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ABSTRACT 
A computer simulation of the process  of nucleotide substitutions in a finite haploid population 

subject to selection in a randomly fluctuating environment provides a  number of unexpected results. 
For rapidly fluctuating environments, substitutions are more regular than random. A small mutation- 
rate approximation is used to explain the regularity. The explanation does not depend heavily on the 
particulars of the haploid model, leading to  the conjecture that many  symmetrical  models of molecular 
evolution with rapidly changing parameters may exhibit substitutions that are more regular than 
random. When  fitnesses change very  slowly, the simulation shows that substitutions are more clumped 
than random.  Here a small-mutation approximation shows that  the clustering is due to the increase 
in fitness that accompanies each successive substitution with a consequent lowering of the effective 
mutation rate. The two observations taken together suggest that  the common observation that amino 
acid substitutions are clustered in time is due  to  the presence of parameters  that change very  slowly. 

M OST  sequence  evolution involves the  fixation  of 
mutations  at  nucleotide sites. Nucleotide  mu- 

tations  that  ultimately fix  in the  population  appear  at 
widely separated  points  in  time.  These  times  form  an 
origznation process, a point  process  where  an  event is a 
time  that a mutation  destined for fixation  first  appears 
in the  population.  The  times  that  mutations actually 
fix in  the  population  constitute a second  point  process 
called thejxation process. T h e  origination  and  fixation 
processes are  examples  of substitution processes. We 
can  learn  about  substitution  processes  for  particular 
models  with  mathematics or computer  simulations. 
We  can  estimate  properties of real-world  substitution 
processes  using  sequence  data.  Eventually, we would 
like to  use  sequence  data  to  decide which  models of 
molecular  evolution  seem  to  correspond  most closely 
to  events in the  real  world.  This paper is the first  in  a 
series  designed  to  explore  the  modelling  aspect of this 
program. 

Although  much is known  about  the statistical prop- 
erties  of  substitution  processes  under  the  neutral  the- 
ory,  almost  nothing is known  for  other  models  of 
molecular  evolution. T h e  reason,  of  course, is that 
these  other  models do not  serve  up  the  simple  math- 
ematics  that  characterize  neutral  models.  What  results 
we do have  are of two  sorts. One  class of results  use 
“empirical”  models of evolution.  They specify  a rate 
of  substitution  that  depends on some biologically  in- 
teresting  parameter,  such  as  the  mutation  rate,  and 
then  assume  that  substitutions  occur  instantaneously, 
on the  time scale of molecular  evolution,  with  this 
rate. A good example  of this approach is TAKAHATA’S 
(1987) investigation of the  fluctuating  neutral  space 
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model.  However,  as  this  approach  does  not  incorpo- 
rate  the  dynamics  of  substitutions,  some  interesting 
effects  due  to  these  dynamics  may be missed.  An 
example will be  given in  this paper. 

The  other  class of results are based on asymptotic 
analyses under  the  assumption  that  some  parameters 
get  large or small. T h e  SSWM  (strong  selection, weak 
mutation)  Markov  chain  models (GILLESPIE 199 1 )  are  
examples  of  this  approach.  With  SSWM  processes,  the 
strong selection  assumption  also  leads  to  instantaneous 
substitutions on the  time scale of molecular  evolution. 

All of  the  above  models-neutral,  neutral  space  and 
SSWM-predict  that  the  variance in the  number  of 
substitutions is greater  than or equal  to  the  mean. 
Molecular  evolution  should be “random” or should 
deviate  from  randomness in the  direction  of  being 
episodic,  with  substitutions  occurring in clusters. T h e  
data  generally  exhibit  this  as well. Amino acid  substi- 
tutions  tend  to  be  clustered (OHTA and KIMURA 197 1; 
LANGLEY and FITCH 1974; KIMURA 1983; GILLESPIE 
1986) while  silent  substitutions  can  not  confidently  be 
said to  deviate  from  random (BULMER 1989; GILLES- 
PIE 1991), although  the  data  on silent  substitutions 
are currently  inadequate. 

But  what  about  other  models  of  molecular evolu- 
tion?  What  patterns  of  substitutions do they  predict? 
In  particular,  what  about  models  that do not  assume 
strong  selection?  Here we have  little in the way of 
mathematics  to  help us since we must  face  the  full 
dimensionality of these  models. A  first  look at  such 
models will naturally  come  from  computer  simula- 
tions. It is hoped  that  the  simulations will suggest a 
line of mathematical  investigation  that will lead to  an 
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understanding of the complexities of molecular evo- 
lution with moderate selection. 

In this paper we look at a simple model of haploid 
selection in a temporally fluctuating  environment. 
The haploid model was chosen for  a  number of rea- 
sons, foremost being its relative simplicity. As will 
soon become apparent,  there  are a number of features 
of this model that  are  quite complex and yet are 
shared by other models, including diploid models. By 
keeping the basic model under investigation as simple 
as possible, we can focus on those aspects of the 
dynamics of substitutions  that seem most fundamen- 
tal. 

A happy benefit of choosing a haploid model is that 
the dynamics are  the same as for  additive diploid 
models when the  temporal fluctuations in the  environ- 
ment are sufficiently strong. In fact, the dynamics of 
haploid models are  the same as for  the diploid TIM 
model (TAKAHATA, IISHI and MATSUDA 1975; TAKA- 
HATA and KIMURA 1979),  a model of selection in a 
fluctuating  environment  without  a balancing selection 
component  (unlike, say, the SAS-CFF model). Alleles 
enter  the population by mutation and  are fixed or lost 
through  the combined  action of drift  and fluctuating 
selection. The  TIM model might  be  a  good  approxi- 
mation for  the dynamics of silent mutations which, 
presumably, are  under much weaker selection than 
are replacement  mutations. 

