, mu- 
tation, epistasis, pleiotropy,  genotype-environment in- 
teraction,  migration (e .g . ,  KOJIMA 1959; LEWONTIN 
1964; BULMER 1973; LANDE 1975; GILLESPIE and 
TURELLI 1989; GIMELFARB 1989,  1992; HASTINCS 
and HOM 1990; GAVRILETS and DE JONG 1993; ZHI- 
VOTOVSKY and GAVRILETS 1992). Analytical studies 
and most  of the  numerical studies of stabilizing selec- 
tion on a single additive  character  that have been 
done  incorporate simplifying assumptions such as 
weak selection approximation,  equal  contributions of 
loci to the  character or optimal  phenotype  equal  that 
of the completely heterozygous individual. Numerical 
results by GALE and KEARSEY (1968) and KEARSEY 
and GALE (1 968) suggested,  however,  that  relaxation 
of these assumptions can cause new effects. These 
authors  demonstrated  that  strong  “triangular” stabi- 
lizing selection on an additive  trait can maintain vari- 
ability in two and  three loci  if the effects of the loci 
are  different. Analysis of the stabilizing selection on 
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an  additive  character under  broader assumptions has 
been started in several recent papers. Using a weak 
selection approximation ( i e . ,  assuming no linkage dis- 
equilibrium), NAGYLAKI (1989) showed that if the 
contributions of two diallelic loci to an additive  trait 
are sufficiently different, some forms of stabilizing 
selection can maintain variability in both loci. HAST- 
INGS and HOM (1 990) used the weak selection approx- 
imation assuming that  the  contributions of  loci are 
different  and  that  the optimal phenotype is different 
from the phenotype of  a complete  heterozygote. They 
found  that  monomorphic equilibria and equilibria 
with one locus polymorphic can be stable simultane- 
ously. GAVRILETS (1993) applied both  the weak  selec- 
tion approximation and  a  strong selection approxi- 
mation to  a two-locus epistatic viability model with 
equivalent loci. He showed that  moderate changes in 
the  strength  of selection relative to  recombination can 
cause significant changes in quantitative and qualita- 
tive characteristics of equilibria. 

In this paper we consider these effects simultane- 
ously and show that some surprising results emerge. 
In particular, we show that if stabilizing selection on 
a single additive  character is sufficiently strong rela- 
tive to  recombination,  genetic polymorphism can be 
maintained  provided  contributions of the loci to  the 
character  are not  equal. The structure of this paper 
is as  follows. In the next section, we formulate  a 
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general  model  of stabilizing  selection on  an additive 
trait  controlled by two diallelic loci. Then we present 
detailed analysis of the case  of quadratic stabilizing 
selection.  We  determine  exact  conditions  for  existence 
and stability of monomorphic  equilibria  and  equilibria 
with one locus polymorphic.  We  present  results  of  the 
approximate analysis of  equilibria with two polymor- 
phic loci. We  demonstrate  that such  equilibria  exist 
and can be  stable. In the final section, we discuss 
quantitative  genetics  implications of our results. 

GENERAL  MODEL 

Let  an  additive  quantitative  trait  be  controlled by 
two diallelic loci. We shall use the  notation  from 
HASTINCS and HOM (1  990). Assume  that  the alleles at 
locus i have  effects a,/2 and -a,/2, and  that a, # 0. 
We  designate the  larger  of  the a, as ai and, without 
loss of generality,  assume  that a1 = 1. Let xI, xq, 

x:3 and x4 be the  frequencies  of  the  gametes with 
the effects z l  = ( 1  + aq)/2,  z., = (1  - aq)/2,  z:4 = 
(-1 + 4 / 2  and z4 = (-1 - a2)/2 on  the  trait.  We 
assume  that  the fitness depends only on genotypic 
value so that  the  fitness, U I , ~ :  of  an  individual  formed 
by gametes i and j and havlng  phenotype z, + z, can 
be  represented as 

w,/ = w(z, + 5). (1) 

We  assume  that  the fitness function w ( z )  has its opti- 
mum at zO, which in general, is not  zero; we scale w ( z )  
so that w(z,,)  = 1.  We  suppose  that w ( z )  decreases 
monotonically from its optimum.  Let wi = x, wl,xl and 
W = w,x, be  the  marginal fitness  of gamete i and  the 
mean  fitness  of the  population, respectively. T h e  dy- 
namics  of the  gamete  frequencies  under selection and 
recombination are described by the  standard  relations 

where r is the  recombination  rate, D = x1x4 - X ~ X : ~  is 
the  standard  linkage  disequilibrium,  and w i 4  is the 
fitness  of  a heterozygote  at  both loci, w I 4  = w ( 0 ) .  In 
(2) the sign is minus for i = 1 and 4 and is plus for i 
= 2 or  3. 

