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ABSTRACT 
A model for the evolution of the local averages of a quantitative  character  under  migration, 

selection,  and  random  genetic drift in a subdivided  population is formulated  and  investigated. 
Generations are discrete  and  nonoverlapping; the monoecious,  diploid  population  mates at random 
in each  deme. All three evolutionary  forces are weak, but the migration  pattern  and the local 
population  numbers are otherwise arbitrary. The character is determined by purely  additive  gene 
action  and a stochastically  independent  environment; its distribution is  Gaussian  with a constant 
variance;  and it is under Gaussian  stabilizing  selection with the same parameters in every  deme. 
Linkage  disequilibrium is neglected. Most of the results  concern  the  covariances of the local averages. 
For a finite  number of demes,  explicit formulas are derived for ( i )  the  asymptotic rate and pattern of 
convergence to equilibrium, ( i i )  the variance of a suitably  weighted  average  of the local  averages,  and 
( i i i )  the  equilibrium  covariances when  selection  and  random drift are much  weaker  than  migration. 
Essentially  complete  analyses of equilibrium  and  convergence are presented for random  outbreeding 
and site homing, the Levene  and  island  models, the circular  habitat  and the unbounded  linear 
stepping-stone  model  in the diffusion  approximation,  and the exact  unbounded  stepping-stone model 
in one  and two dimensions. 

D ESPITE  the prevalence  of  geographical  variation 
in quantitative  traits,  the  theoretical  literature 

in this important  area  addresses only a small fraction 
of the biologically interesting  questions (BULMER 
1971a,b;  1980,  pp. 180-184; FELSENSTEIN 1977; 
SLATKIN 1978;  LANDE  1982,  1991,  1992; BARTON 
1983;  ROUHANI  and BARTON 1987; LYNCH 1988). 
The reason is that  the subject fuses two  mathemati- 
cally difficult topics: geographical  variation and  quan- 
titative genetics. The  former has been  rather  thor- 
oughly  investigated at  the single-locus level (see 
NACYLAKI  1989a,b;  1992a,  Ch.  6;  and  references 
therein),  but many fundamental  open  problems re- 
main in the biologically rigorous analysis of the  latter 
(see NACYLAKI 1993  and references  therein). 

LANDE (1 99 1)  proposed  a  model  for  the  evolution 
of the local averages of a  quantitative  trait  under 
isotropic  migration, weak Gaussian stabilizing selec- 
tion,  and  random  genetic  drift in a  population  distrib- 
uted  homogeneously and continuously in one or two 
dimensions.  For the covariances of these local aver- 
ages at  equilibrium,  he  obtained  an  integral, which he 
approximated  for weak selection. 

A reformulation  and generalization of LANDE’S 
(1 99 1)  model for a  discretely  subdivided  population 
with arbitrary migration is desirable for several rea- 
sons. 

First, random drift can be introduced  into a  discrete 
model through population  regulation,  without  the use 
of an ad hoc spatial autocorrelation. 
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Second, LANDE’S model is very similar to  the contin- 
uous MAL~COT (1948,  1955,  1959,  1967,  1969) 
model for  migration,  mutation,  and  random  drift,  and 
neither model  takes into  account  the fact that if indi- 
viduals reproduce  and  migrate  independently of each 
other,  then  there  are  random fluctuations in the pop- 
ulation density. Whereas in a  discrete  model  this dif- 
ficulty can be  obviated by population  regulation,  this 
has not  been accomplished for any biologically reason- 
able  continuous  model (FELSENSTEIN 1975; KINGMAN 
1977;  SUDBURY  1977;  SAWYER  and FEUENSTEIN 
1981).  In  the  continuous  MAL~COT model, biolog- 
ically sensible initial conditions can lead (at least for 
low population densities) to probabilities of identity 
that  are negative or greater  than  one (NACYLAKI 
1976). In LANDE’S model, it  is not clear  whether initial 
nonnegative  definiteness of the covariance  matrix is 
always preserved,  as  required  for acceptability. 

Finally, our formulation will enable us to  derive 
several illuminating  results for  an  arbitrary migration 
pattern  and  to  obtain essentially complete analyses of 
equilibrium and  convergence  for many particular, 
biologically interesting  migration schemes. 

We shall formulate our model in the  next section. 
In  the succeeding  section, we shall establish our gen- 
eral results.  We shall devote  the following sections to 
random  outbreeding  and site  homing, the Levene and 
island models, the circular  habitat and  the  unbounded 
linear  stepping-stone  model in the diffusion approxi- 
mation,  and  the exact unbounded stepping-stone 
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model in one  and two dimensions. We shall summarize 
and discuss our results in the final section. 

FORMULATION 

Generations are discrete and nonoverlapping; the 
monoecious, diploid population mates at random in 
each deme. The genotypic and environmental  contri- 
butions to  the  character are additive and mutually 
stochastically independent;  the  latter is Gaussian with 
mean zero and variance VE in each deme. The envi- 
ronmental values are mutually stochastically inde- 
pendent between individuals, demes, and generations. 
The genotypic value is determined purely additively, 
and we assume that its variance in each deme is 
approximately the same constant Vg (LANDE  1976, 
1991).  This  approximation may be substantially less 
accurate  than in a panmictic population if the variance 
of the mean phenotype  among  demes  that are con- 
nected by appreciable  gene flow  is comparable to  or 
greater  than Vr At least roughly, it might be possible 
to  incorporate  nonadditive genetic variation into VE 
(LANDE  1976,  1991). We assume also that  the distri- 
bution of the  character is approximately Gaussian. We 
neglect linkage disequilibrium. This approximation 
requires that selection and  random  drift be weak. 
Moderate or strong  migration  might  be permissible if 
the genetic variance V, is sufficiently small; otherwise, 
we posit weak migration. 