The mathematics of models of selection are too 
difficult for  the  traditional analytic approaches used 
in population genetics. With this paper we will begin 
a systematic study of the substitution processes using 
computer simulations. 

METHODS 

In this section, we describe the simulations that 
provide  the basic phenomenology to  be investigated 
in subsequent sections. The simulated model is of a 
finite haploid population  undergoing selection in a 
temporally fluctuating  environment. The locus under 
study is represented by WATTERSON’S (1 975) infinite- 
sites, no-recombination model of the gene. An “allelic 
genealogy” (GILLESPIE 1989; TAKAHATA 1990) is used 
to keep  track of the ancestry of alleles. 

Allelic genealogies are  represented in the  computer 
by a  rooted  tree, each node of  which is a  unique 
haplotype.  A  haplotype  node is a  data  structure with 
pointers  to  parent and sibling nodes and with values 
of  the  current  abundance  and selection coefficient of 
the haplotype. Each node also records  the  generation 
at which the haplotype first appeared in the popula- 
tion with  its mutant site (the origination  time of the 
site) and, should the  mutation  become  fixed-the  node 
becomes the  root  node  for all alleles in the popula- 
tion-the fixation time of the site. When haplotypes 
without descendents are lost from  the  population, the 

allelic genealogy is pruned  to  free  computer memory. 
When the simulation is completed, the properties of 
the origination and fixation point processes may be 
studied by “climbing” the  tree  and  recording  the 
origination and fixation times of sites. 

The second component of the simulation is respon- 
sible for  the dynamics. Each generation,  the  abun- 
dances of haplotypes are changed by the action of 
selection, genetic  drift, and mutation. The sequence 
of events begins by using the allelic genealogy to  find 
the  number of alleles currently in the population, K ( t ) ,  
and  the frequency of each of the alleles, x i ( t ) ,  i = 1, 2, 

The allele frequencies are changed by natural selec- 
tion by first assigning each allele a  random fitness 1 + 
Yi(t ) .  The selection coefficients, Y,(t), are Gaussian 
random variables that  remain  constant, on average, 
for l/a generations  before  changing. We will call the 
average  time  between  changes  the persistence time. 
Formally, the selection coefficients are defined by 

. . . , K( t ) .  

Yz(t) = 1 JYi( t  - 1) with probability 1 - a 
u&(t) with probability a, (1) 

where  the collection ( & ( t ) ) ,  indexed by allele number 
and  generation, is composed of independent  normal 
random deviates with mean zero and variance one. 
Thus, Yi(t) is an  autocorrelated Gaussian process with 
mean zero and autocovariance  function 

Cov(Y,(t), Yi(t + k ) )  = 2 ( 1  - a)’? (2) 

If the persistence time is one,  the  environments  are 
independent across generations. The parameter u2 
reflects the  strength of selection. 

Once  the fitnesses are assigned, the allele frequen- 
cies are changed  according to the  standard  formula 
for haploid selection: 

where 
K ( f )  

F(t) = x x,(t)Y,(t) .  
i= 1 

The next  step is genetic  drift. This is accompanied 
by choosing a multinomial random  variate with pa- 
rameters (N,  x1 . . . xK(Q),  where N is the population 
size. This  step, which is the rate-limiting step of the 
simulation, is made  faster by using the multinomial 
algorithm  described in DEVROYE (1986, p. 559), which 
requires  a binomial generator. The binomial genera- 
tor is a recursive method also from  DEVROYE  (p.  537). 
The speed of this generator decreases only with 
log(N),  making it very attractive  for  population ge- 
netics simulations. 

The final step is mutation. Each haplotype  mutates 
with probability u. Should it mutate,  the new mutation 
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replaces the individual parental  haplotype, entering 
the population with an initial abundance of one.  When 
a  mutation  occurs, the allelic genealogy must be up- 
dated by placing the new mutation  on  the  tree with 
the necessary adjustments of pointers. 

The simulation is parameterized by N ,  the popula- 
tion size, u2, the variance in the selection coefficient, 
a, a  measure of the  autocorrelation in fitness, and u, 
the mutation  rate. As is usual in population  genetics, 
the combined  parameters 19 = 2Nu and a = Nu2 will 
be used to describe the simulations. 

The two components of the simulation, the allelic 
genealogy and  the dynamics, are conceptually inde- 
pendent.  They  interact at  the beginning of each  gen- 
eration when the  number  and frequency of alleles are 
determined,  and whenever  a new mutation  appears. 
By keeping these two components  separate, it is pos- 
sible to simply change  the dynamical equations to 
examine  different models of selection. Subsequent 
papers in this series will exploit this structure. 

Simulations like those just described  provide  a 
wealth of output.  Here we will concentrate only on 
properties of the origination process. That is, on  the 
point process defined by the times that mutations  first 
appear  that ultimately becomes fixed in the popula- 
tion. The origination process is the point process that 
serves as the model for  the analysis of sequence data. 
The counting process associated with the origination 
process will be called " ( t )  and will represent  the 
number of originations that  occurred in an interval of 
t generations. 

The simplest property of the origination process is 
the  rate or intensity of the process defined by 

In general,  the  rate of origination is proportional  to 
the  mutation  rate.  (Under  the  neutral model it is equal 
to  the mutation  rate.) For this reason,  the  rate of 
origination will usually be expressed  relative to  the 
mutation  rate: Korig/u. 

