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ABSTRACT 
Spore  killing in ascomycetes is a special  form of segregation  distortion. When a strain with the 

Killer  genotype is crossed to a Sensitive  type,  spore  killing is expressed by asci with  only  half the 
number  of  ascospores  as  usual,  all  surviving  ascospores  being  of  the  Killer  type.  Using  population 
genetic  modeling,  this  paper  explores  conditions for invasion of Spore killers and  for  polymorphism 
of Killers, Sensitives  and  Resistants  (which neither kill, nor  get killed), as found in natural populations. 
The models  show that a population with only Killers  and  Sensitives can never be stable. The  invasion 
of Killers and  stable  polymorphism  only  occur if Killers have some additional  advantage  during  the 
process of spore  killing.  This  may  be due to the effects of local  sib competition  or some  kind of 
“heterozygous”  advantage in the  stage of ascospore formation or in the  short  diploid  stage of the life 
cycle. This  form of  Segregation distortion  appears to be  essentially different from other, well- 
investigated forms, and  more  field  data are needed  for a better understanding of spore  killing. 

I N several species belonging to  the ascomycete order 
Sphaeriales,  spore killing has been  found. In some 

crosses between  different wild strains of these species, 
only half of the ascospores in the ascus survive as a 
consequence of the action of a so-called Spore killer 
gene, which has the ability to kill the sensitive asco- 
spores  not  carrying  the killer gene. 

The most extensively studied  Spore killers are those 
observed in Neurospora (TURNER and PERKINS 1979, 
1991; RAJU 1979). In  three  Neurospora species they 
found  four  different  Spore killer genes (TURNER 
1993). In Fusarium monil$orme (Gibberellafujiikuroi) a 
Spore killer has been  described by KATHARIOU and 
SPIETH (1982) and in  Podospora anserina two Spore 
killers appeared in a crossing reported by PADIEU and 
BERNET (1967). In  the same species we recently found 
another  Spore killer (NAUTA et al. 1993). In all these 
cases a cross between  a Killer strain  and a Sensitive 
strain results in the  production of asci with only half 
the normal number of viable ascospores. All surviving 
spores  have the killer genotype, and  the spores  that 
are killed have the sensitive genotype. 

Spore killing is an  example of segregation  distor- 
tion,  just  as has been  found in some male animals, like 
for  example the Segregation  Distorter in Drosophila 
melanoguster (HARTL, HIRAIZUMI and CROW 1967; 
TEMIN et al. 199 1) and  the t-complex in mice (SILVER 
1985): it is manifested postmeiotically, resulting in 
one  member of a pair of heterozygous alleles being 
transmitted in excess of the  expected Mendelian pro- 
portion of 50%. 

Another frequently used term  for segregation dis- 
tortion is  meiotic drive, which refers to the effect  that 
the  gene  segregating in excess of  the Mendelian pro- 
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portion will increase in frequency (unless counterbal- 
ancing  negative effects on fitness are  too strong).  In 
his comparison of different  segregation  distorters, 
LYTTLE (1991) notices an  important difference be- 
tween Spore killers and  other mechanisms of meiotic 
drive: in mice and Drosophila the  amount of sperm is 
reduced by segregation  distortion,  but the total  num- 
ber of progeny is not.  Distorters are  both absolutely 
and relatively represented in more  progeny. In  the 
Spore killer system, however, the  number of progeny 
is affected, and  the Killer only has a  relative  advan- 
tage, as its absolute number of offspring  does  not 
increase through killing. As will be shown below, this 
advantage is very small when the  Spore killer is rare, 
and it cannot  produce a  “drive” of the killer gene. 

A remarkable  characteristic  that  these meiotic drive 
genes seem to have in common, is that they are located 
in a  region  where, in the heterozygous  condition, 
recombination is suppressed.  In  Neurospora, CAMP- 
BELL and TURNER (1  987) found  a  recombination block 
of  about 30-40 map  units  long,  containing two differ- 
ent  and  independent Spore-killer genes. Most prob- 
ably this block is the result of a series of small inver- 
sions (TURNER and PERKINS 1991). This can be com- 
pared  to  the well-studied situation  for the t-haplotype 
in mice, where  a  recombination block of about 20 cM 
is found,  due  to a series of four inversions (HAMMER, 
SCHIMENTI and SILVER 1989). Segregation Distortion 
in Drosophila is typically associated with two inver- 
sions, though  they do not seem to be absolutely re- 
quired (TEMIN et al. 199 1). 