We now present  a heuristic formulation of our 
model.  A biologically and mathematically rigorous 
derivation  from the basic principles of Mendelism, 
recombination, and  gene action would be very diffi- 
cult and has not  been accomplished even  for  a single 
population (6 FLEMING 1979; BARTON and TURELLI 
1991; NAGYLAKI 1993). 

The life  cycle begins with a very large number, fij, 
of zygotes  in deme j ;  the mean of the  character is the 
random variable 5. The number of demes may be 
finite or infinite. We measure  time, t (=O, 1,  2, . . .), 
in generations, and  the  prime  denotes  the  next gen- 
eration. 

Migration changes kj and 5 deterministically to 
Nj* and q, respectively. To describe  migration, we 
define the elements of the  forward  and backward 
migration matrices (MAL~COT 1948,  1950; BODMER 
and CAVALLI-SFORZA 1968), m j k  and mk,, as follows. 
The probability that  an  adult in deme j migrates to 
deme k is the constant m j k .  Since we are positing that 
3; is very large, therefore &,k represents  the  fraction 
of adults that migrate  from deme j to deme k in each 
generation. We  signify by m k j  the probability that  an 
adult in deme k migrated  from demej.  The migration 
matrices satisfy the  normalization  conditions 

2 &jk = 1, 2 mkj = 1 ( 1 )  
k 3 

and  are connected by (MAL~COT 1948;  NAGYLAKI 
1992a, p. 133) 

Clearly, 

.?y = m j k i k .  
k 

Deterministic Gaussian stabilizing selection with the 
same optimum value zero and  parameter V, in every 
deme follows migration: 

w(z)  = e - m v * ) .  (4) 

Thus,  interdemic divergence is due solely to random 
drift. We set 

vz = v, + v,, v = vz + v,, s = v,/v, ( 5 )  

where Vz  designates the phenotypic variance. Weak 
selection means that 0 < s << 1. 

Random  drift  operates through population  regula- 
tion, which reduces the large  number of adults in 
demej  to Nj. In  the 8; zygotes of the next  generation, 
we have, at least approximately  (LANDE 1976,  1991; 
KIMURA and CROW 1978;  NAGYLAKI  1984;  1992a, 
pp.  315-320;  1992b;  1993; HASTINGS 1990), 

q! =.?y" + 5, (6) 

where 

.?y*=pq?, p = 1 - s ,  

Var(5) = I',, I', = V,/N,. 

For each t ,  the  random  vector S( t )  is stochastically 
independent of the  random vector z(t); for j = 1,  2, 
3, . . . and t = 0, 1, 2, . . . , the  random variables $ ( t )  
are mutually stochastically independent.  Note  that 
only the genic variance contributes  to  the increase in 
variance between lines of zygotes. 

Even  in the absence of selection and migration, the 
applicability of the statistical formula (7c) for sampling 
a mean is far  from obvious. In this neutral, panmictic 
case, with the  method in NACYLAKI  (1992a,  p.  255) 
one can  prove that (7c) is exact  for  a single multiallelic 
locus in a haploid population.  For  a diploid population 
without  dominance,  one can deduce from the results 
in NAGYLAKI  (1992a,  p.  255) that (7c) holds approxi- 
mately for  large  population  number. If there is dom- 
inance, we appeal to  the diallelic analysis  of the vari- 
ance within and between lines by CROW and KIMURA 
(1970, p. 343), who neglect stochastic deviations from 
Hardy-Weinberg  proportions. Their approximations 
should  be  accurate  for  large  population  number. Even 
then, however, (7c) holds only initially, when additive 
effects control  the variance components. As the pop- 
ulation evolves, fixations cause increasing departures 
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from  Hardy-Weinberg  proportions in the  entire pop- 
ulation, and  therefore  the  contribution of dominance 
becomes more  important (6 NAGYLAKI  1992a, Eq. 
4.192).  A  constant supply of mutations may obviate 
this difficulty. For  purely  additive  gene  action, the 
work of KIMURA (1  963, pp. 6-8) enables us to extend 
the single-locus diploid result to multiple loci  in link- 
age  equilibrium. 

It is reasonable to suppose that Rj is proportional 
to Nj.  Then (2) becomes 

which is constant. 
From (6),  (7a), and (3) we obtain our model, 

= p m j k Z k  + 5. (9) 
k 

The same model applies if soft selection (DEMPSTER 
1955; WALLACE  1968;  NACYLAKI  1992a, p. 134)  pre- 
cedes migration, and this observation holds approxi- 
mately for any type of  weak selection. 

The model (9) is mathematically valid for  arbitrary 
intensities of the evolutionary forces. Without  addi- 
tional difficulty, we shall derive many of our results 
in this general case and  then simplify them  for weak 
selection. 

GENERAL  RESULTS 

In  the following subsections, we shall establish sun- 
dry  general  properties of the model (9). We shall 
obtain  bounds  on the rates of convergence of the 
means 

pj(t) = g[&(t>l  (10) 

and of the covariances 

For  a  finite  number of demes, we shall derive  formulas 
for  the  random  vector of  local averages z(t), its char- 
acteristic function, the means pj ( t ) ,  and  the covari- 
ances pjh(t). We shall also deduce simple formulas  for 
(i) the variance of a suitably weighted average of the 
local averages and ( i i )  the equilibrium covariances 
when selection and  random  drift  are much weaker 
than  migration. 