There  are several options for describing the second- 
order moments of the origination process. T o  date, 
most  of the work has focused on the index of disper- 
sion, 

Z ( t )  = 
Var M(t) 

E M ( t )  ' 

which is a  measure of  the spacing of originations. As 
the origination process for  the  neutral model is a 
Poisson process, the index of dispersion is one  for all 
t. If the index of dispersion is greater  than  one,  the 
originations tend  to  be  clustered; if it is less than  one, 
they tend  to  be uniformly spaced. 

In most experimental  situations,  the  time  interval 
of observation is very long so attention has naturally 

drifted to  the asymptotic value of the index of disper- 
sion: 

R = lim Z ( t ) .  
1- 

While R is a  convenient  parameter  for  estimation, it 
provides little insight into  the  nature of the process 
beyond  whether it is more  uniform or clustered  than 
a Poisson process. For this reason, we will look for 
another description of the second-order  moments of 
the origination process. The most promising appears 
to be the moments of the intervals between substitu- 
tions. 

The times between  events of a  stationary  point 
process form  a  stationary  time series in discrete  time, 
. . . , T-I, TO, TI, . . . . A common statistic used to 
characterize  stationary  time series is the autocovari- 
ance  function 

If ck is positive, for example,  then the times between 
substitutions  that are k substitutions apart  are posi- 
tively correlated. The index k is often  referred  to as 
the lug. The special case co is the variance in the time 
between substitutions. 

Rather  than  recording  the  autocovariance  function 
itself, it is more  informative  to  examine  the  autoco- 
variance divided by the square of the mean time 
between  originations, 

g=- 
 ET,)^' 

Ck 

The reason  for dividing by the square of the mean 
time rather  than  the variance, which would give the 
autocorrelation, is that % is more closely related to R 
than is the  autocorrelation. The connection may be 
found in COX and ISHAM (1 980, p. 36), who show that 

where 

s k  = TI + T2 + . . . + Tk. 

It is a  standard  result  that 

Var(Sk) - K co + 2 ci 

as K + 00, providing  that the sum is finite.  Putting this 
into (7) yields 

( ) 

R =  Y o + 2  x g. m 

(8) 
i= 1 

This is the basic relationship between the properties 
of the  counting process, "(t) ,  and  the interval proc- 
ess, X ,  that will be used in this paper. 
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FIGURE 1.-The scaled rate of origination, kong/u for three values 
of theta from simulations with N = 2000 and 01 = 10. Each point is 
based on  a time series of 4000 originations. 

RESULTS 

The initial runs of the simulation used (Y = 10, N = 
2000, 8 = 5.0, 0.5,  0.1 and various values for  the 
persistence time. The rate of origination  divided by 
the  mutation rate, as a  function of the persistence 
time, is illustrated in Figure  1. The most striking 
aspect of this figure is that  the  rates of substitution 
are highest for  intermediate values of the persistence 
time of the  environment.  This  result is not  unex- 
pected. GILLESPIE (1972), TAKAHATA, IISHI and MAT- 
SUDA (1975), GILLESPIE and GUESS (1978),  and TAK- 
AHATA and KIMURA (1979) have all shown that  the 
effective strength of selection increases with the  au- 
tocorrelation of fitness. With stronger effective selec- 
tion comes higher  rates of substitution.  However, 
once the persistence time becomes very long, the 
environmental  changes  become so slow that  the  rate 
of substitution  drops to match the  rate of environ- 
mental change.  It is, after  all,  the  fluctuations in fitness 
that  drive  mutations to fixation. 

A curiosity of Figure  1 is that  the relative rate of 
substitution is smaller for  greater values of theta. The 
only available theoretical treatment of this problem, 
due  to TAKAHATA and KIMURA (1  979), suggests that 
the relative rates of substitutions should be  independ- 
ent of theta.  Their  theory, however, is based on a two- 
allele approximation which clearly breaks  down when 
more  than two alleles are present. We will return to 
this point later. 

We turn now to  the  second-order  moments of the 
origination process. Figure  2 illustrates the  depend- 
ency of % on the lag for  three cases  with 8 = 5.0 and 
N = 2000:  the  neutral model (u' = 0), our haploid 
model with a persistence time of one  generation,  and 
our haploid model with a persistence time of 100,000 
generations. 

The outcome  for  the  neutral model is exactly as 
expected. The waiting time  between  originations has 
an  exponential  distribution  for which g o  = 1 and 

"Neutral 
"E+ Persistence time = 1 

- + Persistence time = lo5 . 

-1 - 0 1 2 3 4 5 6 

Lag 

FIGURE  2.-The covariance of the times between originations 
divided by the square of the mean, U, from simulations with e = 
5,  N = 2000, and a = 10. The neutral and persistence time = 1 
cases are based on a time series with 10,000 originations, the 
persistence time = I O 5  case used a series with 4000 originations. 

successive intervals are  independent, so g = 0, i > 0. 
The haploid model with independent  generations 

(a persistence time of one) offers up two surprises. 
The first is that < 1. The second is that  the 
successive intervals  appear to be nearly uncorrelated, 
Z = 0, i > 0. From (8) we are led to  the conclusion 
that,  for this model, 

R =  Yo<l (9) 

and  therefore  that  the origination process is more 
regular  than  a Poisson process. This observation was 
noted in passing in GILLESPIE (1991,  Figure 7.3) but 
otherwise  appears to be new. As the  approximation in 
(9) is very good, R and go will be used interchangeably 
when discussing fitnesses with a persistence time of 
one. 