Besides Killers and Sensitives, also Resistant strains 
have been found  for  the two Spore killers in  Neuro- 
spora intermedia (TURNER 1977) and for the  one  found 
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in Neurospora celata (TURNER 1993).  These  strains are 
neither sensitive to  spore killing, nor able to  perform 
it and can therefore be  considered  as  neutral. T w o  
loci appear  to  be involved in the action of the  Spore 
killer, one  for a killer gene (called Sk in Neurospora) 
and  one  for a sensitivity gene (r-Sk). CAMPBELL and 
TURNER (1987)  demonstrated  that  the  recombination 
block prevents crossing over between the two loci  in 
a cross with one Killer. As recombination is not 
blocked in a cross without  a Killer, the sensitivity gene 
could be  mapped, but  the killer gene  could  not. 

Population  genetic models of nonfungal  forms of 
meiotic drive (e.g., FELDMAN and OTTO 1991) show 
that polymorphism in drivers  and  nondrivers can be 
stable,  depending  on  the fitnesses of the diploid gen- 
otypes and  the  strength of meiotic drive. Linkage 
between  a  segregation distorter  and its target locus is 
necessary for  the  drive system to become established 
(PROUT,  BUNDCAARD  and  BRYANT  1973; LYTTLE 
1991)  and a tightly linked modifier  reducing  recom- 
bination  between the two loci can  invade  a  population 
(THOMSON and FELDMAN 1974; FELDMAN and OTTO 
1991). The latter result  can  offer an explanation for 
the  occurrence of the inversions in the chromosome 
at  the  region of distortion. 

AI1 these models have in common that they are 
dealing with diploid organisms. The fungi  where 
Spore killers have been  found are haploids for  the 
major  part of their life  cycle. The population  genetic 
consequences of this aspect, and  the special character- 
istics  of  Killers are studied in the models below. At- 
tention is focused on  the conditions that allow the 
invasion of a  Spore killer in the population and  on 
conditions  for the existence of polymorphism in 
Killer, Resistant and Sensitive types, as is found in 
nature. 

THE MODEL 

Consider  a  population of a  haploid ascomycete, with 
a life  cycle like Neurospora  crassa (PERKINS and BARRY 
1977; RAJU 1992).  It is assumed to  reproduce sexually 
each  generation. Fertilization results in a  short diploid 
stage, immediately followed by meiosis, ascus forma- 
tion and possibly spore killing. 

Now suppose the  Spore killer-complex consists of 
two loci, a killer-locus with two alleles, killer ( K )  and 
non-killer (k), and a sensitivity-locus with two alleles 
sensitive (S) and resistant (s). Then a Killer has geno- 
type Ks ,  a Sensitive kS and a Resistant ks. The geno- 
type K S  will  kill itself and is therefore assumed to be 
inviable. 

Fitness differences  can be assumed in different  parts 
of the life  cycle. In a  general  model,  a fitness scheme 
can be used as given in Table 1. Spore killing results 
in the  death of Sensitives after a cross with Killers 
(fitness zero). The fitness of ascospores resulting from 

TABLE 1 

The  fitnesses of the different  crosses  in  a  general model 

Phenotype Killer Sensitive Resistant 

Killer W l  I w12 WIS 

Sensitive 0 1 w23 

Resistant ws 1 w32 wss 

Fitness  values  apply to the types  at the left, when crossed to the 
types above. 

All w,, > 0. 

a crossing of two Sensitives is fixed at unity; the  other 
fitnesses are expressed  relative to this  standard. 

Two special, biologically relevant cases have been 
studied. First, fitness differences in the major  part of 
the life  cycle, the haploid vegetative stage, are consid- 
ered. Second, fitness differences in the stage of asco- 
spore  formation,  where  spore killing occurs, are stud- 
ied. In this stage,  shortly after meiosis, the genes  from 
the two parents  share  the same cytoplasm and side 
effects of their  interaction may influence fitness. A 
third possibility, fitness differences in the diploid stage 
of the life cycle, will not  be  modeled in this paper. 
Although this stage may be important, because many 
genes are expressed (LESLIE and RAJU 1985), its du- 
ration is very short  and  there are  no indications that 
it is relevant  for  spore killing. Therefore, only a few 
comments on this case are given in the Appendix.  It 
is, however, easy to see that such a model would 
resemble other models on Segregation  Distorters in 
diploid organisms  (PROUT,  BUNDGAARD and BRYANT 
1973; FELDMAN and OTTO 1991),  where stable poly- 
morphisms can be explained. 

