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ABSTRACT 
Knowledge about  the efficiency of generations for estimating marker-associated QTLs is needed 

for selection. The objective of this paper is to develop a  theory to compare the efficiency of segregating 
generations and testcrosses from the cross of two inbred lines differing in value for  a  quantitative 
trait (PI x P2) for estimating  additive,  dominance and heterotic effects of QTLs by stepwise regression. 
An equation that predicts the smallest gene effect in genetic standard deviation units that can be 
detected with 50% chance at a significance level as a  function of the heritability (h‘) and  the 
recombination  frequency (r) of markers was developed for  the segregating  generations and testcrosses. 
For  estimating  additive effects, the most efficient generation was the doubled-haploid (DH) lines; the 
most inefficient was the  North Carolina Design 111 (NCD III), followed by selfed backcrosses (SB); 
the selfed families from FP individual plants (F2:3 lines) are inferior to the recombinant  inbreds (RI) 
for low r ,  but  are  better  than RI for high h2 and r .  Dominance effects are less efficiently estimated 
than  additive effects. The NCD 111  is better  than  the SB and  the F2:3 lines for detecting  dominance 
effects. The RI and DH do not  estimate  dominance effects. The differential  heterotic QTL effects of 
lines PI and P2 when crossed with tester T can be estimated by evaluating testcrosses of individual F p  
plants (F2T), recombinant inbreds  (RIT)  and double-haploid lines (DHT).  The  DHT is superior  to 
the  other generations. The  F2T is better  than  the  RIT  for r 2 0.20, but  inferior for r 5 0.1 or low 
heritabilit;. 

T HEORY  on  the  identification and utilization of 
quantitative trait loci (QTL) associated  with mark- 

ers has been formulated (THODAY 196  1 ; JAYAKAR 
1970; MCMILLAN and ROBERTSON 1974; SOLLER and 
BECKMAN 1983; LANDER and BOXSTEIN 1989; 
KNAPP, BRIDGES and BIRKES 1990;  LANDE  and 
THOMPSON 1990).  Several statistical methods  that 
include  contrasting  marker  means (SOLLER and 
BECKMAN 1983), multiple  regression  (COWEN 1989; 
MORENO-GONZALEZ  1992a) and maximum likelihood 
(LANDER  and BOTSTEIN 1989) have been suggested to 
estimate the QTL effects. The use of individual mark- 
ers  and flanking  markers associated with QTLs has 
also been  studied.  However,  no  definitive  method of 
mapping QTLs is still available. These  approaches all 
have advantages and shortcomings. Application of the 
theory  to  breeding  programs  needs to answer some 
important questions: Which type of segregating  gen- 
eration  estimates most efficiently the additive and 
dominance effects of the  QTLs? How do  the  number 
of progeny,  mapping  marker  density, heritability and 
genetic variance of the  trait  affect  the estimates? How 
can QTLs with specific heterotic effects be identified 
and selected for use in a  hybrid  breeding  program? 
Different  orthogonal  generations  from  the cross of 
two inbreds  have  been  proposed  to  estimate QTL 
effects linked to markers (SOLLER and BECKMAN 1983; 
COWEN 1988; KNAPP, BRIDGES and BIRKES 1990; 
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MORENO-GONZALEZ 1992a).  COWEN  (1 988) compared 
the power of some of these  generations  for  estimating 
gene effects by contrasting  phenotypic class means of 
individual markers associated with one  QTL. 

The objective of this paper is to develop  a  theory 
to  compare  the efficiency of (a) segregating  genera- 
tions from  the cross of two parental  inbred lines for 
estimating the additive and dominance effects of 
QTLs associated with markers  and  (b)  their testcrosses 
for estimating the  heterotic effects, using stepwise 
regression. 