The haploid model with a persistence time of lo5 
has a  much  more complicated pattern. Now g o  > 1 
and g # 0, i > 1. Referring again to (8) and noting 
that  the values of Z, i > 0 are small  in magnitude, we 
conclude that  for models with long persistence times 
R > 1 and thus  that  the  origination process is more 
clumped  than  a Poisson process. This result is  less 
surprising  than the previous one as very long  autocor- 
relations in the  environment  are known to lead to 
clustering of substitutions in other models (GILLESPIE 

The dependency of go on  the persistence time is 
illustrated in Figure 3. As the persistence time in- 
creases, the origination process becomes even more 
uniform until the persistence time is about  100 gen- 
erations  and  then begins to become more  clustered. 
There is no  hint of an asymptote in  with increasing 
persistence time. The initial increase in uniformity 
suggests that uniformity will generally increase with 
increasing selection. 

These simulations pose a  number of interesting 
questions.  Foremost  among  these is:  Why  is R less 

199  1). 
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FIGURE  3.-The variance of the time between originations di- 
vided by the square of the mean, g, from simulations with 0 = 5, 
N = 2000, and a = 10. Each point is based on a time series of 4000 
originations. 

1.1 

1 

0.9 

0.8 

0.7 

0.6 
0 10 20 30 40 50 

OL 

FIGURE  4,"The variance of the time  between originations di- 
vided by the square of the mean, %& from simulations with e = 5, 
N = 2000, and several values of a. Each point is based on a time 
series of  4000 originations. 

than  one in rapidly changing  environments  and 
greater  than  one in  slowly changing  environments? 
The answer, which will be given in the  next two 
sections, suggests some conjectures about origination 
processes in more  general models that will be  taken 
up in the discussion. 

RAPIDLY CHANGING  ENVIRONMENTS 

The primary goal of this section is to explain why 
it is that  the  substitution of sites is more  regular  than 
random when the  environment  changes relatively rap- 
idly. In  addition,  an  asymptotic expression will be 
given for  the  average  rate of substitution.  Figure 4 
illustrates the  dependency of Y, on a and clearly 
shows that the regularity of substitutions  extends 
down  to CY = 2. 

The substitution dynamics are so complex that  a 
direct mathematical attack  appears unlikely at this 
time. Therefore, we will adopt  an asymptotic ap- 
proach based on small B. As B + 0, the infinite-sites 

model will lose most of its variation,  approaching as it 
does  a simple two-allele model.  In the two-allele 
model, recurrent mutation mimics mutation to unique 
alleles in the infinite-sites model. As long as most 
mutations are lost, as  happens when N is large and B 
is small, the two models will have similar allele-fre- 
quency dynamics. The fixation of an allele with initial 
frequency  zero in the two-allele model corresponds to 
the fixation of a site in the infinite-sites model. 

We will begin with a simulation of the two-allele 
model to show the convergence of the infinite-sites 
and two-allele models as 0 -+ 0. The two-allele model 
may be  simulated exactly like the infinite-allele model 
except that we do not  keep  track of the separate 
identities of individual mutations. Alleles  fall into two 
classes: the  original allele and  mutants  derived  from 
it. 

The difference operator  for selection is a speciali- 
zation of Equation 3. The change in the frequency of 
the first allele, x ( t ) ,  in a single generation, is given by 

After  changing x ( t )  by selection, it is changed by 
mutation (deterministically) according to 

h ( t )  = u(1 - x). (1 1) 

Genetic  drift is added by choosing a binomial random 
variable with parameters N and x. 

In the two-allele simulation, the process is restarted 
with each fixation. The fixation of alleles is analogous 
to  the fixation of sites under  the infinite-sites model. 
If the  random  time between successive fixations of the 
two-allele model is called Tf, then  the  point process of 
fixation times is in reality a renewal process with the 
time between events being Tp For  a renewal process, 

= 0 for i > 0, so R = YO. T o  distinguish the two- 
allele index of dispersion from  the infinite-sites index 
(9) we will call it 

The use of the two-allele renewal process as the limit 
for  the infinite-sites model as B -+ 0 is made  more 
compelling by the observation  that  the  origination 
process for  the infinite-sites model has second-order 
properties like those of  a renewal process. 

The convergence of the two-allele and infinite-sites 
simulations can be seen in Table 1 by noting  that  the 
relative errors, 1 R - R2 J / R ,  in the values of R are 
19%, 5.6%, and 6.3% for B = 0.5, 0.1, 0.05, respec- 
tively. The  other quantities in the table also converge, 
as will be discussed below. Of  particular  importance 
here is that  the two-allele model exhibits  a  pattern of 
substitution  that is more  regular  than  random.  Thus, 
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TABLE 1 

Simulations of rapidly changing environments 

00 sites T w o  alleles 

e P Ra R# pPRb R P Rb R,/ P2Rb RP 

0.5 0.47 3.6 0.32 0.80 0.78 0.64 1.4 0.35 0.59 0.63 
0.1 0.87 1.2 0.31 0.89 0.89 0.89 1.1 0.34 0.83 0.84 
0.05 0.93 1.1 0.32 0.94 0.94 0.94 1 .o 0.32 0.88 0.88 

Results of simulations of the infinite-sites and two-allele models with independent environments. The parameters for the simulation were 
N = 2000 and LY = 10. The summary statistic were calculated from time series with 4000 originations. See the text for the definitions of the 
statistics. 