In  the models below, it is assumed that  recombina- 
tion  between the two loci occurs with frequency r .  
Moreover,  a Killer may have an additional  advantage 
when it mates with a Sensitive: because half of the 
spores in the ascus are killed, the Killer will suffer less 
from local sib competition and presumably have access 
to  more  nutrients.  This  advantage is represented by a 
factor c in the model (1 5 c 5 2). Relative frequencies 
of Killers, Sensitives and Resistants are given by X I ,  x 2  

and x3, respectively. ( x 1  + x2 + x3 = 1) 
Fitness  differences  in  the  vegetative  stage  of  the 

life cycle: In this  model  a Sensitive strain is assumed 
to have fitness 1, a Killer strain has a  relative fitness 
w 1  and a Resistant strain fitness w3. In  the general 
scheme of Table 1 this means that w11 = w13 = w l ,   w 1 2  

= n u l ( ]  - r), w 2 3  = 1 and w 3 1  = w 3 2  = w 3 3  = ~ 3 .  

Assuming random mating, the following system of 
recurrence  relations can be  deduced, x;’ denoting  the 
frequency in the  next  generation: 

wx; = W l X 1 ( X l  + (1 - T)CX2 + x9) 

wx; = x s ( x 2  + x3) (1) 

wx5 = W Q ( X 3  + rcx1x2) 

with 
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w = W l X l  + x p  + W Q X Q  + x1x2(cr(ws - w1) 

+ (1  - c)w,  - 1 )  (2 )  

In  the simplest case, where c = 1 ,  r = 0 and x 3  = 0, it 
is  easy to see that  there is an unstable  equilibrium at 

i] = 1 - w1 (3) 

In this case a Killer can only invade  a  population of 
Sensitives if w 1  > 1 .  Sensitives can  never  invade  a 
population of Killers. A  stable polymorphism with 
only Killers and Sensitives is impossible. 

If r > 0, Resistants will always be  created by recom- 
bination in a  population  where  both Killers and Sen- 
sitives occur. As elaborated in the Appendix, Killers 
will invade if 

w l > w 3 7  1 or w3<  1 and w1>- c ( l  - r )  

For 1 5 c 5 2 several monomorphic  stable  states  can 
exist: a Killer population is stable if w 1  > w3, a Sensitive 
population is stable if wlc( l  - r) < 1 and w3 < 1 ,  and 
a Resistant population is stable if wg > 1 and w3 > w1. 
As a polymorphism of two types is always unstable, 
there must be  a  stable  polymorphism of the  three 
types or  no stable  state at all  if 

1 
l > W 3 7 W l > - "  

c ( l  - r )  

In this case a polymorphism of the  three types will 
exist, either as  a  stable  state, or as a quasi periodic 
orbit  (the discrete  analogue of a limit cycle). 

Numerical  computations of system ( 1 )  showed that 
such polymorphisms are  not only found if ( 5 )  is true, 
but can also be found in addition to the stable  state x2 
= 1 ,  if wlc( l  - r) < 1 .  Some  examples are shown in 
Figure 1 .  It is found  that  the dynamics of the system 
can lead to  the  approximate  disappearance of one of 
the types. In (small) natural  populations this disap- 
pearance will frequently  occur.  However,  reintro- 
duction (by mutation,  migration or recombination) of 
the type that  disappeared will enable it to invade 
again. 

The stability of the steady states in the system can 
be studied analytically (see Appendix),  but  not  the 
parameter values for which a quasi periodic  solution 
is found.  Therefore,  the  parameter space has been 
examined numerically by studying the course of 
events using system ( 1 )  with 500 X 500 different 
values of w 1  and w 3  up to 1 0 , 0 0 0  generations. This 
led to results as exemplified for c = 2, r = 0 . 0 1  and 
r = 0 .1  in Figure 2. 