Random  variables: We set A = p M ,  where M de- 
notes the backward migration  matrix, and  rewrite (9) 
in matrix  form as 

z ' = A Z +  3; 

which has the  unique solution 

Z(t) = A'Z(0) + Af-1-7j-(7). 
1- 1 

(13) 
r=O 

In  (13),  the sum is absent if t = 0; the first term is 
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absent if the initial means are  at  the optimum: z(0) = 
0. At least for finitely many demes, since the spectral 
radius of A is p < 1,  the first term in (1 3) converges 
to 0 as t + 03. From  (13) we conclude also that if h(t) 
is normally distributed for every j and t and if 
Z(0) has a  multivariate  normal  distribution,  then z(t) 
has a  multivariate  normal  distribution for every t. 

Suppose now that  not only is the  number of demes 
finite,  but also that  the backward migration  matrix M 
is irreducible  (GANTMACHER 1959, p. 50). This means 
that  the  descendants of individuals in every deme  are 
able eventually to reach every other  deme. Then 
Frobenius'  theorem (GANTMACHER 1959, p. 53) in- 
forms us that  to  the simple maximal eigenvalue one 
of M corresponds  a left eigenvector v with positive 
components. Thus,  the conditions 

O < V j <  1, c v j =  1, vTM = vT, (14) 
.i 

where the superscript T signifies transposition, deter- 
mine v uniquely. 

If M is ergodic, i .e . ,  both  irreducible and aperiodic 
(GANTMACHER 1959, pp. 80, SS), then v is the unique 
stationary  distribution of M .  Given irreducibility,  the 
biologically trivial condition  that individuals have p o s ~  
itive probability of remaining in some deme, i .e . ,  m,, 
> 0 for somej, suffices for aperiodicity (FELLER  1968, 
p. 426). 

The total  population number NT and  the  proportion 
of adults K, in demej  are given by 

NT = N,, K] = N,/NT. (15) 
j 

We have v = K if and only if migration is conservative, 
i .e . ,  it does  not  change the subpopulation  numbers 
(NAGYLAKI  1980;  1992a,  pp. 135-136). 

We define the weighted grand mean of the local 
averages  as 

z = vj& = V T Z .  (16) 
j 

From  (1  6), (1 2),  and (1 4) we obtain 

Z' = pz + 7, - 

where = vTS; which  yields 

1-1 

z(t) = E(0)Pt + pf -"r~(7 ) .  
- 

(1 8) 
r=O 

This can also be  derived  from  (13). 

tion of Z(t) is 
Characteristic function: The characteristic func- 

x([, t )  = ~ [ e ~ f ' ( ~ ) ] ,  (19) 

where i = f i .  For simplicity, here we make the 
natural assumption that  the distribution of {( t )  is 
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independent of t .  Then (19) and (12) lead easily to 
the recursion  relation 

x(& t + 1) = rCI(E)x(& 0 ,  (20) 

where B = AT and 

+(E) = g[e'trfit)1 = n g [ e i W t ) ] .  (2 1) 
j 

Iterating (20), we find 
1-1 

x 6  t )  = X(%, 0) n + W E ) ,  (22) 
r=O 

which can also be  proved by substituting (13) into 

In (22), the  product is one if t = 0, and @'E, 0)  = 
1 if z(0) = 0. Since x(0, t )  = 1 and  the spectral radius 
of B is p < 1, for finitely many demes x(B'E, 0) + 1 as 
t + 00, and  therefore 

(19). 

m 

x(& t )  3 n (23) 
.r=O 

as t 3 00. This  formula  for  the  characteristic  function 
of the stationary  distribution of .?? can also be  estab- 
lished by inserting ( 1  3) into (19). 

Note  that (22) confirms the  remark below ( 1  3) 
about  the Gaussian case. 

Means: Recalling (10) and  (7b),  from  the expecta- 
tion of (9) we get 

PJ! = p c mjkpk. (24) 
h 

We  define llpll = s u p j l p j j l ,  assume \lp\l < 00, and let the 
vectors p' and b' represent  the respective images of p 
and  under  the mapping (24). Then (24) and (1)  lead 
directly to 

lip' - G ' I I  P l b  - G I 1 9  (25) 

which demonstrates  that (24) is a  contraction.  There- 
fore, ~ ( t )  + 0 as t 4 00 at least as fast as $, and  the 
equilibrium p = 0 is unique.  From (24) we obtain 

~ ( t )  = A'r(0). (26) 

Thus, if p ( 0 )  = 0, then p ( t )  = 0 for every t. 

then (24) shows that  the weighted grand  mean 
If the  number of demes is finite and M is irreducible, 

ii HZ) = v=p (27) 

iw = i w ) P 1 9  (28) 

satisfies ii' = p i i ,  whence 

which  follows  also from (26). Observe that if F(0) = 0, 
then ; ( t )  = 0 for every t .  

If M is ergodic and b(0) # 0, then (26) informs us 
that p ( t )  3 0 at  the asymptotic rate p t  as t + w, and 
the asymptotic pattern of the means is uniform,  cor- 

responding to  the  right eigenvector of M with eigen- 
value unity. 

Covariances: The remainder of this paper is de- 
voted to  the study of the covariances ( 1  l).   In this 
subsection, we shall derive the recursion  relations they 
satisfy and  then investigate their  convergence, equilib- 
rium,  and strong-migration limit. 