MATERIALS  AND  METHODS 

Theory: The following segregating  generations were 
studied: selfed families from individual F2 plants (F2:3 lines), 
selfed backcrosses (SB), recombinant  inbreds (RI), doubled- 
haploid lines (DH) and  North Carolina Design 111 (NCD 111) 
from the cross of two inbred lines (P, X P2) .  The following 
model proposed by MORENO-GONZALEZ ( 1  992a) was applied: 

P j  = PO + E; ( a d ,  + dJ’J + (1) 
where p, is the phenotypic value of l inej  in generations F2:9, 
SB, R1, DH or NCD 111; is the mean of QTL genotypes; 
a, and d ,  are  the additive and dominance values of the  QTL 
associated with the  marker segment Si (i = 1, 2, . . . n) ;  x’, 
and y‘, are dummy variables associated with a, and d,, re- 
spectively; tj is the residual effect associated with line j ;  
values  of x’, and y’$ for  the  marker classes of generations 
Fz:S, SB, RI and DH when p, = !A are derived  according to 
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TABLE 1 

Values of the  dummy  variables x' and y' for the  marker classes of segregating  generations  and  their  testcrosses for a  flanking marker 
model'  when pi = ! h b  and no epistasis is assumed 

Segregating  generations Testcrosses of generations 

F2 lines Recombinant Selfed 
inbred lines backcross F2 

Doubled- 
haploid Recombinant 

lines inbred lines hyf::d 
Marker  Coded 

class  class X '  Y' X '  Y '  X '  Y '  x '  y '  X '  X '  X '  

~~ 

1 0 Dd 0 1 0 1 0  1 Dd 
0.5  0.25  0.5  0.25  0.5 
0 0.25 0 0 0 0  0 0 
0.5  0.25  0.5  0.25  0.5 
0 E t  0 0.5 0 

-0.5 0.25 -0.5 0.25 -0.5 
0 0.5 

0 0.25 0 0 0 0  0 0 
-0.5 0.25 -0.5 0.25 -0.5 
-1 0 -D 0 -1 0 - 1  0 -1 -D 

a Model for segregating generations: p, = C,(a,x,'+ dg,'); model for testcrosses: t, = z,h,x:. 
p ,  is the  ratio of the recombination frequencies between QTL i and its left-hand side flanking marker relative to that between the two 

Marker classes 1, 2, 4 and 5 belong to  the backcross to parent 1 and 5 ' ,  6, 8 and 9 belong to the backcross to parent 2. 
D = (1 - r3/(1 + r 3 ;  r, is the recombination frequency between flanking markers. 

flanking markers M ,  and M,+] ( r , ) .  

e E = (2 - 4r, + 3r3/2(2 - 4r, + 4r3. 

MORENO-GONZALEZ (1  992a)  and shown in Table 1 ; pi is the 
ratio of the  recombination  frequency between QTL i and a 
flanking marker  to  that between the two flanking markers 
(KNAPP, BRIDGES and BIRKES 1990). 

Testcrosses of individual F2 plants (F2T),  recombinant 
inbreds  (RIT)  and doubled-haploid lines (DHT) with an 
inbred tester T were compared  for estimating the  differen- 
tial heterotic effect  of  marker-associated QTLs between the 
two parental lines. The generation of selfed families (STW) 
from plants of the three-way cross (PI X P2) X T was also 
included in the  same  group of  comparisons. The  following 
model was used: 

t, = PO + c, h,x', + €1, (2) 

where t, is the phenotypic value of the testcross F2T,  RIT, 
DHT  or  STW; pcc0 is the  mean; hi is one-half the  difference 
of the genotypic values of genotypes 'Q'Q and 'Q'Q;, where 
'Q,, 'Q,, 'Q are  the alleles of the  QTL i associated with the 
marker  segment Si (i = 1, 2, . . . n) in the  inbreds PI, P2 and 
T, respectively; x', are  dummy variables associated with h,; 
t, is the residual effect of testcross j ;  values of x', for  the 
marker classes of generations  F2T,  RIT  and  DHT when pt 
= Yz are shown in Table 1 ; The  values of x', for  generation 
STW  are  the same than those for selfed backcrosses in Table 
1.  

Stepwise multiple  linear  regression analysis (DRAPER  and 
SMITH 1981) was applied to both models to estimate gene 
effects. 

Gene effects (gi) different  from  zero  are  detected  at  the 
a level with 50% chance (MORENO-GONZALEZ 1992b),  pro- 
vided that: 

g, > trt,a(Sc2C*,)v2, (3) 

where tk ,ol  is the  tabular t-value for  the k degrees of freedom 
of the residual  mean squares  and  the chosen a significance 
level; S: is the residual  mean square  and c,, is a  diagonal 
term of the matrix [X'X]";  where X is the design matrix 
of the multiple  regression analysis (DRAPER and SMITH 
198 1). The  expected values of c,, for  additive  and  dominance 

effects in the selfed backcross generation have been derived 
(MORENO-GONZALEZ 1992b). Likewise, expected values of 
c,, for F2:3 lines, recombinant  inbreds,  doubled-haploid lines, 
NCD 111 and  their testcrosses can  also be  derived using the 
same approach  and  are shown in Table 2. Derivation of c,; 
values for  the FzZ3 generation is shown in Appendix 1 as an 
illustrative example. 