It  can  be  concluded that Killers can only invade  a 
population if (4) is true. A polymorphism will evolve 
if (but  not only if) ( 5 )  is true,  that is (roughly) if the 
fitness of the Killer in the vegetative stage is lower 
then  the fitness of the Resistants and  the Sensitives, 

FIGURE 1 .-Some examples of the dynamics in the first model. 
The frequencies of Killers (left), Resistants (above) and Sensitives 
(right) are given  in a de Finetti diagram. Successive arrows mark 
IO-generation intervals. In all diagrams r = 0.1 and c = 2. (A) wt = 
0.53, wg = 0.4: Killers and Sensitives are stable, no polymorphism. 
(B) w I  = 0.53, wg = 0.6: x p  = 1 (Sensitives) is the only stable state, 
but  a quasi periodic orbit is also a stable solution. (C)  W I  = 0.6, ws 
= 0.75: no stable points: the result is a quasi periodic orbit. (D) W I  

= 0.6, w3 = 0.85: one polymorphic stable point. 

and if this lower fitness is compensated by an addi- 
tional advantage after killing. 

Fitness differences during ascospore  formation: 
Suppose the fitnesses of the Killers and Resistants are 
different  (probably  lowered) if they are  not function- 
ing  as killers and resistants. This might be caused by 
the useless and maybe even harmful  production of 
some unused  proteins. Let the fitness for unsuccessful 
attempt  to kill (in a cross K s  X -s) be w1, and  for 
unnecessary resistance (in a cross ks X K-) be w3. In  the 
general scheme of Table 1 this means that w l l  = w13 
= w1, w12 = c(1 - r), w23 = wgl  = 1 and ~ 3 2  = w33 = w3. 

Then  the following system  of recurrence  relations 
can  be  deduced: 

wx; = X I ( W l X 1  + c ( l  - r)xq + w1x3) 

wx; = x&:, + x3) (6) 

wx; = xQ(x1 + WQx2 + w3x3) + CrxIx2 

with 

In this model it is  easy to see that with r = 0 and x3 

= 0, i e . ,  without Resistants, the Killer will  always 
invade the population and become fixed.  (If c = 1 ,  
this invasion will proceed very slowly at first.) Poly- 
morphism is always unstable. 

Without  these assumptions the analysis is more com- 
plicated and is discussed in the Appendix. It appears 
that Killers can now invade if 

W I  > w3 > 1 or c ( l  - r )  > 1 > w3 ( 8 )  
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FIGURE 2.-Overview of the  results of  stability analysis in the 
first model. S: xp = 1 (only  Sensitives) is stable; K: xI = 1 (only 
Killers) is stable; KS: both XI = 1 and xz = 1 are  stable, polymorphism 
is unstable; Q: onlv  a  quasi periodic  orbit is stable; P: a  polvrnorphic 
point with Killers, Sensitives and Resistants is stable. QS: x2 = 1 
(only  Sensitives) is stable,  but a quasi periodic  orbit can  also be 
found. PS: both x p  = 1 (only  Sensitives) and a  polvrnorphic point 
with the  three tvpes are  stable. (A) Results for r = 0.01, c = 2 and 
0 < wI, wJ < 1 .  A stable polvmorphic  point is only found in a  very 
restricted  area. (B) Results for r = 0.1, c = 2 and 0 < W I ,  w3 < 1. A 
stable  polymorphic  point is found in a larger  area.  Stable  polymor- 
phism next to only  Sensitives as a stable  point  gets  more  frequent 
as r increases. I f  w I .  u13 > 1, xI = 1 (only Killers) is stable if ujI > uh 
and x3 = 1 (onlv  Resistants) is stable if w3 > WI.  

Several  monomorphic  stable  states  can exist: a Killer 
population is stable if wI > 1, a Sensitive  population is 
stable if c ( l  - r) < 1 and wR < 1, and a Resistant 
population is stable if w3 > 1 and w3 > wI. A polvmor- 
phism of Killers and Resistants is stable if 

FIGURE 4.--Some examples  of  the dvnamics in the second  model 
with r = 0.01. c = 2 and ulI = 0.75. (A)  WJ = 0.6: a  polvmorphisrn 
with Killers and Resistants at ( 1  1) is the only stable  state. (B) WJ = 
0.8:  one  polymorphic stable  point. ( C )  WJ = 0.8.5: an unstable quasi 
periodic  orbit occurs. so there  are two possibilities: a  polymorphic 
stable point inside it and  another (stable)  quasi periodic  orbit  around 
it. (D) w3 = 0.9: no stable  points: the result is a quasi periodic  orbit. 