Recursion  relations: We use a simple conditional 
decomposition of the covariances (NAGYLAKI 1992a, 
p. 253),  (9), ('i'b), and (7c): 

p ~ k = c o v [ ~ ~ I z ) , ~ z i ( z ) ] +  g [ c o v ( q , z i ( z ) ]  

= (h'b mjtz',, p 2 m&n] + wcov(rj, { k ) ]  
[ n 

where q = p 2  = (1 - s ) ~  < 1 and 6jk designates the 
Kronecker  delta, i e . ,  6 j k  = 1 if j = k and 6 j k  = 0 if j # 
k. We  now think of p and r as n2-component vectors, 
where ( r ) j k  = 6$j, and  introduce  the n2 X n2 Kro- 
necker-product  matrix K = M €3 M. Then we obtain 
the matrix  form of (29): 

p f  = q K p  + r. (30) 

The recursion  relation (29) differs  from the discrete 
MAL~COT (1949,  1950,  1951,  1975) model for migra- 
tion,  mutation,  and  random  drift only in its inhomo- 
geneous term.  Therefore, many of the ideas and 
methods used in the study of the MAL~COT model can 
be applied to (29), though  the results here will be 
different. 

To make  both mathematical and biological sense, 
the covariance matrix p must be symmetric, non- 
negative, and nonnegative  definite. We  now prove 
that (29) preserves these three  natural  properties. 

First, it is easy to check that if p = p T ,  then p' = 
( P ' ) ~ .  By induction, this demonstrates that if p ( 0 )  = 
p T ( 0 ) ,  then p ( t )  = p T ( t )  for every t .  

Second, if p k 0, then p f  3 0,  which establishes that 
if p ( 0 )  3 0,  then p ( t )  3 0 for every t. 

Third, p can be  a covariance matrix if and only if it 
is nonnegative  definite, ie., bTpb k 0 for every vector 
b .  Setting c = MTb, from (29) we deduce 

bTpf b = qCTpC + Fjbj2, (31) 

which implies that if P is nonnegative definite, then so 
is p ' .  Therefore, if p ( 0 )  is nonnegative  definite,  then 
so  is p ( t )  for every t .  

The correlation between 5 and .% is given by 

rjk = P ~ J J & G ,  (32) 

If the  number of demes is finite and M is irreducible, 
we express the variance of the  grand mean as 

= Var@ = V j U k p j k  = vT €3 u T p .  (33) 
- 

1.k 
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Invoking (33),  (30), and (14), we derive the recursion 
relation 

p’ = qp + 2 rjv;. (34) 

To simplify the  sum, we define the mzgrution effective 
pofiulutaon number as (NAGYLAKI 1980,  1982,  1983) 

(35) 

For a single multiallelic locus, this effective population 
number replaces the actual  total  population  num- 
ber in the  strong-migration limit (NAGYLAKI 1980, 
1983) and in some aspects of geographical  invariance 
(NAGYLAKI 1982). We  have /3 d 1 and  hence Ne d NT,  
with equality if and only if migration is conservative 
(NAGYLAKI 1980). From (7c), (1 5), and (35) we obtain 

rjv; = v,/N~, (36) 
j 

so (34) becomes 

V 6’ = q6 + $. (37) 

Convergence: We  define llp 11 = supj,klPjkI, assume llp I( 
< 00, and let P’ and i’ represent the respective images 
of p and $ under  the  mapping (29). Then (29) and (1) 
lead directly to 

llP’ - i’ I I  q l b  - ill, (38) 

which demonstrates  that (29) is a  contraction. There- 
fore, ~ ( t )  + $ as t + ~0 at least as fast as q’, and  the 
equilibrium i; is the  unique solution  of 

i j k  = m j m k n i l n  + 6 j k r j .  (39) 
1,n 

We established below (30) that (29) preserves the 
symmetry,  nonnegativity, and nonnegative definite- 
ness of P. Consequently, the uniqueness of ; implies 
that i also satisfies these  three  natural  properties. 

We set 

Pjk( t )  = i j k  - q ‘ q j k ( t )  (40) 

and  subtract (29) from (39) to  deduce 

Q;k = m j m k n Q l n ,  (41) 
[ ,n 

with the initial conditions 

Q j k ( 0 )  = i j k  - P j k ( 0 ) .  (42) 

If  the initial local averages q(0) are fixed,  then P j k ( 0 )  

=E 0 for every j and k and (42) reduces to Q j k ( 0 )  = ;jk. 

For finitely many  demes, the matrix  form 

Q’ = KQ (43) 

of (41) has the solution 

Q(t) = K’Q(0). (44) 

Suppose now that M is ergodic, so that its simple 
eigenvalue one exceeds all other eigenvalues in abso- 
lute value. Since the eigenvalues of K = M 8 M are 
the products of the eigenvalues  of M (LANCASTER 
1969, pp. 259-260), therefore K has simple eigen- 
value one,  and this  exceeds all other eigenvalues in 
absolute value; the corresponding  eigenvector is the 
Kronecker  product  of the constant  eigenvector  of M 
with itself. Thus, we conclude  from (40) and (44) that 
if p(0) # 0, then  the asymptotic rate of  convergence 
is q’ and  the asymptotic  transient pattern of the covar- 
iances is uniform.  Substituting (40) into (32) reveals 
that  the  correlations also converge  at  the asymptotic 
rate qt, but  the  transient  part is not generically uni- 
form as t + w. 