The residual mean square S,' of  Equation 3 has the 
following components: 

s,' = UE' + ag.2 + 02, (4) 

where uE2 is the  environmental  error variance; ugp2 is the 
part of the genetic  variance (a ') accounted  for by QTL not 
yet included in the model; a:= a,,' + age2; ug"* is the  part 
of the genetic  variance accounted  for by Q T L  m the model; 
@' is a component  due to the deviations of the assigned 
genotypic values to  marker classes  in the model from  their 
real  genotypic values. The  expected value  of (P2 for  the 
selfed backcross generation was derived by MORENO-CON- 
ZALEZ (1  992b). Likewise, expected values for  other  genera- 
tions can also be  derived using the same approach  and  are 
shown in Table 3. Derivation of (P2 for  the F2:3 generation 
is shown in Appendix  2  as an example. 

The following expressions  hold: 

where p is the  portion of the total  genetic  variance accounted 
for by the  detected  QTLs in the model. Taking  into  account 
the above  expressions, the following is derived: 

gJag > JcPl.r.ol[l/hb2 - P ( 1  - m)l (6) 

where g, is the smallest gene effect that can be  detected in 
a group of estimated QTLs  that  account  for a portion p of 
the total  genetic  variance a:; values of c,, are  computed 
from  Table 2 and  depend  on  the  number of tested  progeny, 
the  generation involved, the  recombination  frequency be- 
tween markers  and  whether  the  detected  gene effect is for 
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TABLE 2 

Expected values of the  diagonal  terms cii corresponding  to  additive,  dominance  and  heterotic effects of QTL i in the  inverse  matrix 
used for estimating  gene effects of independent QTLs with  different  generations by multiple  linear  regression 

Generations c, for  additive effects" c,, for  dominance effects" 
c,, for differential 
heterotic effects" 

FZz5 lines 1 32  
N(1 - r , )   N ( 2  - 4r ,  + r 3  

Recombinant inbreds ( 1  + 2ri)(l + r3' b 

N ( l  - r y  

Doubled-haploid lines 1 b 

N( 1 - r , )  

Selfed backcrosses 4 
N(1 - r , )  

NC design 111 8 
N(1 - 7 , )  

Testcrosses 
F2 plants 2 

N(1 - rJ  

Recombinant inbreds ( I  + 2r,)(1 + r3' 
N ( l  - r3' 

Doubled-haploid lines 1 

N( 1 - r , )  

Selfed three-way crosses 4 
N(1 - rJ  

" N refers to  the  number of testing progenies and r, is the recombination frequency between flanking markers, 

16 

N(1 - r , )  

8 

N(1  - r , )  

N o  dominance effects are estimGed with inbred  generations. 

additivity, dominance or  the differential heterosis of the 
two parental lines crossed to  a tester; m is the coefficient of 
uzg- or uZh- in Table 3 and can  be computed for  different 
generations and recombination frequencies; F l . k . a  is the tab- 
ular F-value  in the F distribution for 1 and k (residual) 
degrees of freedom at  the a significant level; h? is the  broad- 
sense heritability. 

To  make fair comparisons among generations, the small- 
est gene effects of each generation should be referred  to  a 
common denominator (e.g., the genetic standard deviation 
of the F2:5 lines  when studying the segregating generations 
and  that of the F2T when studying their testcrosses). Then, 
Equation 6 will be modified as  follows: 

gs > ~ c i i F l . k . u [ l / h F 2 : 3 2  - 1 + - V P ( ~  - m)], (7) 

where g, (either additive a,, dominance d, or heterotic h, 
effect) is the smallest gene effect in F2:3 or F2T genetic 
standard deviation units; hZF2,s is the heritability of the F P : ~  
lines; and u is the  ratio of the genetic variance of the 
generation under study to  that of the FeZ3 or F2T. 