TI -!- TL -b T3 .I “ IT, 
Tb-/ :1 Tcf I ’  

FIGURE 5.-The time to fixation in the two-allele  model broken 
into components. 

in going to this simpler model we have not lost the 
property  that we hope  to  understand. 

The key to  understanding why R2 < 1 is a  decom- 
position of the time  to  fixation, Tf, into two compo- 
nent times, 

Tf = Tb + T+ (13) 

as illustrated in Figure 5 .  The first  time is the boundary 
time, which is the  time  from the beginning of the 
process until the last generation  at which x = 0 before 
fixation. The second time is the conditional faxation 
time, which is simply the time  from the last generation 
at which x = 0 until fixation occurs. As is clear  from 
the  figure,  the  random variables Tb and Tg are inde- 
pendent. 

The index of dispersion of the fixation time, Tf, 
may be written in terms of the indices of dispersion 
of the  boundary  and fixation times as follows: 

Var Tf - Var(Tb + Tcr> 
(ETf)‘  (ETb + ETq)‘ (14) 

R2=-- 

= P2Rb + (1 - p)‘Rq, 

where 

ETb ’= ETb + ET$ 

Var Ti R, = - 
  ET^)^ ’ i = b, 4. 

The values  of these three statistics are recorded in 
Table 1 for  decreasing values of 8. The table suggests 

that, as 8 +- 0, p +- 1, Rb - 1, and  Rqis small and 
doesn’t  change very much. In  a  moment we will 
explain these asymptotics; for now note  that they 
suggest that 

as 8 + 0. 
Equation 14 shows that  the index of dispersion of 

the sum of two independent  random variables is a 
“quadratic  average” of the indices of dispersion of the 
component  random variables. The squaring of 9 and 
(1 - p) means that  the  index of dispersion of the sum 
is always  less than  the  arithmetic  average of the two 
component indices of dispersion. This is at  the  heart 
of why R C 1. 

That p +- 1 follows from  the observation that  the 
expectation of the total fixation time increases as 8 - 
0 while the conditional fixation time is insensitive to 
changes in 8. The increase in ETf with decreasing 8 
follows from  the fact that  mutation is the only force 
that pushes allele frequencies away from zero. At the 
limit, 8 = 0, a process initiated with x = 0 would stay 
there  forever. 

The insensitivity of the mean conditional fixation 
time, ET+ to 8 is due  to  the conditioning. If we know 
that  a sample path will ultimately fix without  hitting 
zero,  then  the relatively weak mutational  force will 
only appreciably affect its dynamics while x 0, which 
doesn’t  happen  for  a very long time. 

More  interesting is the  approach of Rb to  one. 
Referring  to  Figure 5 ,  we see that  the boundary  time 
may be  written as a  random sum of excursion  times, 

Tb = T1 + T2 + . . . + T,M + T,, (16) 

where T,  is the relatively short  time  that  the process 
is identically zero  before  the final ascent to fixation. 
The random variable M is the  number of excursions 
that  occur  before fixation. An excursion begins when 
the process first hits zero after having exceeded  zero 
(or  at t = 0) ,  and continues until the process leaves 
and  then  returns  to zero. The excursion time is just 
the time  spent on  an  excursion. 
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As each excursion is independent of all previous 
excursions, the  number of excursions, M ,  will be ge- 
ometrically distributed with parameter q, the proba- 
bility that  the  next  excursion is the last one  before 
fixation. That is, 

Pr(M = m) = ( 1  - q)mq, m = 0, 1 ,  . . . . ( 1  7) 

The moments of M are 

EM = ( 1  - 9)/9 

Var M = ( 1  - q)/q2. 

As 6 + 0, the relative  contribution of T, to  the 
boundary  time becomes insignificant. (In fact, at  the 
diffusion limit, N + 00 with 6 fixed,  the time  spent at 
zero has measure zero.) For this reason, we will ignore 
T, and assume that 

Tb = T I  + T2 + . . . + TIM. (18) 

Using the moments of M we can write 

and 

1 q Var T, 
1 - q 1 - Q   ET,)^ Rb = - +-- > 1 .  (19) 

In Table 1 we see that Rb < 1 does, in fact,  hold. 
As 6 + 0, q + 0 because the diminishing  mutation 

pressure makes it less likely that  a  particular  excursion 
will lead to fixation.  Moreover, it is also the case that 
Var Ti/(ETi)' remains bounded.  Thus, Rb + 1 as 6 + 
0. This result is closely related to GNEDENKO'S ( 1  970) 
theorem  that  a  geometric sum of positive random 
variables is asymptotically exponentially  distributed as 
the mean of the  geometric  distribution  approaches 
infinity. (Recall that  the variance of an  exponential 
random variable is the  square of the  mean.)  Thus,  the 
increase in the mean number of excursions as 6 + 0 
explains why Rb + 1. 

A word needs to  be said about  the values of p, I i b ,  

and R,f for  the infinite-sites simulation recorded in 
Table 1 .  Recall that  the only relevant  quantities  that 
we recorded in the allelic genealogy were the origi- 
nation and fixation times of sites. The moments of 
the conditional fixation time, Td, and  the time be- 
tween originations, To, are easily obtained,  as  are 
values of p and R,  However, the moments of Tb 
present  a  problem  as the  occurrence of more  than  one 
allele progressing  toward fixation at  the same  time 
mitigates against an  unambiguous  definition of Tb. 
The values in Table 1 were  obtained by setting Tb = 
To - T@ and using the moments of To and Td to 
calculate the moments of Tb under  the assumption 

that To and Tq are uncorrelated.  This assumption is 
patently false, but  the correlation  approaches  zero as 
6 + 0. This  problem  points  out  the  need  for  more 
work on finding stochastic quantities in infinite-sites 
models that lend themselves to a mathematical treat- 
ment. 