If c( l  - r) > 1 > w1 and 1 > w?, and  Equation 9 is 
not  true, a polymorphism  of all three types is expected 
(either as a stable  state or as a quasi  periodic  solution). 
This  condition can easily be  met: if I is small, c will 
only  have to be a little larger  than 1. 

As in the  model  above,  the stability of the steadv 
states  can  be  studied analytically  (see Appendix),  but 
numerical  studies  were  necessary to find  for which 
parameter values  quasi  periodic  solutions  occurred. 
Some  examples  of  the  dynamics  are  given in Figures 
8 and 4, overviews for r = 0.01, c = 1 and c = 2 are  
given in Figure 5 .  Note  that, unlike in the first  model, 
also for c = 1 and r > 0 a polymorphism  of the  three 
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FIGURE 5.-Overview of the results of stability  analysis in the 

second  model. S: x2 = 1 (only Sensitives) is stable; Q: only a quasi 
periodic orbit is stable; P: a polymorphic point with Killers, Sensi- 
tives and Resistants  is stable. QS: xp = 1 (only Sensitives) is stable, 
but a quasi periodic orbit can also be  found. PS: both x2 = 1 (only 
Sensitives) and a polymorphic point with the three types are stable. 
KR: a polymorphism of Killers and Resistants is stable. KRS: both 
x:, = 1 (only Sensitives) and a polymorphism of Killers and Resistants 
are stable states. IQ: an unstable quasiperiodic orbit occurs: both a 
polymorphic point and a quasi periodic orbit can be stable. (A) 
Results for r = 0.01, c = 1 and 0 < wl ,  w3 < 1.  Polymorphism may 
evolve, but if so, a Sensitive population is also stable. (B) Results for 
r = 0.01, c = 2 and 0 < wl ,  w3i < 1.  Polymorphism is frequent. Only 
if a population without Sensitives is stable (KR) spore killing is not 
detected. If W I ,  wg > 1, x1 = 1 (only Killers)  is stable if W ,  > W Q  and 
x3 = 1 (only Resistants)  is stable if w3 > wl. 

types is possible, be it in combination with a  mono- 
morphic Sensitive population  as an additional  stable 
state. 

As most probably wl, w3 < 1, a  comparison of 
formulae (4) and (8) shows that  the  criteria  for  the 
invasion of Killers will be  more easily met in this model 

than in the first  model. This was expected, because a 
cross of Killers and Sensitives yields a  higher fitness 
here. Also, polymorphism showing spore killing can 
be established for a broader  range of parameter val- 
ues. This is because the conditions c(1 - r) > 1 and 
w3 < 2 - l /wl  are  more easily met than wlc(2 - r) > 
1 and w3 > w1. 

DISCUSSION 

The models above show that  the  appearance of 
spore killing cannot  be  explained as a  stable polymor- 
phism of only Killers and Sensitives. However,  a pol- 
ymorphism with Killers, Sensitives and Resistants is 
possible. When fitness differences in the vegetative 
haploid  stage of the life cycle occur, polymorphism is 
possible if Killers have  a lower fitness than Resistants 
but  an additional  advantage  resulting  from killing ( c ) ,  
due  to less  local sib competition. If fitness differences 
occur  during ascospore formation or in the  short 
diploid stage, polymorphism can easily be established. 
In  that case a polymorphism may be possible due  to 
some kind of “heterozygous”  advantage in Killer X 
Sensitive and Killer X Resistant crosses. Then the 
“local sib-competition advantage” is not  a necessary 
condition. 

These results partly  differ  from what has been 
found  for meiotic drive  genes in diploid organisms, 
like SD in Drosophila (PROUT, BUNDCAARD and 
BRYANT 1973; CHARLESWORTH and  HARTL 1978; 
FELDMAN and OTTO 199 1) and  the t-haplotype in  mice 
(LEWONTIN and  DUNN 1960; TEMIN et al. 1991). In 
these  organisms  a  strong  directional selection against 
the driving alleles (due  for instance to linked recessive 
lethals or sterility) can cause a stable polymorphism. 
But this makes no sense in haploid organisms like the 
ascomycetes considered  here.  Spore killers actually 
seem to need  an  additional  advantage to invade  into 
a  population. 