RESULTS AND DISCUSSION 

Equation 6 predicts the smallest gene effect that 
can be  detected with a 50% chance at  the a signifi- 
cance level when a group of QTLs, which accounts 
for a  portion p of the genetic  variance, has already 
been  estimated by the model using stepwise regres- 
sion. The equation is valid for any  distribution  of  gene 
effects. The stepwise regression  incorporates  QTLs 

into  the model starting with the largest gene  effect. 
Once  a QTL is  in the  model, it accounts  for  a  portion 
of the genetic variance and  thus reduces the least 
significant value for  incorporating  the  next QTL into 
the model. The process continues until the decreasing 
least significant value is larger  than  the QTL effect 
being tested (presumably,  the smallest effects from 
the  distribution). For the particular case of equal  gene 
effects, once the first QTL enters in the model, the 
remaining QTLs will be easier  detected.  However, 
this unlikely situation of equal effects is the most 
unfavorable for  incorporating  the  first QTL into  the 
model (MORENO-GONZALEZ 1992b), because no gene 
effect is larger  than  the  others. Equations 5-7 relate 
several parameters such as gene effects, genetic vari- 
ance,  heritability,  marker density and  number of prog- 
eny (included in the ci, expressions of Table 2). There- 
fore, they can be  managed  to study different  genetic 
situations under  proper assumptions. Some situations 
will be studied below. 

The expected value of the smallest additive effect 
in F2:3  genetic  standard  deviation  units (a,) that can be 
detected with a 50% chance at  the 0.005 level as a 
function of the heritability of the  trait was plotted  for 
different  segregating  generations and values of the 
recombination  frequencies ( r )  between  markers in 
Figure 1 ,  a to  d, according to Equation 7. The prog- 
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TABLE 3 

Expected  values of the  squared deviations (0') of the  assigned  genotypic  values  to  marker  classes  from  their  real  genotypic  value  for 
different  generations 

Generation @a 

Segregating 
F2.5 lines 

Recombinant inbreds 

Doubled-haploid lines 
Selfed backcrosses 
NC design 111 

Testcrosses: 
F2 plants 

ru,2" 
ru? 
ru,21) 

ruf" 

Recombinant inbreds 2r(l + 27 + 2 r 2  + r4) 
( 1  + 2r)(l + r2)2 

U Y  

Doubled-haploid lines ruf" 
Selfed three-way crosses ruf" 

a The whole expression that multiplies n? or ui- corresponds to m in equations 5-7; u?,  ua" and u y  refer to the genetic, dominance and 

B = '/z - r + r2; r is the recombination frequency between two consecutive flanking markers. 
heterotic-effect variances of the corresponding  generation accounted for by QTL in the model, respectively. 

eny size ( N  = 500)  and  the fraction ( P  = 0.95) of the 
genetic variance accounted  for by the  QTLs in the 
model were kept  constant  for all  cases. Complete 
dominance was assumed for  computing m (Table 3) 
and v ;  v = 1,  16/9,  16/9,  5/9  and 4/3 for F2:3, RI, 
DH, SB and NCD 111, respectively. The most efficient 
generation  for  detecting  the smallest additive effects 
in all situations is the doubled-haploid lines. By the 
contrary,  the most inefficient generation  among  the 
four plotted is the SB, except for high r and h2 where 
RI is worst (Figure Id).  The NCD I11 (plot  not shown) 
is even more inefficient than  the SB, as it is easily seen 
by comparing  their cii values from  Table 2. Unfortu- 
nately, random  doubled-haploid lines cannot  be  de- 
veloped in  most of the  crops,  thus  their use is very 
limited. The F2:S lines are inferior  to  RI  for low r 
(Figure 1, a and b),  but are  better  than RI  for  high 
heritability and r (Figure  1,  c  and  d). Comparison  of 
RI and DH  shows that RI is almost as efficient as DH 
for small recombination  frequencies and any herita- 
bility value, e.g., r = 0.05  (Figure la)  and r = 0.1 
(Figure lb). However, RI lose their relative efficiency 
as the recombination  frequency between markers in- 
creases. Therefore,  random  recombinant  inbreds can 
be  an  appropriate  option  for  detecting small additive 
effects when the  marker density of the  genome is high 
or the heritability of the  trait is low. F2:s lines are 
preferable  for  a  situation with high heritability and 
low or moderate  marker density. The progeny size 
( N )  affects the a, value by the reciprocal of its square 
root [cji (Table 2) in Equation 71, but it does  not alter 
the relative efficiency of generations. If no  dominance 
was assumed, the efficiency of the F2:3 lines relative to 

RI and DH will increase and will follow the same 
pattern  than F2T relative to  RIT  and  DHT in Figure 
2, a to  d. 