Our line of reasoning  leading to Equation 15 has 
used a probabilistic representation of the process cou- 
pled with simulations. While this approach provides 
adequate insight into  the process, it is desirable to 
have a  more  traditional analytic demonstration  that 
R2 < 1. This is possible; in fact, it is possible to show 
that this property holds for  a class  of diffusions with 
reflecting  barriers. 

Consider  a diffusion process, x ( t ) ,  on the closed 
interval [a, 61 with drift coefficient m(x)  and diffusion 
coefficient v(x) .  Assume that a is a  reflecting  barrier 
and  that 6 is an  absorbing  barrier. As  is true for  the 
genetic process, assume that u(a) = 0 and  that m(a) > 
0. The mean  time  for  a process that begins at x(0) = 
x to hit the  barrier  at b, ExT, = t l ( x ) ,  satisfies the 
differential  equation 

- tY(x)  + m(x) t ; (x)  = - 1  4 x 1  (20) 2 

with boundary  conditions 

 ti(^) = - l / m ( ~ ) ,  tl(6) = 0. (21) 

(The first  boundary  condition may be obtained di- 
rectly from Equation 20 under  the assumption that 
v(a)t f (a)  = 0 as was pointed out  to me by MASARU 
IIZUKA.) The solution of Equation 20 is 

where 

[See, for  example,  GARDINER (1985, p. 139).] 

6 ,  E,Tj = t 2 ( x ) ,  satisfies the differential  equation 
The expected value of the  square of the time to hit 

- tP(x) + m(x) t i (x)  = -2t&) v ( x )  
2 

with boundary  conditions 

&(a) = -2tl(a)/m(~), t 2 ( 6 )  = 0. (25) 

[See Cox and MILLER (1965, p. 232) for Equation 
24.1 The solution to Equation 24 may be easily found 
by dividing  both sides by 2tl(x) and using the same 
technique used to solve Equation 20. This is made 
particularly  straightforward because division by 2tl(x) 
does  not  change $(x). We have 
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T o  show that R < 1 ,  we need to show that  Var Tr 
< (ETf)' when the initial condition is x(0) = a. In  terms 
of the solutions to  the  differential  equations we need 
to show that 

tn(a) - < t l ( U ) ' ,  (27) 

or, more simply, that tp(a) < 2tl(a)'. As the derivative 
of t l ( x )  at a and  throughout its domain is negative, 
t l ( x )  < t l ( a )  for x > a and thus 

as required. As a consequence, we have the inequality 
in Equation 15. 

While this analytic approach  does tell us what we 
need  to know, the heuristic approach via the decom- 
position of times gives us a  much better feeling for 
the dynamics and suggests a  fertile  avenue for  further 
analytic work. 

We turn now to a discussion of the  rate of substi- 
tution of sites. Once again w e  will assume that B + 0 
and use a two-allele approximation.  A two-allele dif- 
fusion process corresponding  to  the  difference  equa- 
tion 10 with drift  and mutation has drift  and diffusion 
coefficients 

m(x)  = 2 4 1  - ~ ) ( 1 / 2  - X) + B(1/2 - X) (29) 

v ( x )  = 20x7 1 - x)' + x(1 - x) (30) 

when time is measured in units of N generations 
(TAKAHATA, IISHI and MATSUDA 1975). Actually, this 
diffusion does  not exactly correspond  to  the  simulated 
case as the diffusion models a  population with revers- 
ible mutation while the simulation uses  one-way mu- 
tation. Reversible mutation was chosen to make the 
diffusion symmetrical. Without  symmetry, analytic in- 
vestigations become a  computational  quagmire as the 
reader may want to verify. The difference in the one- 
and two-way models becomes insignificant as 0 + 0 
because most  of the time  spent  before  fixation is near 
zero where the t w o  models are asymptotically the 
same. Reversible mutation plays a  role by slightly 
opposing fixation as x ( t )  -+ 1 and thereby increasing 
ETf slightly. However, as both  genetic  drift and fluc- 
tuating selection are  stronger forces than  mutation in 
this region, they cause an allele with frequency  near 
one  to fix rapidly. That  the effect of the  extra muta- 
tional component  on the fixation time is insignificant 
as 0 + 0 will emerge as we compare  the analytic results 
to simulations. 

T h e  reciprocal of the mean time to fixation for 

process 29 is our small 0 approximation to  the  rate of 
fixation of sites under  the infinite-sites model. The 
mean time is given by Equation 22 with 

$(X) = x'( 1 - X)'[ 1 + 2 ~ 4 1  - X)]"'. (3  1 )  

An asymptotic analysis yields, for  the  leading  term, 

where 

b = m .  

T o  obtain  the  leading  term of the asymptotic ex- 
pansion note first that because $(x) in Equation 31 
and  the diffusion coefficient in Equation 30 are 
symmetrical in x, we can write 

As B + 0, the  integrand of the second integral be- 
comes 

[z( 1 - z)]'-I[1 - In[ 1 + 2az(l - z ) ] ~  + o(e2)].  (34) 

The integral of the  leading  term of this expansion is 

(35) 

The leading term of a series expansion of the first 
integral is 

a b  In(+) 

where b = m. Multiplying these two leading 
terms  together gives Equation 32. 