From (43) we infer easily that  the  grand mean 

9 = uT 8 vTQ (45) 

is constant: p’ = F, and hence 

@(t) = F(0) = p’ - j(O), (46) 

which can be  confirmed  at  once  from (44). 

matrix  form 
Equilibrium: For a finite  number of demes, the 

i = q K i  + r (47) 

of (39) has the solution 

i = (Z - qK)”I’, (48) 

where I signifies the n2 X n2 identity  matrix. 
Suppose now that M is ergodic. Then, as noted 

above, K is also ergodic  and its maximal eigenvalue is 
one.  Therefore,  the series  expansion 

m 

; = q n r r  (49) 
n=O 

of (48) converges. By the ergodicity of K ,  there exists 
a positive integer no such that Kn > 0 for n 2 no 
(GANTMACHER 1959, p. 80). Since (I’)jj = rj > 0 for 
every j ,  we infer  that i j k  > 0 for every j and k. This 
conclusion is stronger  than  the  general nonnegativity, 
i j k  2 0,  proved below (39). 

For irreducible M ,  from (37) we obtain 

for  the variance (33) of the  grand mean z. Since, as 
stated below (35), Ne d N T ,  we see that 

- 

with equality if and only if migration is conserva- 
tive. Thus, 5 exceeds LANDE’S (1 976) panmictic-value 
pr unless migration is conservative, in which case j = p,. 



366 T. Nagylaki 

Since the correlation rjk d 1  for every j and k, we 
have 

Pjk JPjjPkk d '/2(Pjj + Pkk) .  (52) 

Defining the weighted mean variance 

PO = C VjPjj, (53) 
3 

from  (52),  (33),  (14),  and  (53) we derive 

P c Po.  (54) 

At equilibrium,  (51) and  (54) yield 

p, d j d Po. 
, . A  

(55) 

For weak selection (s << l), (50) simplifies to 

The strong-migration limit: We consider finitely many 
demes with a  fixed,  ergodic backward migration ma- 
trix M. Selection and  random  drift will be  comparable 
to each other  and much weaker than  migration if  we 
put I?, = sy, and let s + 0 with y j  fixed. To approxi- 
mate  the  equilibrium covariances j j k ,  we set 

i l k  = p$) + sp$) + o(?) (57) 

as s + 0, where p$) and p$) are  independent of s, and 
substitute  into  (39).  Equating powers of s leads to 

p$) = mjlmkn(p{A) - 2 ~ ' " )  In + 6jkyj. (58b) 

As  we  saw below (44),  the  constant  vector is the 
unique  eigenvector of K with eigenvalue one,  and 
hence  (58a) implies that p$) = p(O) for some constant 
p(O). This reduces  (58b)  to 

1.n 

p$) = -2p'O) + mjlmknp{A) + 6jkyj. (59) 
1.n 

Averaging (59) as in (33)  and invoking (14), we find 
p(o) = y.v?; 

I 3  (60) 
j 

in view of (36)  and  (57), this establishes the  strong- 
migration (or quasi-panmictic) limit 

i j k  = vg + o(s) 
2sNe (61) 

as s + 0. 
Thus,  the limiting covariances are  uniform, of 0(1) 

as s * 0, and in agreement with the weighted mean 
covariance (56). Inserting  (61)  into  (32)  produces the 
correlations 

Fjk = 1 + o(s) (62) 

as s * 0. 

RANDOM  OUTBREEDING  AND  SITE  HOMING 

The number of demes ( n )  is finite, and  the back- 
ward migration  matrix is given by (DEAKIN  1966; 
MAYNARD SMITH 1966,  1970a; CHRISTIANSEN 1974, 
1975) 

where the  rate of immigration is proportional to y, 
and ~j denotes  the  fraction of adults in deme j ,  as  in 
(1  5).  This model incorporates  population subdivision, 
but  not isolation by distance.  It is easy to verify that 
the migration pattern  (63) is conservative (NACYLAKI 
1992a, pp. 136,  149),  and  therefore v = K .  The 
proportion of immigrants in deme j is 1 - mjj = 
y(1 - K,), so we  may take 

0 d y d 1/(1 - K,in) (64) 

instead of the customary,  tighter  restriction 0 d y s 
1, which would preclude  preferential  outbreeding. 

If 7 = 0, there is no  outbreeding; = 1  corresponds 
to  the Levene model;  the choices K~ = l / n  and y = 
nm/(n - 1) simplify (63)  to  the island model.  In the 
next two sections, the Levene and island models will 
be  treated as special  cases of random  outbreeding  and 
site homing. 

After  deriving our recursion  relations, we shall in- 
vestigate equilibrium and convergence. 

Recursion  relations: Substituting  (63)  into  (29) 
leads to 

where 

i j  = PjkKkt (664 
k 

P = PjKj = 2 PjkKjKk, (66b) 
j  j,k 

and rT = Vg/NT. It is natural  to  average  (65) as in (66): 

P; = q[(l - y)p, +-GI + rT, (67) 

p' = qp + rT. (68) 

Since Ne = NT here,  (68) is identical to (37). 
Equilibrium: From  (68) we obtain 

rT 
" P=" 1 - q s(2 - s)' 

in agreement with (50).  Substituting 
gives 

Pj = P t  

A I  

(69) 

(69)  into  (67) 
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and inserting (69) and (70) into (65) yields the equilib- 
rium covariances 

From (32) and (71a) we obtain the correlations 
( j  # k) 

Our solution  has  some interesting properties. The 
covariances f i jh  are independent of the demic propor- 
tions K for j # k. The variance fij depends only on  the 
component K~ of K and decreases as K, (or Nj) increases 
with the  other parameters fixed. Clearly, f i j k  increases 
as rT or q increases; the  former corresponds to  greater 
variance V, or more random drift (smaller N T ) ,  
whereas the  latter corresponds to weaker  selection 
(smaller s). It is  easy to demonstrate that if y < 1,  then 
increasing migration (greater 7) increases f i j k  for j # k 
and decreases fia. Thus,  the dependence of f i j k  on the 
evolutionary forces is intuitively reasonable. 