I t  has  been  repeatedly  remarked (e.g., HASTINCS 
1987; BURGER 1989; NACYLAKI 1989)  that if a  double 
heterozygote has the  optimum  phenotype, ie., z,, = 0, 
and fitness function is symmetric, i . e . ,  w(z - zll) = 
w(qI - I), the model  of  stabilizing  selection on  an 
additive  trait  reduces to the symmetric viability model 
analyzed in a  number  of  papers (e .g . ,  BODMER and 
FELSENSTEIN 1967; KARLIN and FELDMAN 1970).  One 
of the  properties  of this  model is existence  of a locally 
stable  polymorphic  equilibrium under sufficiently 
tight  linkage (KARLIN and FELDMAN 1970).  Restating 
this in terms  of  a model  of  stabilizing  selection we 
have the following  result. 

I f  the contributions of the  loci to the trait are d#erent 
and the stabilizing selection fitness  function has its opti- 
mum at the phenotypic value of a heterozygote and is 
symmetric about it ,  then for  linkage sufficiently tight rela- 
tive to selection there always exists a locally stable equilib- 
rium polymorphic at both loci. 

In general,  for  tight  linkage it is possible to  have 
more  than  one  stable  polymorphic  equilibrium,  and 
the equilibria with two loci polymorphic  can  be  stable 
simultaneously with other equilibria. If z0 # 0, then 
one  cannot use the results on  the symmetric viability 
model.  Nevertheless, as we shall show  below, in some 
cases the conclusion about  existence  of a locally stable 
polymorphic  equilibrium  under  tight linkage is still 
valid. The  result  presented in this  section  assumes that 
linkage is sufficiently  tight  relative to the  strength of 
selection;  the  proof is based on  the  assumption  that 
the  ratio r/s  is much less than unity  [see KARLIN and 
FELDMAN (197O)l.  In  this paper, we argue  that  the 
conclusion about  the  maintenance  of  genetic variabil- 
ity under stabilizing  selection on  an  additive  trait is 
valid even if selection is not  extremely  strong or 
equivalently if linkage is not  extremely  tight. To dem- 
onstrate this we shall analyze the simplest (from  an 
analytical  point  of view) class of stabilizing  selection 
fitness  functions,  namely  quadratic fitness  functions. 

QUADRATIC:  STABILIZING  SELECTION 

Let the fitness  function w ( z )  be a quadratic 

w ( z )  = 1 - s(z - zo)', (3) 

where s is the  parameter  measuring  the  strength of 
selection, and zo is the  optimum  phenotype which, in 
general, is not  zero. The  model (2) has two  types of 
equilibria:  equilibria with D = 0 and equilibria with D 
# 0; we shall consider  them  separately.  At  an equilib- 
rium with D = 0 either w, = W or  x, = 0. The  system 
(2) with fitnesses (3) has eight  equilibria with D = 0: 
four equilibria with only  a  single gamete  represented 
in the population and  four equilibria with two  gametes 
present. 

Stability of monomorphic equilibria: The  equilib- 
ria with a  single gamete,  at which both loci are  fixed, 
always exist. T h e  conditions  for stability  can be  found 
by excluding  one  of  the  gamete  frequencies using the 
relation xI + xq + xg + xq = 1 and calculating the 
eigenvalues  of the  corresponding  (3 X 3)-matrix V = 
(d(Ax,)/dx,) (c f :  BODMER and FELSENSTEIN 1967).  That 
was done using Mathematica software (WOLFRAM 
1988). An equilibrium is stable if the modulus  of all 
eigenvalues  of  matrix V lie in the unit  circle centered 
at -1 in the complex  plane.  In the case studied  here, 
all eigenvalues are  real, so this is equivalent to saying 
that  the  eigenvalues of V lie between  minus  two and 
zero.  (This  condition is equivalent to the condition 
that all eigenvalues of matrix {d(x: ) /dx , ] ,  where X: = 
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x i  + A x i  are less  in modulus  than  unity.) We will 
designate  the equilibria by the vector of gamete  fre- 
quencies. The conditions  for stability of the equilibria 
with a single gamete  present are as follows. For  the 
equilibrium  (1 ,O,O,O), the stability condition is 

zO > '/2 + a2 and z0 > 1 + a2/2,  (4a) 

" ~ ~ 1 4  + S( 1 + (~2)(1 + ap - 2~0) < 0. (4b) 

For the equilibrium (0,l ,O,O), the stability condition 
is 

For the equilibrium (O,O, 1 ,O), the stability condition 
is 

For the equilibrium (O,O,O,l), the stability condition 
is 

zo < -% - a2 and zO < -1 - (~212,  (7a) 

- T w I ~  + ~ ( l  + ( ~ p ) ( l  + up + 2~0) < 0. (7b) 

Note  that if selection is very weak relative to recom- 
bination, i .e.,  s << r ,  inequalities 4b,  5b,  6b  and  7b  are 
satisfied and  the stability depends only on  the condi- 
tions 4a,  5a, 6a and 7a. The latter are exactly those 
found by HASTINCS and HOM  (1990)  for  the case of 
weak selection. One can show that if equilibrium 
(1 ,O,O,O) is stable under weak selection (s << r ) ,  it is 
stable under  strong selection ( T  << s), and vice versa. 
The same conclusion is true for  equilibrium (O,O,O,l) .  
I f  equilibrium (0,1,0,0)  or  (0,0,1,0) is stable under 
strong selection, it is stable under weak selection, bu t  
the opposite is not necessarily true.  These equilibria 
can become unstable as  the  strength of selection rel- 
ative to  recombination decreases. 