The rate of substitution  measured in units of gen- 
erations, is 

(37) 

The rates of substitution for  the infinite-sites and two- 
allele simulations are given in Table 2 along with the 
asymptotic rate given by Equation 37. The agreement 
appears  to  be satisfactory once 0 < 0.1.  However, it is 
clear that as 0 -+ 1 ,  the two-allele approximation  to 
the infinite-sites model breaks down. 

The rate of substitution may also be  derived in a 
more  traditional fashion by using the probability of 
fixation for a process without  mutation. The diffusion 
in this case is 

m(x)  = 2ax( 1 - x)( 1/2 - x) (38) 

v(x)  = 20x'(l - x)' + x(1 - x). (39) 
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TABLE 2 

Rates of substitution 

e 
m sites 
ratelu 

Two alleles Asymptotic 
1 1 m  1 / [ t l ( O b I  

0.5 2.39 1.51 3.55 
0.1 3.18 2.66 3.55 
0.05 3.35 3.16 3.55 
0.02 3.47 3.31 3.55 

Rates of substitution divided by the mutation rate for the infinite 
sites and two-allele simulations and as estimated by the asymptotic 
formula (37). The parameters are  the same as those for Table 1. 

The fixation probability is 

By expanding  the fixation probability near x = 0, it is 
easy to show that  the fixation probability is, asymptot- 
ically (for x = l/N), 

l n ( e )  . 
"1 

Multiplying the fixation probability by the mutational 
input each generation, Nu, gives the same result as in 
Equation 37. As a + m, the  rate of substitution 
approaches the  rate given by TAKAHATA and KIMURA 

As noted in the discussion of Figure 1,  the  rate of 
substitution  predicted by Equation 37 is proportional 
to  the mutation rate. The rate of substitution  divided 
by the mutation rate should  be  independent of u, in 
contradiction to Figure 1. The reason  for the  contra- 
diction is the presence of additional alleles in the 
infinite-sites simulation. As 8 increases, the homozy- 
gosity, Edecreases making it more difficult for alleles 
to enter  the population. This is seen directly in the 
component  of  the  drift Coefficient due  to selection, 

(1 979). 

EdXi = u 2 ( F -  xi)& 

This effect of decreasing Fwi th  additional alleles is 
not  present in the two-allele approximation. 

SLOWLY CHANGING  ENVIRONMENTS 

In this section we are interested in why R > 1 when 
the  environment  changes very slowly. The reason can 
be easily understood  without  resorting  to  mathemat- 
ics. Consider the rightmost case  in Figure 3, which 
corresponds to a persistence time of lo5 generations, 
and B = 0.1. With such a small theta,  there is very 
little polymorphism so we can assume that  there is 
always a nearly fixed  haplotype. 

Let us start following the population just  after  the 
fitness of the common allele changes.  With the 
change,  the  common allele will be assigned a new 
selection coefficient, Y ,  drawn  from  a  normal  distri- 

bution with mean zero and variance u2. Each genera- 
tion, on average, Nu mutations will enter  the popula- 
tion with selection coefficients drawn  from  the same 
normal  distribution. With some probability f ( Y ,  Z), 
defined below, an allele with selection coefficient 2 
will become fixed. The fixation could involve an allele 
with a selection coefficient that is either  larger or 
smaller than Y.  However, it is much  more likely that 
the fixed allele will have a  higher fitness than  the allele 
it replaces. 

The population will, in general,  experience  a se- 
quence of such substitutions, most involving the fixa- 
tion of alleles that are more fit than  the alleles they 
replace. Thus, with each substitution, the probability 
that  a  succeeding  mutation becomes fixed decreases. 
In other words, the  rate of substitution slows down 
with each substitution. 

The  rate of substitution will continue  to  decrease 
until, by chance,  the  environment  changes and  the 
common allele has its fitness chosen,  once  again,  from 
the normal  distribution. This "fall from  grace"  starts 
the substitution process off again with a relatively 
rapid,  but  deaccelerating,  rate.  It is not difficult to see 
that this rendition of the infinite-sites simulation will 
make  substitutions  appear  clustered and thus to  the 
elevation of R. These dynamics are very similar to 
those of the mutational landscape (GILLESPIE 1984). 
The current model assumes moderate (a = 1) selection 
and  an infinite number of alleles while the  mutational 
landscape model assumes strong selection (a >> 1) and 
a finite number of alleles. In both cases the lowering 
of the substitution rate with  successive substitutions 
comes from  the increase in the fitness of the fixed 
allele. 

This verbal argument may be  quantified by using 
standard results of population genetics. When the 
environment  changes very slowly, the fitnesses of al- 
leles remain  constant  for  time  intervals  that are much 
longer  than  the  time  required  for individual substitu- 
tions to  occur.  Thus, it is appropriate  to model the 
"local dynamics" of such populations with a  constant 
fitness model. That is, if the selection coefficient of 
the common allele is Y and that of a mutant, 2, then 
the  change in frequency of the common allele due  to 
selection is 

Ax= 
x(1 - x)(Y - Z) 

1 + XY + (1 - X)Z 
~ ( l  - x)(Y - Z), (42) 

where Y and Z are viewed as constants  (independent 
of time). If drift  and mutation are  added,  then it is a 
standard  result (KIMURA 1962)  that  the probability of 
fixation of the  mutant allele with initial frequency 
1/N  and selection coefficient 2 is 

(43) 
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TABLE 3 

Simulations of slowly changing environments 

w sites 
Markov model 

e R R Subs/fall 

0.5 3.08 3.92 3.79 
0.1 2.76 3.00 3.04 
0.05 2.49 2.48 2.66 

The parameters for both simulations were N = 2000, a = 10, 
and  a persistence time of 1 05. The summary statistics for  the Markov 
model were calculated from runs with 10000 fixations, those for  
the infinite-sites models, 4000. 