Dominance effects can be  detected with Fp, lines 
and SB. However, significant estimates of the smallest 
dominance effects (d,) are much  larger  than  those of 
the smallest additive effects (a,) as is easily seen by 
looking at the values of cii from  Table 2. By comparing 
the cii values for  additive and  dominance effects, the 
efficiency of significant estimates of a, relative to d, is 
approximately 2& for  the F ~ : s  lines and 2 for SB. 
The NCD 111  is more efficient than F2:S and SB for 
detecting  dominance  effects, because of its smaller cii 

value (Table 2). The smallest significant dominance 
effects for SB are approximately & times larger  than 
for NCD 111. 

The pedigree  method is a  common  breeding  strat- 
egy for  developing  inbred lines from  a chosen cross 
(PI X P2) between two parental lines. In  a  hybrid 
program, new developed lines are  further crossed to 
an  inbred  tester T to select superior hybrids. Evalua- 
tion of the testcrosses is an  adequate  strategy  to  de- 
velop inbred lines with a  good tester-specific combin- 
ing ability and  to identify marker-associated QTLs 
with favorable  heterotic effects. Application of Equa- 
tion 2 to  the testcrosses will identify the differential 
heterotic effects of the QTL alleles in PI and Pz. The 
favorable alleles can be further followed by their 
markers through  the F2, F3 . . . or backcross genera- 
tions for selecting inbred lines with superior specific 
combining ability. The choice of the initial PI X P2 

cross could be based on  the  theory of transfer of 
alleles (DUDLEY 1984,  1987). 
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la ":' 
0.6 

::\ 
0.6 

lb  

r = 0.1 

0.2 0.30 0.4 0.5 0.6 0.7 0.8 

Heritability 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Heritability 

IC 
0.8 

0.6 

Id 

0.2 0.3 0.4 0.5 0.6 0.7 0.0 
Heritability 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Heritability 

FIGURE I.-Smallest additive effects (as) in F2:. genetic standard deviation units as function of the heritability for generations F2:s lines 
(F~:J) ,  double-haploid lines (DH), recombinant inbreds (RI) and  selfed backcrosses (SB). when the recombination frequency ( r )  between 
markers was assumed to be r = 0.05 (la), r = 0.1 ( 1  b), r = 0.2 (IC) and r = 0.3 (Id). 

The expected value  of the smallest differential het- Equation 7. A constant progeny size ( N  = 500) and P 
erotic effect in F2T genetic standard deviation units = 0.95 were assumed; v is 1, 2,  2 and 0.5 for F2T, 
(h,) that can be detected with a 50% chance at  the RIT,  DHT and STW, respectively. Testcrosses of the 
0.005 level  as a function of the heritability of the trait random doubled-haploid lines are  the most efficient. 
was plotted for different generations and recombina- However, use  of  this generation is limited to only  few 
tion frequencies in Figure 2, a  to  d, according to crops. STW is the most inefficient generation, except 
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2a 2b 
0.8 

0.6 

F2T 

+ RIT 
A DHT 

* STW 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Heritability 

2c 
0.8 

0.7L -e- F2T 

+ RIT 
A DHT 

* STW 

O.l I 
o L l l I l l I I I l ~  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Heritability 

+ F2T 

+ RIT - DHT 

8 STW 

0 
0.2 0.3 0.4 0.5 0.6 0.7 0.0 

Heritability 

2d 

+ F2T 

+ RIT 
& DHT 

8 STW 

O.l t 
o ' " ' ~ l ~ ' l l l "  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Heritability 

FIGURE 2.-Smallest heterotic effects (hs) in F2T genetic standard deviation units as function of the heritability for testcrosses with tester 
T from F2 plants (F2T), double-haploid lines (DHT)  and recombinant inbreds (RIT) and selfed families (STW) from the three-way cross (PI 
X P2) X T, when the recombination frequency ( r )  between markers was assumed to be r = 0.05 (2a), r = 0.1 (2b), r = 0.2 (2c) and r = 0.3 
(24.  

for r = 0.3 and high heritability where RIT is worst (Figure 2, c and  d),  but  RIT is better  than  F2T  for 
(Figure  2d). The  F2T generation is more efficient high marker density of the  genome ( r  5 0.10; Figure 
than the  RIT  generation  for low or moderate  marker 2,  a  and b). Therefore,  F2T is an  appropriate  option 
density ( r  ? 0.20)  and  moderate  or high heritability for  detecting small heterotic effects in many crops, 
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especially when the  marker density of the  genome is 
not  high and  the heritability is not low. The  RIT will 
be  preferable  when  a  high  marker density is feasible. 