Existence and stability of equilibria with one locus 
polymorphic: The equilibria with two gametes with 
D = 0, at which one of the loci is fixed while the  other 
is polymorphic, are given by 

(xF,xz,O,O), where x: = 
-2 + CY2 + 220 

(XI ,O,xg ,O), where x: = '/2 - a2 + z0, * *  
(8b) * 

X J  = 1 - x ] ,  * 

(O,O,x:,xz), where x: = 
2 + f f p  + 2ro 

2a2 
, 

(8c) * 
x4 = 1 - x 3 ,  

* 

(O,xz,O,x:), where x; = '/2 + a 2  + ZO, 

(84  
x: = 1 - x p .  * 

These equilibria are biologically meaningful, if non- 
zero  gamete  frequencies lie between zero  and one; 
the  corresponding  conditions are given in [HASTINGS 
and HOM  (1990), Exps. (8), (12), (6) and  (10)). Con- 
ditions for stability were found as before ($ BODMER 
and FELSENSTEIN 1967). An equilibrium of the  form 
(8) is stable if it is feasible and  the following conditions 
are satisfied. 

At the equilibrium (xT,x~*,O,O) the stability condi- 
tion is 

(1 - a;)s + m14(3 - 2 4  > 0. (9) 

At the equilibrium (x:,O,x.?,O) the stability condition 
is 

(-1 + (Y;)(Y2S + W ] 4 ( 3 f f p  - 220) > 0. (lo) 

At the  equilibrium (O,O,x.?,x?) the stability condition 
is 

(1 - ffg)S + rW]4(3 f 2Zo) > 0. (1  1) 

At the equilibrium (O,xz,O,x:) the stability condition 
is 

(-1 + a;)(Y*s + m14(3a* + 2Zo) > 0. (12) 

Note  that if selection is very weak relative to recom- 
bination, i.e., s << r ,  the first terms in (9-12) can be 
neglected and  the stability conditions  reduce  to those 
given by HASTINGS and  HOM [ 1990, Exps. (1 5a), (1 6- 
IS)]. One can easily see that  under  strong selection 
( r  << s) equilibria ( x : ,  x$,O,O) and (O,O,xs,xz) are 
stable  provided they are feasible, while equilibria 
(xy,O,xf,O) and (O,x~,O,x,*) cannot  be stable. All these 
equilibria can change  their stability with change in the 
ratio rIs. 

Existence and stability of polymorphic equilibria: 
At polymorphic equilibria D # 0. Unfortunately, if zo 
# 0, these equilibria cannot be found in explicit form. 
Earlier approximate analysis  shows that if selection is 
very  weak relative to recombination, there exists a 
single equilibrium with two polymorphic loci but it 
cannot  be stable (e .g . ,  HASTINCS and HOM 1990). Here 
we shall consider the opposite situation when selection 
is strong relative to recombination. To demonstrate 
existence of stable polymorphic equilibria, we shall 
use two different techniques: regular  perturbation 
analysis and bifurcation analysis. 

Polymorphic equilibria that exist under  very 
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strong selection: If selection if very strong relative to 
recombination, one can consider dynamic Equations 
(2) assuming that r = 0 (BODMER and FELSENSTEIN 
1967; KARLIN and MACGREGOR 1972). If there is no 
recombination, dynamics of gamete  frequencies are 
described by 

Besides eight equilibria with D = 0, which were ana- 
lysed  in the preceding  section, system (13) with fit- 
nesses (3) has two additional equilibria (cf: BODMER 
and EELSENSTEIN 1967):  an  equilibrium of the  form 

and  an equilibrium of the  form 

(1 4 4  * 
x4.0 = 1 - x 1 .o. 

* 

(Here  and in  what follows, subscripts after commas 
are used to denote  the  order of terms in perturbation 
expansions in terms of r/s.) In  general, when the 
number of  loci is two, system (1  3) can have equilibria 
with three  and  four gametes. Such equilibria, how- 
ever, do not exist if fitnesses are given by (3). Equilib- 
ria ( 14) are biologically meaningful if nonzero  gamete 
frequencies lie between zero and  one. The equilib- 
rium (O,x&,,x.&,,O) is feasible if 

(1 - 4 2  > Z() > -( 1 - 4 2 .  (1 5 )  

The equilibrium (X~.~) ,O,O,X&,)  is feasible if 

(1 + 012)/2 > zg > -(I + ( ~ 2 ) / 2 .  (16) 