The model assumption of two genes,  a killer gene 
and a sensitivity gene, is consistent with the findings 
in Neurospora (TURNER and PERKINS 1979, 199 1). 
Due to  the recombination block found  there, recom- 
bination  between the two loci does  not  occur in crosses 
where killing takes place (CAMPBELL and TURNER 
1987). So the model might  be valid for these  spore 
killers, with r being  zero or approximately  zero. The 
recombination  frequency between the two loci  may 
have been  higher when the Killer first arose. As the 
recombination block is only found in combination 
with killing and  the resistance locus is found  at  the 
end of the block, the blocking of recombination be- 
tween these two loci is probably its only function. 

However, if one assumes two different loci (and 
therefore two different  genes), it is hard  to  understand 
how a Sensitive type can mutate to a Killer, as this can 
only be the result of two independent mutations. 
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Resistance might be an  intermediate stage in this 
process, but it is clear that  there will be no selection 
for Resistants in the absence of Killers. So the genetics 
may be even more complicated than assumed here, 
although  there is no experimental  evidence  for this. 

The fitness parameters used in these models are 
purely hypothetical. They can  not  be based on  exper- 
imental findings, as fitness studies in natural popula- 
tions of ascomycetes are simply lacking. TURNER and 
PERKINS ( 1  991) did  not  notice  any lowered viability 
in progeny  from  a Killer X Killer crossing, but this 
does  not  exclude any such thing in natural  popula- 
tions. Some preliminary  experimental studies at  our 
laboratory with Podospora  anserina (M. J. NAUTA, A. 
F. M. DEBETS and R. F. HOEKSTRA, unpublished  data) 
indicate that Sensitive strains may have a selective 
advantage in competition with Killer strains. 

Field data on the  occurrence of spore killing in 
natural  populations show rather  different  results  for 
different  Spore killers. In Neurospora  (PERKINS and 
TURNER 1988; TURNER 1993), among 400 isolates of 
N.  sitophila both Sensitives and Killers have been 
found  for  the  Spore killer gene S k - I ,  in monomorphic 
as well as in polymorphic populations. Resistants for 
Sk-1 have not  been found.  In N .  intermedia two Spore 
killers (Sk-2 and S k - 3 )  have  been  found in a sample of 
more  than 2500 isolates. Isolates of the Killer type 
were extremely rare; populations  were  polymorphic 
for Sensitives and Resistants or monomorphic  for 
Sensitives. In N .  crassa in 450 isolates no Killers were 
detected,  but some isolates were resistant to Sk-2,  
when introgressed  from N .  intermedia. Finally, among 
47 isolates of N .  celata, both Killers, Sensitives and 
Resistants for  another Killer ( S k - 4 )  have  been found. 
In Fusarium monilqorme KATHARIOU and SPIETH 
(1982) found  a  Spore killer frequency of 80%, higher 
than in any of the  Neurospora species. 

In this study we searched  for  conditions  for  a  stable 
polymorphism of Killers and Sensitives, because such 
a polymorphism can be  found in nature.  It might  be, 
however,  that this polymorphism is unstable, and  that 
the populations  where  Spore killers are  found,  are 
just on the way to fixation of one of the types. This 
would require  frequent  introduction of Spore killers 
(either by mutation or migration), and it would mean 
that many “hidden”  Spore killers (which do  not show 
up by the lack of Sensitives) should exist in natural 
populations. If so, new mutations to Sensitives can 
also lead to a new polymorphism. The only report of 
resampling a  population on a site where  Spore killers 
had been found is from TURNER and PERKINS (1 99 1) .  
In New Guinea they were unable to find the two 
Spore killers they found 15 years before,  and in Bor- 
neo they could only find one Killer strain after  exten- 
sive collecting, on a spot where it had  been  present 
25 years earlier.  It is clear that  much  more field data 

on frequencies of Killers in the course of time are 
necessary to make a  statement about  the stability of 
the polymorphism. 

If the spore killing polymorphism is stable, the 
models presented in this paper  predict that Resistants 
should  be  present in  all species where  spore killing 
occurs. However, in Fusarium monilqorme no fully 
resistant types were collected in a sample of 225 strains 
(KATHARIOU and SPIETH 1982). Also, Resistants have 
never  been reported in N .  sitophila and Podospora 
anserina. This absence of Resistants may be  an indi- 
cation that  the spore killing polymorphism is not stable 
in these species, although it is also possible that this 
absence is a  consequence of restricted sampling. 