The correlation ;jk is independent of rT and in- 
creases  as K,, K k ,  q, or y (for y < 1) increases. 

By the above remarks, we can obtain lower and 
upper bounds on the variances & by letting q + 0 
(s + 1) and y + 0, respectively, in (71a): 

The right-hand side agrees with (51) for an isolated 
deme  and shows that migration decreases the vari- 
ances fij. In the usual  case y d 1,  the limit y + 1 
reveals (j  # k) 

strengthens the lower bound in (72) to 

(73) 

and informs us that (j # k) 

By (74) and (51), every local  variance exceeds the 
panmictic  variance p,.. 

The demes are strongly differentiated if ‘ jk  << 1  for 

every j and k such that j # k, for which (7 lb) yields 
the sufficient condition 

In this  case, 

rj 
1 - q(l  - $2’ 

Pjj z 

If (76) is strengthened to 

then (77a) and (71a) simplify to 

j j j  z - r. 
1 - q’ 

(79a) is the variance for an isolated deme. 

j and k, for which the condition 
Interdeme differentiation is weak if ‘ jk  = 1 for every 

1 - 4 << q’Y(2 - Y)Kmin (80) 

suffices. Then we obtain the panmictic formula 

Since our formulation posits  weak  selection,  little 
is  lost  biologically by approximating our results for 
s << 1. Then (71) becomes 

and (j  # k) 

From (76) and (77) we see that differentiation is 
strong if 

in  which  case 
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A glance at (78) and (79) tells us that if (83) is strength- 
ened  to 

in (93)  are defined  as in (66).  Hence,  the solution of 
(93b)  reads 

then  (79) becomes ( j  # k) 

By contrast, (80) and (8 1) reveal that differentiation 
is  weak if 

in  which  case 

These results simplify further if migration is also 
weak: y << 1. Then (82) reduces  to 

According to  (83)  and  (84), differentiation is strong if 

S >> Y K m a x ,  (90) 

in  which  case 

If (90) is strengthened  to s >> y, then (86) becomes 

By contrast,  (87)  informs us that  differentiation is 
weak  if 

S e Y K m i n ;  (92) 

of course, (88) does not simplify. 
Convergence: With the substitution (40), it will 

suffice to solve for q j k ( t )  with the initial condition  (42). 
Inserting (40) into  (65),  (67),  and  (68), we find 

(pi; = (1 - y) 'Pjk + y(1 - y)(c + q k )  + y 2 9 ,  (9%) 

q! = (1 - y)Fj + y 9 ,  (9 3b) 

9' = 9, (93c) 

the last of which is a special case of (46). The averages 

%{t) = 9(0) + [ q o )  - 9(0)](1 - y)', (94) 

and this enables us to solve (93a): 

v j k ( t )  = p(0) + [q{o) + pk(0) - 29(0)]( 1 - 7)' (95) 
+ [ P j k ( o )  -c{o) - F k ( o )  + 9(0)]( 1 - r)2'. 

Thus, q j k ( t )  + q(0) at  the generic asymptotic rate 
(1 - 7)'. In view of (40), this exemplifies our general 
result that  the transient part of pjk(t) decays at  the 
asymptotic rate q' and is asymptotically uniform.  Ob- 
serve  that the homing  tendency y is the sole parameter 
that  enters  the time-dependence of Vjk(t) .  

THE LEVENE MODEL 

Taking y = 1 in (63) yields mjk = Kk, the backward 
migration  matrix for  the LEVENE (1953) model (see 
NACYLAKI 1992a,  pp.  144-148). Then (65)  reduces 
to 

It is  easy to verify that in the MALBCOT model with 
mjk = Kk, the probabilities of identity are uniform  after 
one  generation of panmixia. By contrast,  the inho- 
mogeneous term in (96)  produces  interdemic  differ- 
entiation. 

Equilibrium: Setting y = 1 in (7 1) gives 

;jk = [( 1 + $)( 1 + %)]"', j # k. (97b) 

The discussion and results between (7  1) and (75) apply 
with y = 1. 

From  (76) and  (77) we see that  interdeme  differ- 
entiation is strong if 

1 - q >> QKmax, (98) 

in which case ijj = I?, and ( j  # k) 

;jk = (p-) 6. (99) 

Since our model is biologically invalid (though math- 
ematically well defined)  for q << 1 (s = l), therefore 
(98) requires K~~~ << 1, i e . ,  that  there be many demes. 

According to (80) and (81), differentiation is  weak 
if 

1 - 4 << qKmin,  (1 00) 

and this again produces  (81). 
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For weak selection (s << l), (97) simplifies to 

(101a) 

i j k  z [(I + ;)( 1 + :)]"*, j # k. (101b) 

By (98) and  (99), differentiation is strong if  2s >> K,,,, 

in  which  case (j # k) 

J.I.1 
r j h  z -. 

2s 

Differentiation is  weak  if  2s << ~ , i " ,  in which case (88) 
holds. 