Note  that D is negative at equilibrium (O,x&~,x&~,O) 
and is positive at equilibrium (x~(),O,O,x&). The con- 
ditions for stability were found as before. The equilib- 
rium (O,x(T.o,x~~o,O) is stable if it is feasible, while equi- 
librium ( X ~ , ~ , , O , O , X ~ , ~ , )  cannot  be stable. Figure  1 sum- 
marizes the stability results for  the case r = 0. In 
Figure 1 we divide parameter space, i . e . ,  possible 
values for az, the relative effect of the locus of smaller 
effect on  the  character,  and zo, the optimum  pheno- 
type, into  regions  corresponding to stability of differ- 
ent equilibria [$ HASTINGS and HOM (1990),  Figure 
13. Without loss of generality, we only display the 
region with zo positive since the results for negative z0 
are easily obtained  from the results for positive zO, 
using the  inherent symmetries in the model. This 
figure shows that in contrast to the weak selection 
results (HASTINGS and HOM 1990),  under very strong 

1.5 

1 

% 

FIGURE I.-Regions of  existence and stability of different  equi- 
libria on the (a?, 20) plane for very strong selection ( T / S  = 0). The 
equilibrium  that is stable in the  corresponding region is designated 
by the vector  of gamete frequencies. 

selection different equilibria cannot be stable simul- 
taneously. Note  that 1 1 - LYZ 1/2 is the minimum of 
the contributions of the gametes to  the  trait value. 
Thus, genetic variability can be maintained in both 
loci under very strong (relative to  recombination) 
quadratic stabilizing selection on an additive  trait if 
the deviation of the  optimum  phenotype  from  that of 
the  complete  heterozygote is  less than the minimum 
of the  contributions of the gametes to  the  trait value. 
We know, however, that as selection becomes weaker, 
the completely polymorphic equilibrium loses stabil- 
ity. I t  is of interest to know  how different  character- 
istics of  the polymorphic equilibria depend  on  the 
ratio r/s .  To answer this question w e  shall  use regular 
perturbations  techniques.  See  HASTINGS (1 985)  and 
GAVRILETS  (1992)  for other examples of application 
of this method in analysis  of  two  locus models. 

We  shall  look for polymorphic equilibria of (2) as 
power series in t 5 r / s :  

x,* = X,,() + EX; . ]  4- . . .) (1 7) 
where as the  zero order terms we shall  use the equi- 
librium gamete  frequencies  from (1 4). At equilibrium 
the  right-hand sides  of equations (2) are zero. Substi- 
tuting (1 7) in ( 2 )  and equating  the  terms  correspond- 
ing to the same power of E ,  w e  find algebraic  equations 
from which perturbation  terms x,.] can be  found. The 
corresponding  formulae  for  the equilibria that  reduce 
to equilibria (O,x~.o,x~,o,O) and (x&,O,O,x&) as 6 + 0 
are given in BODMER and FELSENSTEIN (1 967). Below 
we present first order estimates which were found 
using Mathematica software  (WOLFRAM  1988). All cal- 
culations are simplified if one uses a linear transfor- 
mation 

u = X ]  - xq, 
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Let us consider the equilibrium  that  reduces to 
( O , X ~ , ~ , X ~ , ~ , ~ )  as t + 0. The first order estimates for 
the equilibrium  gamete  frequencies are 

Using (18) we can find first order estimates for  the 
allele frequencies p , ,   p 2 ,  linkage disequilibrium D and 
the normalized linkage disequilibrium D/D,,I.Ix, where 
D,,,, is the maximum linkage disequilibrium that is 
possible at  the given allele frequencies, DlllilY = 
min{plp2), ( 1  - pl)(l - p 2 ) ) .  These values are given 
by: 

(1 9b) 

where pl,o = x&, p,.,) = x;*.,. These expressions show 
that an increase in the  ratio r / s  causes a shift of allele 
frequencies  from 95 and a  decrease in the abso- 
lute value of linkage disequilibrium.  Note  that since 
1 D*/DlnLlX I d 1,  the first order analysis  gives feasible 
estimates until 

In the APPENDIX we show  how the  regular  perturba- 
tion techniques can be used to get  rough estimates for 
the critical value of  the  ratio r/s under which the 
polymorphic  equilibrium becomes unstable. 

Polymorphic equilibria that bifurcate from mon- 
omorphic equilibria and equilibria with one locus 
polymorphic: If selection is very  weak relative  to 
recombination ( i e . ,  t >> 1) there exist equilibria poly- 
morphic at both loci  which cannot be stable (HASTINGS 
and HOM 1990). In the  preceding  section, we showed 
that if selection is very strong  relative  to  recombina- 
tion ( i e . ,  t << 1) there exist two polymorphic equilibria 
one of  which can be stable. In this section, we shall 

show that  for  moderately  strong selection several poly- 
morphic equilibria exist and  at least two of them can 
be stable simultaneously. As was noted  earlier, mon- 
omorphic equilibria and equilibria with one locus 
polymorphic that are stable under weak selection can 
become unstable as selection becomes stronger. When 
this happens,  a new polymorphic equilibrium  bifur- 
cates from  the old one. Bifurcation theory provides a 
means to compute  the stability and  approximate lo- 
cation of this new equilibrium.  General  references for 
bifurcation theory  techniques employed here  are 
Iooss and JOSEPH (1 98 1) and GUCKENHEIMER and 
HOLMES (1 983);  for examples of application of these 
techniques in two locus models see HASTING (1 98  1, 
1982,  1985b). 