The differential  heterotic  effect (h,) was set up as 
one-half the  difference between the genotypic values 
of 'Q'Q and 'Q'Q in Equation 2. If dominance of 
favorable alleles is assumed as the  dominance  hypoth- 
esis  of heterosis  requires, then differential  heterotic 
effects exist provided that (a) 'a and 'Q have  different 
gene effects and (b) '4, is recessive for  at least one of 
the two parental alleles. If a  superior *PI X T hybrid 
is sought by improving line P I  through backcrossing, 
favorable  heterotic effects can  be  identified in P2 and 
later  transferred  to PI. 

Dominance effects cannot be efficiently estimated 
in the segregating  generations of PI X PP, but  the 
differential  heterotic effects (a kind of dominance)  of 
two QTL alleles when  they are  both  in  the heterozy- 
gous  state with a  common  tester allele can  be effi- 
ciently estimated by evaluation of appropriate test- 
crosses. Identification of these  heterotic effects are 
especially important  for  hybrid  breeding  programs. 

General  assumptions of the model: The c,, values 
to estimate the smallest gene effects (Equations 5-7, 
Table 2) were obtained for independent  QTLs. If 
linked QTLs were  assumed, the c;, values would be 
larger  than  those  expressed in Table 2 when the  QTLs 
are incorporated  into  the  model, because of the rela- 
tionship among  gene effects. Thus,  the model is less 
efficient for linked than  for  independent  QTLs. In 
addition, pi = 0.5 was assumed for all QTLs in the 
model. However, true values of p ,  different  from 0.5 
will produce only a slight bias  in the estimates (MOR- 
ENO-GONZALEZ 1992b). 
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APPENDIX 1 

The X design (data)  matrix  (Table 4) can  be  written 
for  the F2:3 generation in the model of Equation 1, 
where B = '/2 - r + r2; E = (2 - 4r + 3r2)/2(2 - 4r 
+ 4r2); N is the  number of scored individuals in the 
F P : ~  generation; 110 has already  been  defined; x),, 

sponding to  the additive and  dominance effects of 
QTL i, i + 1 . . . .  respectively; values of x' and y' are 
taken  from Table 1 ; r is the recombination  frequency 
between flanking  markers. If the QTL  are unlinked 
(independent),  the  expected X'X matrix (E[X'X]) is 
obtained, as shown in Scheme 1, where  column 1 
corresponds to po; columns  2 to f + 1 correspond to 
variables x), associated with additive effects and col- 
umns f + 2 to f + h + 1 correspond to variables y', 
associated with dominance effects; f and h are  the 

x);+*, . . .  and y,, y t t + l ,  . . .  are  dummy variables corre- 

TABLE 4 

X design matrix 

Values of variables in the data 
matrix X Expected 

Individual class marker class w,, . . .  x,'  x:+! . . .  y,' $+I . . .  
Marker frequency  of 

1 1 % ( I  - r)' 1 . .  . 1 1 . .  . .  o 0 . .  . .  
2  2 %r(l - r )  1 . .  . % Y z . .  . .  % % , ,  . .  
3  3 %r2 1 . . . 0  0 . . . .  % %  . . . .  

4 %r(l - r )  1 . . .  Y2 % .  . . .  % % . . . .  4 
5 5 B  1 . . . 0  0 . . . .  E E . . . .  
6 6 %r(l - r )  1 . .  . -% - M . .  . .  '/4 % . . . .  
7  7 %r2 1 . . . 0  0 . . . .  % %  . . . .  
8 8 %r(I - r )  1 . .  . -% - % . .  . .  '/4 % . .  . .  
9 9 % ( I  - r ) '  1 . .  . - I  - 1 . .  . . o  0 . .  . .  