In most ascomycetes, like  in Neurospora crassa, each 
ascus normally contains  eight ascospores, with each 
ascospore containing only one type of nucleus. In 
pseudohomothallic species like Neurospora  tetra- 
sperma, however, only four ascospores are  formed in 
an ascus, each spore  containing two different nuclei. 
In N.  tetrasperma a locus showing first division segre- 
gation  after meiosis, will end  up heterokaryotic in the 
ascospore and a locus showing second division segre- 
gation will end  up homokaryotic. The mating type 
locus, for  example, is very  closely linked to  the cen- 
tromere, leading to ascospores heterokaryotic  for mat- 
ing  type, giving rise to self-fertile progeny. If one of 
the nuclei in the ascospore carries  a Killer and  the 
other is Sensitive, killing is suppressed and  both nuclei 
survive (RAJU and PERKINS 1991). TURNER and  PER- 
KINS ( 1  99 1) and LYTTLE (1 99 1 )  therefore suggest that 
pseudohomothallism may have evolved as a  defense 
mechanism against the action of Spore killers. But the 
problem with this argument is that killing is only 
suppressed in heterokaryotic spores. A Killer-gene 
located at  the distal end of the chromosome in N.  
tetrasperma and  thus  ending  up  homokaryotic in a 
spore, will not  suffer  from this defense mechanism at 
all: homokaryotic Sensitive ascospores will get killed 
by the homokaryotic Killers. Such a  situation, (al- 
though  different in genetic  detail) has been  found in 
another pseudohomothallic species, Podospora  anser- 
ina (PADIEU and BERNET 1967; NAUTA et al. 1993). 
So selection affecting  the  particular location of Spore 
killer loci on  the chromosome in pseudohomothallic 
species may be  expected,  but evolution of pseudohom- 
othallic species as a  consequence of  spore killing is 
highly improbable. 
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APPENDIX 

Below the  criteria  for invasion of a Killer into a 
population and  the stability analysis of the models will 
be analyzed. The stability of the steady states of the 
nonlinear systems of difference  Equations 1 and 6 can 
be  found by using Taylor  expansion and  determining 
the eigenvalues of the linearized systems, as for  ex- 
ample  described by EDELSTEIN-KESHET (1 988). As x1 
+ x P  + x3 = 1 ,  both systems can be  reduced  to  a system 
of two equations, by putting x3 = 1 - x1 - X P .  

It is clear that a  monomorphic  population of one 
type X will be  stable if the type that yields the highest 
fitness in a cross with type X ,  is type X itself: in that 
case no  other type can invade  a  population consisting 
of type X only. So Killers are stable if w1 1 > w31, 
Sensitives are stable if 1 > w12, ~ 3 2  and Resistants are 
stable if w33 > w13, w23. On  the  other  hand, if this is 
not valid for any of the types, no monomorphic pop- 
ulation will be stable. In  that case polymorphism of 
two or  three types is expected, which can be a stable 
point or frequencies showing cycling behavior. 

A  complicating  factor is recombination, which al- 
ways leads to  the formation of Resistant types if both 
Sensitives and Killers are present and r > 0: in the 
model a  polymorphism,  where killing can be  detected, 
must always consist of all three types. But even if r = 
0, a polymorphism of only Killers and Sensitives can 
never  be  stable, because always w l l  > 0.  

Fitness differences in the  vegetative  stage of the 
life cycle: In a  population  without Killers a polymor- 
phism of Sensitives and Resistants is never  stable (if 
w3 # 1).  If w3 > 1,  there will only be Resistants, and 
Killers can only invade if w1 > w3. If w3 < 1, there will 
only be Sensitives and Killers can invade if wlc(l - r) 
> 1 .  

A polymorphism of Sensitives and Killers is always 
unstable and produces Resistants by recombination. 
A polymorphism of Killers and Resistants is also never 
stable (if w3 # wl) .  So if none of the  monomorphic 
steady states are stable,  Equation 5 is true  and poly- 
morphism is expected. 