Let us consider  monomorphic  equilibrium (0,l ,O,O). 
To analyze stability of this equilibrium we shall con- 
sider dynamic equations (2) for i = 1, 3 , 4 ,  substituting 
1 - x1 - x? - x4 for x2. At this equilibrium the stability 
matrix V has form 

1 1  / W 2 2  ?-w I 4/W22 ( g (12 - ?-w14)/wz2 

m141w22 1s/w22 : )  
where 1, w12 - tup:! = ~ ~ 4 - 2  + a2 + 2 q ) ,  12 wI4 

- 2n2 - 2 ~ 0 ) .  Assume that condition (5a) is satisfied, 
i . e . ,  that 1, < 0, 15 < 0. That implies that -2 < lI/w22 

< 0 and  that -2 < &,/w22 < 0. In this case, equilibrium 
(0,l ,0,0) is stable if r > rr and unstable if r < r,, where 

- w?:! = s(l - “‘))(I - “2 - 2%0), 19 E w24 - w22 = s(1 

r, E 1 - w22/w14 
(21) 

= s(-I + (Yp)( - l  + a2 + 2zo)/w14 

(see Expression 5b). Bifurcation theory implies that as 
r varies through rr, a second equilibrium whose value 
depends on r passes through this fixed monomorphic 
equilibrium. To approximate this equilibrium and 
find condition  for stability the first step is to change 
variables ( i e . ,  gamete frequencies) so that  the  nondi- 
agonal elements of matrix V are zero  at  the point 
where r = rr. An appropriate  change of variables is 

x1 = y1 - 

2 3  = y r ,  

x4 = ys - 9 2 .  

Note  that negative values  of y2 are not biologically 
meaningful because then x3 would be negative. The 
next  step is to find the coefficient fz2 of y; in the 
equation for Ay, to use  in the bifurcation calculations. 
Bifurcation theory says that  at  the new bifurcating 
equilibrium,  to lowest order,  the equilibrium values 
of yl and 9 3  do not  change  from  their values at equilib- 

m 1 4  

i?] - 12 m]4 
Y2, 

m 1 4  

I s  - 12 + n u 1 4  
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rium (0,l ,0,0), wile y2 = -(rc - r)/f;2. The biologically 
meaningful positive polymorphic equilibrium solu- 
tions occur  for r < rr and  are stable if j& < 0. 
Calculatingjln value at equilibrium (0,1,0,0), we have 

(22) 
-  CY^ - 8zo(l - 012) + ~zZ)]. 

The last expression can be  used to  find  whether  the 
bifurcating solution is stable (ie., whetherf;L2 < 0). In 
particular this is always true for small deviations of z0 

from 0. Similar techniques can be used to  find  condi- 
tions for stability of equilibria that  bifurcate from 
monomorphic  equilibrium (O,O, 1 ,O) and  the equilibria 
with one locus polymorphic. One can show that  a pair 
of polymorphic equilibria that bifurcate  from mono- 
morphic equilibria (0,1,0,0) and (0,0,1,0) can exist 
and be stable simultaneously. The bifurcating equilib- 
ria will be discussed further in the section devoted to 
the case z0 = 0. 

Phenotypic  effects: In this section we consider how 
phenotypic variables such as the mean value of the 
trait,  the genotypic variance and its components, and 
mean fitness of the  population at  a polymorphic equi- 
librium depend  on  the  parameters of the model. For 
simplicity we shall analyze only the polymorphic equi- 
librium that exists and is stable under very strong 
selection. At the  equilibrium ( ~ , X ~ ~ ) , X . & ) , O ) ,  to zero 
order  the mean value, i, and  the genotypic variance, 
G,  of the  trait,  the mean fitness of the population and 
the  ratio of G to  the genic variance Vg (= 2a]Lp, 
(1 - p,)) are 

is) = 2%). (234 

G,o = (1 - ( ~ 2 ) ~ ( 1  - ~ ; ) / 2 ,  (23b) 