. . . . .  . . . . .  . . . . .  

. . . . .  . . . . .  . . . . .  
N I . . . .  . . . . .  . . . . .  
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TABLE 5 

Deviations of the  real  genotypic  values of the QTL genotypes  from  the  genotypic  values  assigned  to  the  marker  classes  for  the Fzzs 
generation 

~ 

Real situation of QTL genotypes Deviations of genotypic 
values of QTL genotypes from 
the assigned genotypic values 

Marker Expected 
class 

Expected 
frequency Fp genotype frequency 

Genotypic to marker  classes  (when p = 
value (&) 0.5) 

2 %r(l  - r )  QQ 1 - P  a %a - %d 
Q9 P %d 

3 %r2 QQ (1  - P)2 a a - %d 
Q4 2P(l - P )  %d %d 
94 P2 -a -a - %d 

4 %r( 1 - r )  QQ P a %a - %d 
Q9 I - P  Y2 d -%a + %d 

5 B = 1 / 2 - r + r 2  QQ ~ ( 1  - p)r2/2B a a - %d(l  - r2/4B) 
Q9 1 - p ( 1  - p)r2/B %d dr2/8B 
99 ~ ( 1  - p)r2/2B -a -a - %d(l  - r2/4B) 

Q4 I - P  %d %a + %d 
7 %r2 QQ P 2  a a - %d 

Q9 2P(l - P )  %d %d 
94 ( 1  - P)' -a -a - %d 

8 %r(l - r )  44 1 - P  -a -%a - %d 
Q9 P %d %a + %d 

-%a + %d 

6 %r(l  - r )  49 P -a -%a - %d 

E [X'X] = - N 
2 

. . .  

. . .  

2 0 0 

0 1-r 0 
0 0 1-r . . .  
. . . . . .  

. -  1 
2 

- 1 
2 

. . .  - 1 
2 

. o  0 . . . .  0 

. o  0 . . . .  0 

. .  . . . .  0 

11 0 0 . . . .  -+- 1-r  r' 1 
2 

- . .  
4 16 8 

1 -  . . . .  1 - r  ' 1 +r - 
8 4 16 8 

. . . . . . . .  . . . .  I 

2 
N ( 2 - 4 r + r 2 )  

SCHEME 1 

- 
2 - 4 r + r 2 + h  0 

2 
0 

0 0 

2 - 4 r + r 2  
1-  r 

-4 0 
-4 0 

- -4 0 

0 . . . .  - 4 - 4  . . . .  -4 

0 . . . .  0 0  . . . .  0 

2-4r+r2 . . . .  0 0 . . . .  0 
1 -  r 

. . .  
0 . . . .  1 6 0  . . . .  0 
0 . . . .  0 1 6  . . . .  0 

. . . . . . . . . . .  
0 . . . .  0 0 . . . .  16 

SCHEME 2 

number of variables with additive and  dominance 
effects in the model, respectively. The expected in- 4r + r2), respectively. 

the  independent QTL i are 2/N(1 - r )  and 3 2 / N ( 2  - 

verse matrix was computed  and is shown in Scheme 
2. 

Therefore,  the expected values of the diagonal The deviations of the real  genotypic values of QTL 
terms c,, for  the additive and dominance effects from  genotypes  from the genotypic values assigned to  the 

APPENDIX 2 
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marker classes 2-8 in the model for  the FZz3 generation respectively; r is the recombination  frequency be- 
are shown in Table 5 .  The deviations for  the  marker tween markers; and B = % - r + r2. Taking  into 
classes 1 and 9 are zero. The sum of squares of these  account that %(a2 + %d2) and d2/16 are  the genetic 
deviations multiplied by their  corresponding  frequen- (a2/) and  dominance (a”’’) variances of the F2:3 lines 
cies  yields the  expected value of @’. Avoiding cum-  for the Q T L  in the  model, respectively, then 
bersome  algebra and assuming p = %, the following 
result is obtained  from  Table 5 :  (P2 = r[u’/ + a2d”( 1 - 1/2r - r3/4B)]  

= r [ l  + (1  - f i r  - r3/4~)a2~”/uzg”~azg”. 

The ratio a2d/a2, is 1/9 for complete  dominance  and 
Q2 = ‘/2r(a2 + % d 2 )  + (l/16)rd2(1 - !hr - r 3 / 4 B ) ,  