Analysis  of  system (Equation 1) shows that  there  are 
two potential  polymorphic steady states for 

I A * &  
X I  =- C (1 0 4  

where 

A = 2 + ~ 1 ( 1 - 2 ~ ( 1  - ~ ) ) - ~ 3 ( 1  + r ) - w l w s ( l  -c) 

B = ( l   - C ~ ) ~ W ~ - ~ W ~ W ~ ( I  -cr)(1  -w3(1 - c++cr ) )  

+w?( ( l   - (1  - c ) w ~ ) ~ - ~ c ~ w ~ T ( ~  - r ) )  

C=2(1  +Wl(l  -c+cr)-ccno3) 
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and 

xp = 
1 -w1- i1  

W] (C(  1 - r) - 1) 

It is clear  that i l  does not exist if the function within 
the  square  root of Equation 10a is negative; also we 
require 0 I i l ,  i 2 ,  i 3  I 1. If this is true, stability can 
be  determined by calculating the eigenvalues. 

If no steady state is stable, the only possible solution 
left is a (quasi-) periodic  orbit. As illustrated in Figures 
1 and 2 ,  polymorphism is found if Equation 5 is true. 
Also, in a  population  where Sensitives are stable,  a 
polymorphic stable  point or a quasi periodic  orbit may 
be found, especially for  higher values of r. This  orbit 
can only be found by numerical  computations. 

Fitness  differences  during  ascospore  formation: 
Like in the previous  model, in a  population  without 
Killers a polymorphism of Sensitives and Resistants is 
never  stable if w3 # 1. If w3 > 1,  there will only be 
Resistants, and Killers can only invade if w1 > w3. If 
w3 < 1,  there will only be Sensitives and Killers can 
invade if c(1 - r) > 1. 

If 1 > w1 > w3 a steady state can be found  for a 
polymorphic population with only Killers and Resist- 
ants at 

Calculation of the eigenvalues shows that this is a 
stable equilibrium  point if 

So a  stable polymorphism at Equation  1  1 is expected 
if Equation 9 is true. 

Moreover, analysis of system (6) shows that two 
potential steady states can be  found  for  a polymor- 
phism  with  all three types for: 

~ A f d B  
x1 =- 

C (1 3 4  

A = ( ~ 3 - 1 ) ( 2 ( 1 - C + c r ) + w l ) - W l C r - 1 + ~  

B = ( l  -c)2+2w1((w3-  1)(1 -c+22r(l  -r))+cr(l -c)) 

+ w:(( 1 - w3 + c r y  

C = 2 ( ( w 3 - 2 ) ( 1  - C C + 1 ) + ( W s -  1)cr) 

x2 = 
1 -w1- i1 

c ( l - r ) - w 1  

The function within the  square  root of Equation 
13a must be positive, and 0 I il, ip, i3 I 1. If so, 
stability can be  determined by calculating the eigen- 
values. 

Again, it is  easy to see that if there does  not exist 
any stable  state and  no polymorphic stable state with 
two types, all three types will be  expected  to coexist 
in the population. If stability analysis  shows that  one 
of the steady states (Equation 13) is stable, there will 
be  a  stable  point,  otherwise there must be  a (quasi-) 
periodic  orbit. 

These events can be complicated by the existence 
of an unstable (quasi-) periodic  orbit, as illustrated in 
Figure 3. Here  both a polymorphic point and a quasi 
periodic  orbit can be stable. In this case perturbations 
in gene  frequencies can easily cause a shift from  the 
periodic  orbit  toward the stable point, as the trajec- 
tories of the two are very close, especially near  the 
axes. 

Fitness  differences  in  the  diploid  stage  of  the life 
cycle: If fitness differences in this stage are assumed, 
WG = wji for  the fitness parameters in Table 1 (except 
in  case of killing). Putting  the fitness of kkSS (the 
homozygote Sensitive) at  1, this leaves five fitness 
parameters w G .  There  are, however, no  data  on  real- 
istic values of these  parameters.  Investigating all  pos- 
sibilities falls beyond the scope of this paper. 

If it is assumed that wG = wi ow,, ie., assuming mul- 
tiplicative fitness of haplotype fitnesses, it can be 
shown that  the model becomes identical to  our first 
model with selection in the haploid stage of the life 
cycle. 

If heterozygote  advantage is assumed, it is likely 
that conditions can be  found  for  a stable polymor- 
phism of the  three types considered.  In this model a 
cross Killer x Sensitive yields a  double  heterozygote 
(KkSs) and crosses of  Killer X Resistant (KkSS)  and 
Sensitive x Resistant (kkSs) yield single heterozygotes. 
This means that  the fitness parameters w~ with i f j 
will have the highest values under this assumption, 
and  no  monomorphic population will be stable: poly- 
morphism of two or  three types is expected. 