Convergence: Setting y = 1 in (93a) yields q,i = q, 
so (93c) informs us that q j k ( t )  = q(0) for t 3 1. Thus, 
after  one  generation,  the  transient  part of (40) decays 
at  the  generic  rate qt and is uniform. 

THE  ISLAND MODEL 

The choices 

in (63) give the backward migration  matrix 

for  the island model (MORAN 1959; MARUYAMA 1970; 
MAYNARD SMITH 1970b;  NACYLAKI 1983,1986) with 
n (32) demes and migration rate m(O < m < 1). 

Recursion relations: Although we shall deduce our 
results  for  equilibrium and convergence by substitut- 
ing  (1 03) into  the  corresponding  results  for  random 
outbreeding  and site homing, it is also of interest  to 
derive the symmetrized recursion  relations for  the 
island model. Since K~ = l/n,  the last term in (65) 
becomes J j k r ,  where r = n r T  = Vg/N and N is the 
number of adults in each  deme. Suppose that p# = po 
and p j k  = p1 for every j and k such that j # k. Then 
(65) implies that these  relations hold for  the  next 
generation.  Therefore, by induction, if we posit 

for every j and k such that j # k, then 

where 

m2 
a = (1 - m)2 + - 

n - 1' 
(1 08a) 

These  parameters satisfy 

O < b <  l / n < a < l ;  (109) 

both equalities in (109) are attained  for  random mat- 
ing in the  entire population, when m = (n - l)/n. 

Since the equilibrium  (71a) of (65) is unique, it is 
obtained  correctly  from  the symmetrized system 
(107).  Furthermore, since (65) preserves the symme- 
trization  (105),  a  result of BOUCHER and  NACYLAKI 
(1988) implies that  (107)  correctly yields the asymp- 
totic rate q' and  the asymptotically uniform  pattern of 
convergence. 

Equilibrium: Substituting (1 06),  (103),  and  (108b) 
into  (71), we get 

i o  = FB/D, il = I'qb/D, (110a) 

i = i l / i o  = qb/B, (1 lob) 

where 

B = 1 - q( l  - b), (1 10c) 

D = (1 - q)[l - q(l - nb)]. (1 10d) 

The remarks below (71)  inform us that  the covari- 
ances increase as r increases and they decrease as s 
increases; the correlation is independent of r and 
decreases as s increases; for m < (n - l)/n, io decreases 
and il and i increase as m increases. The bounds  (72) 
to (75)  reduce  to 

and  for m < (n - l)/n 

(1 12b) 

(112c) 



370 T. Nagylaki 

From (76) and (77) we see that interdeme differ- 
entiation is strong if 

1 - q >> qb, 

which  implies 

r ,. qb 
i o  x rx-  

1 - q(1 - nb)' 1 - q' 

If (1  13) is strengthened to 

1 - q >> nqb, 

then (79) yields 

By (80) and (8 l), differentiation is  weak if 

1 - q << qb, 

which  gives the panmictic result 

r 
4 1  - q)' 

io x il x 

For weak selection (s << l), (1  10) simplifies to 

I'(2s + b) I'b 
i o  x i l  x 242s + nb)' 242s + nb)' 

(1 19a) 

b 
rx- 

2s + b' 
(1 19b) 

By (1  13) and (1  19), differentiation is strong if 2s >> 
b, which  implies 

r I'b 
il x Po x - 2s + nb' 242s + nb)' (1  20) 

and i: = b/(2s). Under  the  stronger condition 2s >> nb, 
(1  20) reduces to 

Differentiation is weak  if 2s << b, in  which  case 
ll 

If migration is also  weak (m << l), we  may substitute 

Finally, we note that letting n - 00 in (1  10) leads to 
b x 2m/(n - 1) throughout. 

Now  we can let s + 0 to deduce 

r 
i o  + m(2 - m)' 

which  simplifies to r/(2m), a result of LANDE (LOFS- 
VOLD 1988), for m << 1. 

Convergence: We  impose (1  06) and rewrite (40) in 
our present notation for 1 = 1, 2: 

P X t )  = i l  - q%(t). (1 23) 

Then (66) and (103) demonstrate that for each deme, 
i . e . , j =  1, 2 , .  . . , n ,  

q(t) = @(t) = (;)'f'.cn + ($)Y'l(t), (124) 

and inserting (124) and (103) into (95), we find for 
l = l , 2  

in  which the initial conditions may  be evaluated from 
(1  23) and (1  24). 

T H E  CIRCULAR  HABITAT IN T H E  DIFFUSION 
APPROXIMATION 

This is the simplest  model  of a finite population 
that incorporates isolation by distance. We  shall for- 
mulate the model  discretely, take the diffusion  limit, 
and derive explicit formulas for its stationary and 
transient states. 

Recursion  relations: We suppose that n colonies, 
each of  which comprises N individuals, form a closed 
loop (MAL~COT, 195 1). This arrangement might be a 
mathematical  idealization of an atoll; demes around  a 
mountain, lake, or shore of an  island; or colonies of 
amphibious or shallow-water  organisms  in a large, 
deep lake or around an island. Starting at an arbitrary 
colony, we circle the loop repeatedly and number the 
colonies  without  limit 0 ,  1,  2, . . . counterclockwise 
and 0,  -1, -2, . . . clockwise.  Dispersion  is  homoge- 
neous: m,k = mi+; thus, m, signifies the probability  of 
displacement by j demes, where j = 0,  f 1, k2,  . . . . 
The probability that the separation between  two  in- 
dividuals  changes by j demes reads (MARUYAMA, 
1971; NAGYLAKI, 1974a) 

m 

w .  I = r n k r n j + k .  (1 26) 
k=-m 

Observe that wj is even (NAGYLAKI, 1974a,  1978a): 
w-j = wj. 