5.0 = 1 - ~ ( l  - a2)’(2 - ~ $ / 4 ,   ( 2 3 ~ )  

where VI) = x;,,, - = 2z0/(l - ax). Expression 23a 
shows that in general at this polymorphic equilibrium 
the mean value  of the  trait is not equal to  the  optimum 
value. Polymorphic equilibria with the mean value of 
the  trait  different  from the optimum value have also 
been found in the mutation-selection balance models 
(BARTON 1986; HASTINGS 1990). Deviation of the 
optimum  phenotype from zero decreases the  geno- 
typic variance maintained under stabilizing selection 
(see Expression 23b). Expression 23d shows that 
a substantial amount of additive  genetic variance is 
“hidden”  at this equilibrium. This  variation will be 
“released” by recombination if selection is relaxed. 
Using first order estimates of the  gamete  frequencies, 
one can show that  to first order 

i i .0 + - w14 
7 vo 

s (1 - ag)’ 

where i,o, G,() and 6.0 are given by (23). Expression 
24b shows that  the effect of increase in the  ratio r/s  
on the genotypic variance depends on  the location of 
optimum  phenotype; it increases G for small I zo 1 and 
causes the opposite effect for  large I zo I. Decrease in 
recombination rate always  causes an increase in the 
mean fitness (see Expression 24c). Increasing the  re- 
combination rate also reduces  the  fraction of the 
genetic variance that is “hidden” by linkage dis- 
equilibrium. 

Analysis of the  case zo = 0: As  we noted  earlier, if 
the optimum  phenotype coincides with that of the 
complete  heterozygote, the model considered above 
reduces to  the two  locus symmetric viability model 
analyzed in a  number of papers (e .g . ,  BODMER and 
FELSENSTEIN 1967; KARLIN and FELDMAN 1970). Ex- 
act results known for this model can be used to check 
the validity of our approximations and to get further 
insight into behavior of our model. If 20 = 0, poly- 
morphic equilibria of both types that were analyzed 
above can be  found in exact  form. 

Polymorphic  equilibrium  that exists under very 
strong  selection: In the symmetric viability model 
there exists a symmetric polymorphic equilibrium 
with allele frequencies equal one half and gamete 
frequencies: 

XI = xq = ‘/2 + D ,  

xp = XQ = ’/2 - D, 
where  the linkage disequilibrium D is given by 

[KARLIN and FELDMAN (1970),  Expr. (2.3) with m = 
4sa2].  This  equilibrium is stable 

- 3 p  - 24 1 + a;)r + s‘(1 - > 0 (26) 

4sa2, p = sa;, y = s, a = s(1 - a#, 6 = s(l + a‘#. 
[KARLIN and FELDMAN (1970),  Expr.  (4.5) with m = 

Note  that here a + 6 = 2(p + y)]. This polymorphic 
equilibrium  reduces to equilibrium (O,X~.o,X$,o,O) as 
the ratio r/s  tends to zero. BURGER (1 989, Appendix 
B) has found  the condition for stability of this equilib- 
rium  for  the case  with mutation. If 20 = 0, our first 
order estimates (1 9) give equilibrium allele frequen- 
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cies equal one half and linkage disequilibrium 

1 r  
4 4sa2 

D = -- +-  (27) 

Polymorphic equilibria that bifurcate from mon- 
omorphic equilibria and equilibria with one locus 
polymorphic: If z() = 0, monomorphic equilibria 
(1,0,0,0) and (0,0,0,1) cannot  be stable (see Expres- 
sions 4 and 7). Monomorphic equilibria (0,I  ,O,O) and 
(O,O, 1 , O )  are simultaneously stable if 

a‘ > Yz, r/s > (1 - a# (28) 

(Expressions 5 and 6). Equilibria with one locus  poly- 
morphic ( x ~ , x ~ , O , O )  and (O,O,x.?,x4*), are not feasi- 
ble (see Expressions 8). Equilibria (x:,O,x:,O) and 
(O,xz,O,x:) are feasible, if a‘ < Yi (Expression 8). 
These equilibria simultaneously exist and  are stable if 

a‘ < Yz, r/s > (1 - 4 ) / 3  (29) 

(expression 10 and 12). Note  that  monomorphic  equi- 
libria and equilibria with one locus polymorphic can- 
not  be  stable simultaneously. When as a  result of 
decrease in the ratio r/s monomorphic equilibria 
(0,1,0,0) and (O,O, 1,O) or equilibria with one locus 
polymorphic (x:,O,x?,O) and (O,x?,O,x4*) become un- 
stable,  a new pair of polymorphic equilibria arise. 
These “unsymmetric” equilibria can be  found exactly 
using formulae given in Appendix 1 of KARLIN and 
FELDMAN (1 970): 

-(I  + a2)Js( I  - a)‘- r J  
u = +  

gray 
(304 

r 2  + 2rs(l + a:) - s‘(1 - a:)2 
sr 

1 - a2 s(1 -I- a2)‘ - r 
1 + a‘ s(1 - a‘)’ - r 

f 

v = -- u,  (30b) 