From this description, it seems plausible that  the 
population could be modeled by following the selec- 
tion coefficient of the common allele, Y(t ) .  Y ( t )  will 
change due  to a  substitution or a fall from  grace.  In  a 
particular  generation,  the probability of a  change due 
to a fixation is the probability that a new mutation 
enters  the  population, = 8 ,  times the probability that 
it is fixed, 

Should  a fixation occur,  then  the density of Y(t + 1) 
after  the fixation is 

Pr(2 = y and fixation) p (Y( t ) ,  y)e-y2/(2"2'dy 
Pr(fixation) 

dy = 
W ( t ) )  

On the  other  hand,  the probability that  the  change is 
due  to a fall from  grace is l/a. Should this occur,  then 
Y(t + 1) will be normally distributed with mean  zero 
and variance 6'. As the probability of a  substitution 
or a fall from  grace  depends only on the  current value 
of Y(t) ,  Y ( t )  may be viewed as a  discrete-time Markov 
process. Unfortunately, this process does not  lend 
itself to an exact analytic treatment. Some  approxi- 
mate results for  the case of an infinite  persistence  time 
may be found in the  paper by TACHIDA (1 99 1). 

Fortunately, the Markov process is easy to simulate. 
As in the previous section, our primary aim of the 
simulation is to see if  we can extract  the essence of an 
observation on the infinite-sites model and study it in 
a simpler two-allele context. In this case, Table 3 
shows that  the high value of R seen in the infinite- 
sites model is mimicked by the Markov process, Y ( t ) ,  
with quite  good  numerical  agreement. As our verbal 
explanation  for R > 1  that  introduced this section 
applies exactly to  the process Y ( t ) ,  we can feel confi- 
dent  that  the Markov process model provides the 
correct  explanation  for R > 1 in the infinite-sites 
model. 

In Figure 2 it  may be  noted  that Y 2  < 0 when the 
persistence time is 1 05. The reason  for this appears  to 
be as follows. From Table 3 we see that  there  are 
about  three substitutions  between each environmental 

change.  Of all  of the time intervals between substitu- 
tions that  are  separated by a lag of two, that between 
the first two substitutions  after an environmental 
change  and  that  between  the  third  substitution of the 
current  environment  and  the first substitution of the 
next  environment  are most  obviously negatively cor- 
related. If the first of these  intervals is long, then the 
next  environmental  change is more likely to  occur 
relatively soon after  the  third substitution in the  cur- 
rent  environment. The substitution after  the next 
environmental  change  occurs relatively quickly, so the 
interval  that spans the environmental  change will be 
relatively short. If, on the  other  hand,  the first of 
these intervals is short,  then  that spanning the next 
environmental  change will be relatively long. This 
leads to  the negative correlation. I have also examined 

for  the Markov model and it exhibits the same 
general  pattern as seen in Figure 2. 

DISCUSSION 

The explanation  for R < 1 in rapidly changing 
environments used a  proof  that  the variance of the 
fixation time is less than  the  square of the mean for 
all two-allele models with reflecting  barriers. This 
suggests that  there may exist a  large class  of infinite- 
sites models for which R < 1.  This class includes the 
neutral  model,  for which R = 1, and  our haploid 
model with short persistence times. It  does  not  include 
our haploid model with long persistence times or 
models like the fluctuating  neutral space model (TAK- 
AHATA 1987)  or  the mutational landscape model (GIL- 
LESPIE 1984)  that  incorporate  parameters  that  change 
on a  time scale that is longer  than the time scale of 
molecular  evolution.  A  reasonable  conjecture is that 
all processes modeled by exchangeable diffusions will 
have R < 1. However, simulation results, which will 
be presented in the  next  paper in this series, show 
that R < 1 for  the symmetrical overdominance model 
and  for  the SAS-CFF model, but  not  for  the symmet- 
rical underdominance  model,  for which R > 1. Thus, 
R < 1 appears  to  be  a  property of exchangeable 
diffusion models with balancing selection. Surpris- 
ingly, these simulations also suggest that  the  origina- 
tion processes for each of these models-SAS-CFF, 
overdominance,  underdominance and neutral-have 
second-order  moments that make them indistinguish- 
able  from renewal processes. Should this property 
hold under closer scrutiny, it will greatly simplify the 
analysis of data. 

It is natural  to ask whether  there is any evidence 
that R < 1 in published data. The answer is, to  the 
best of my knowledge, no. In Table 3.5 in GILLESPIE 
(1991), 20 loci are examined of  which only two have 
values of R less than  one  for  replacement  substitutions 
(the lowest is 0.21) and  four have values less than  one 
for silent substitutions (the lowest is 0.25). Surpris- 
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ingly, it appears  that  these values are  not significantly 
less than  one. For example,  a simple simulation of a 
Poisson substitution process for three species with 
10% of the sites between pairs being  different (a figure 
similar to those in the table) shows that R would have 
to  be less than 0.06 to be significantly less than  one  at 
the 5 %  level.  Now that  the possibility that molecular 
evolution may be more  regular  than  random has been 
raised, there is reason to look more closely for  the 
regularity. 
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