3r‘ - 4rs(l + ai) + s‘(1 - ai)‘ 
t =  

4rsa2 (304 

where as before u = x]  - x4, v = x2 - xg, t = xI + x4 - 
x2 - x3. T o  see that these  “unsymmetric” equilibria 
bifurcate  from  monomorphic equilibria (0,l ,O,O) and 
(0,0,1,0) and equilibria with one locus polymorphic 
(x:,O,x.f,O) and ( O , x ~ , O , x ~ )  it is sufficient to substitute 
the critical values of the recombination  rate  from  (28) 
and  (29)  for r in (30). The resulting values of u,  v and 
t exactly describe equilibria (0,l ,O,O) and (O,O, 1 ,O) and 
(x:,O,x?,O) and (O,x$,O,x4*). Comparison of (26) with 
(30) shows that  “unsymmetric” equilibria do not exist 
then  the symmetric equilibrium is stable and  that they 
reduce  to  the symmetric equilibrium  then the expres- 
sion in the left-hand  side of (26) equals zero. Thus, 
each of the two branches of the equilibria given by 

0.40 I 
I 

I 1 

r/s 

CL. 

FIGURE 2.-Regions  of  existence and stability of different equi- 
libria on the ( a p ,  T / S )  plane for zo = 0. The roman numerals denote 
the regions where the  following equilibria exist and are stable: I ,  
monomorphic equilibria (0,l .O,O)  and (0,0,1 ,O);  11, single polymor- 
phic equilibria (xl,O,xg,O)and (O,x~,0,xq); 111, a pair of“unsymmetric” 
doubly polymorphic equilibria; IV, “symmetric” doubly polymor- 
phic equilibrium. 

(30)  connects  a  monomorphic  equilibrium with  an 
equilibrium with one locus polymorphic bifurcating 
from  them  then they become unstable and crosses the 
symmetric equilibrium at  the point where it becomes 
unstable. This pair of “unsymmetric” equilibria is 
stable. Figure  2 shows regions of stability of different 
equilibria. We see that when the symmetric equilib- 
rium is stable it is the only stable equilibrium, while 
in other regions  the stable equilibria (monomorphic, 
with one locus polymorphic, or “unsymmetric” poly- 
morphic)  occur in pairs. In the  latter case results of 
evolution depend  on  the initial conditions. The main 
conclusion that can be drawn  from this figure is that 
selection need  not be extremely  strong relative to 
recombination to maintain genetic variability in both 
loci. 

DISCUSSION 

Equations that describe evolution of polygenic char- 
acters under stabilizing selection are very complex 
and cannot be analyzed without simplifying assump- 
tions. A  standard set of such simplifications includes 
a weak selection approximation, equivalence of the 
loci  with respect to their  contributions to  the trait 
value, and  the location of  the optimum  phenotype at 
that of complete  heterozygote. One of the common 
beliefs that has emerged  from  these simplifications is 
that in the absence of  other factors stabilizing selection 
on  an  additive  trait  cannot maintain variability in 
more  than one locus. NACYLAKI (1 989) showed, how- 
ever,  that if the contributions of two diallelic loci to 
an  additive  trait are sufficiently different, some forms 
of stabilizing selection can maintain variability in both 
loci. T o  get these results NACYLAKI used a weak 
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selection approximation.  This  approximation is valid 
in the  strict  sense if A / r  << 1, where A is the  maximum 
difference in fitnesses between  genotypes,  and r is the 
recombination  rate  (NAGYLAKI  1976).  In  NAGYLAKI’S 
(1 989) asymptotic  results  for strong selection on  one 
or  both loci, A is about  1, while  a  necessary condition 
for  the  maintenance  of variability under Gaussian 
fitness function, d > 1.3 leads to A > 1 - e“.92 = 0.8. 
Hence in these  situations  even  for  nonlinked loci the 
inequality A / r  << 1 is not  true.  Thus, this  analysis still 
left open  the  question  of  the  dependence  of  the pos- 
sibility of  stable  multilocus  polymorphism on  the in- 
tensity of  stabilizing  selection. 

In  this  paper we have  shown that if the  double 
heterozygote  has  the  optimum  phenotype  and  the 
contributions  of  the loci to  the  trait  are  different,  then 
any  symmetric  stabilizing  selection fitness function  can 
maintain  genetic variability provided selection is suf- 
ficiently strong  relative  to  linkage.  Figure 2 shows that 
selection need  not be extremely  strong  relative to 
recombination  for  the  polymorphic  equilibria to be 
stable.  For  example, if ap is about 0.5, polymorphism 
is stable  for r / s  S ‘A. Genetic variability  can be main- 
tained  for small r / s  values if zo # 0 provided  the 
deviation  of the  optimum  phenotype  from  that  of a 
double  heterozygote is not very much. A sufficient 
condition  for  existence  of locally stable  polymorphic 
equilibrium  under  quadratic  stabilizing selection for 
small r / s  values is I zOI  < (1 - 4 / 2 .  Decrease i n  
difference  of allelic  effects ( i e . ,  increase in CY.) and 
increase in 1 z o )  both  decrease possibility of  stable 
polymorphism.  These  results  seem  not  to  be  restricted 
by the case  of quadratic  fitness;  similar  conclusions 
are valid for  other stabilizing  selection  fitness  func- 
tions.  For  example,  one  can show that  for  linkage 
sufficiently tight  and  “triangular”  fitness  function, w ( z )  
= 1 - s I z - zo I ,  there exists a locally stable  polymor- 
phic  equilibrium,  provided I zo I < (1 - a2)/2. As r / s  
+ 0 this  equilibrium  reduces to  an  equilibrium in the 
form  (O,x~,x:~,O). 

T h e  polymorphic  equilibria  that  were  analyzed in 
this  paper  are  characterized by some  interesting  prop- 
erties.  First,  the  mean  value  of  the  trait  at  equilibrium 
is not  equal  to  the  optimum  phenotype.  This  means 
that analysis of  a  population  at  such  an  equilibrium 
would exhibit a component of apparent  directional 
selection.  Second,  these  equilibria  have  large levels of 
negative  linkage  disequilibrium which “hides”  additive 
genetic  variance. The  “hidden”  genetic variation will 
be “released” by recombination if selection is relaxed. 
Third,  different equilibria  including  different poly- 
morphic  equilibria  can  be  stable  simultaneously and, 
hence,  the  outcome  of  evolution  depends  on  the his- 
tory.  Fourth,  increasing  the  strength  of  selection  can 
result  both in increase or  decrease of the  genotypic 
variance. Of special interest is a possibility of  increase 

in the  genotypic  variance  as a result of increase in the 
intensity  of  selection. This can occur,  for  example, if 
the  population is near a  monomorphic  equilibrium  or 
an  equilibrium with one locus polymorphic  and  this 
equilibrium  becomes  unstable  when selection is 
strengthened.  Another  situation is when the popula- 
tion is at a  stable  polymorphic  equilibrium  and z,, 
deviates  from zero (see  Expression 23 and 24). Our  
results  show that global  characteristics  of  equilibria 
significantly depend  on relative  strength  of selection 
and linkage.  For  example,  there is no stable  polymor- 
phic  equilibrium  for very weak selection, one such 
equilibrium  for very strong  selection,  and several  sta- 
ble  polymorphic  equilibria  for  moderately  strong se- 
lection. 

Our  overall  results here  that stabilizing  selection 
does  not necessarily eliminate  genetic variability are 
consistent  with  some  experimental  results  on  the ef- 
fects  of  applying  strong stabilizing  selection to labo- 
ratory  populations. In some  of  these cases (FALCONER 
1957;  PROUT  1962),  the lines  subject to  strong stabi- 
lizing  selection did not  have significant reductions in 
genetic variability  relative to control lines, which is 
compatible with the results we have  derived  here. 
Note  that, in contrast,  explanations  for  the  mainte- 
nance of genetic variability  based on  mutation selec- 
tion  balance  would  predict  that  strong stabilizing se- 
lection  would  reduce  genetic variability. 
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APPENDIX 

In  the main text we used regular  perturbation tech- 
niques to find location of the  perturbed equilibria. 
Substituting new perturbed equilibrium  gamete  fre- 
quencies x,,o + e ~ , , ~  into  the matrix that  determines  the 
stability of equilibria and calculating the  correspond- 
ing eigenvalues, we can find stability conditions  for 
the  perturbed equilibria. The first order  perturbation 
X,, for  an eigenvalue X of the matrix V = V,O + C V . ~  is 

where x and y are a right and  a left eigenvector of V,,, 
that  corresponds to X.0 and ( y T x )  # 0 (HORN and 
JOHNSON 1985, Section 6.3.12). 

For simplicity let us assume that r < s << 1 (cf :  
HOPPENSTEADT 1976). In this case recurrence  equa- 
tions (2) are  approximated by the corresponding dif- 
ferential  equations, and  the stability of equilibria de- 
pends  on the eigenvalues of matrix U = {d(GAxJ/dxJj .  
At equilibrium (O,x&,x&,O) to zero order stability 
matrix U computed using variables u, ZI and t has form 
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(2i,0).  The right  eigenvectors of this matrix are 

while the  corresponding left eigenvectors are 

Computing first order  perturbation  for  the ele- 
ments of matrix U ,  we find that  the first order esti- 
mates for  the eigenvalues of the stability matrix are 

(A4c) 

Expressions (A4) can be used to find the estimates 
of the critical value of the recombination rate r (or 
the  ratio r / s )  under which the  equilibrium becomes 
unstable. Figure  3 shows  how (r /s)< depends  on a2 in 
the case when z0 = 0. This figure also presents the 
exact dependence calculated from  (26).  Note  that 
when Xu,( )  = Xu," (near a2 value about  0.27)  a  right and 
a left eigenvector  corresponding  to Xu,( )  and  to Xu,( )  are 
orthogonal  and expression (Al) cannot be used. Fig- 
ure 3 shows that  for a p  > 0.5  the estimates of 
( r / s ) c  based on first order analysis are close to  the 
exact values. 