The recursion relations (29) now  have the form 
m m 

pj; = mj-mk-pplp + r &j-k,ln, (127) 
1,p=--m I=" 

where r = VJN.  The homogeneity of dispersion 
suggests  homogeneity  of the covariances: pjk = ;j-k for 
every j and k. Then (127) implies that pjk = ;& for 
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every j and k. Therefore, by induction, if we posit 
that Pjk(0) = jj-k(O) for every j and k, then pjk(t) = 
;j-k(t) for every j ,  k, and t. This simplifies (127)  to 

m m 

ij = q c ukij-k + r 6j,kn. (128) 
A=-m k=-m 

Acceptable solutions of (128) must be  even and 
periodic: for j, k = 0, f 1 ,  +2, . . . , 

P-j = Pj, Pj+kn = i j -  
". 

(129) 

Indeed, since (128)  preserves  (129), it suffices to  de- 
fine  jj(0) so that  (129) holds. 

Since the  equilibrium of (127) is unique, it is ob- 
tained  correctly  from  (1  28). Furthermore, since (1  27) 
preserves  homogeneity,  a  result of BOUCHER and 
NAGYLAKI  (1  988) establishes that (1 28)  correctly gives 
the asymptotic rate q6 and  the asymptotically uniform 
pattern of convergence. 

Discrete Fourier analysis (MAL~COT 195  1,  1965, 
1975;  NAGYLAKI  1983)  enables us to express the 
equilibrium solution of (1 28)  as  an explicit finite  sum. 
Nevertheless, since our model requires weak selection 
and  random  drift, we proceed  at  once  to  the  more 
tractable and illuminating diffusion approximation. 

The diffusion approximation: We scale space and 
time  according  to 

x = jE, T = At, p(x, T )  = &(t). (130) 

In the new units, E represents  the  distance  between 
adjacent colonies and X corresponds to  one  genera- 
tion. The scaled circumference of the  habitat, selec- 
tion  intensity, and  random-drift  parameter  are 

L = nE,  so = SIX, ro = a / X .  (1  3  1) 

We can interpret r0 naturally by fixing V, and scaling 
the population density d: 

d = N / E ,  do = Ad, (132) 

rl = = v,/d, ro = rl/x = vg/do. (133) 

We let c + 0, X + 0, n + m, s + 0, and N + 03 so 
that X / E ' ,  L, so, and ro remain  fixed. 

For  migration, we require  the diffusion hypotheses 

E 2  

X j : l j l<e /e  

1 

lim - j2uj = uo, 2 (1  34a) 

lim - uj = 0 (1  34b) 

for all fixed 0 > 0. (Recall that a, is even, and  therefore 
has mean zero.) Clearly, u$ is the variance of the 
change in separation  between individuals per new 
time  unit, in the new length  units; the  corresponding 
variance in generations is u2 = Xu;. From  (126) it is 
easy to prove  that the variance of uj is twice that of 
m,. Our scalings imply that selection (s 0: E'), migration 
(a2 c2), and  random  drift (r 0: E )  must be weak, and 

A-O X j :  1 jl >e/. 

that  the  number of demes must be  large (n 0: l/t). 
We can rewrite  (1  29) as 

P(-x, T )  = P(X, T ) ,  P(X + k L  T )  = P(X, T )  (135) 

for k = 0, f l ,  22,  . . . and every x and T. 
Following the  corresponding  derivation  for  the 

MAL~COT model (NAGYLAKI  1986),  from (1 28), ( I  30), 
(1 3 l), (1 34), and  (1  35) we deduce  the  boundary-value 
problem 

pT = -2s0p + 1/2u;pxx, 0 < x < YzL, (136a) 

dpX(O, T )  = -ro, (1  36b) 

px(YzL, T )  = 0, (1 36c) 

in  which the subscripts T and x signify partial deriva- 
tives. 

One can prove that if p(x, 0) 2 0 for all x, then 
p(x, T )  2 0 for all x and T ( c j  NAGYLAKI  1986). 

Equilibrium: We find easily that  the stationary so- 
lution of (1 36) is 

where 

For the local variance of z, we have 

i ( 0 )  = p coth a; 

the correlation at separation x reads 

(1 37a) 

(1  37b) 

(1 37c) 

(1  38) 

( 1  39) 

As expected, ;(x) and ;(x) are  monotone decreasing 
in x. Therefore,  setting x = 0 and ?hL yields the bounds 

0 cosech a d ;(x) d P coth a, (140a) 

sech a d ;(x) d 1. (1  40b) 

From  (138) we see that 

i ( 0 )  > p max( 1, 1/a) 3 B/a = p,, (140c) 

where pr denotes  the panmictic value (51) in the 
diffusion limit. The correlation is independent of V, 
and d. 

It is interesting to  note  that, with suitable  reinter- 
pretation of a and p, the covariance ;(x) differs from 
the probability of identityfix) in the MAL~COT model 
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(NAGYLAKI 19’74a, 1986) only by a multiplicative fac- 
tor,  and hence ;(X) =&x)/&O). 

As a  check, observe that  (56) is exact in the diffusion 
limit. Furthermore,  the homogeneous  circular migra- 
tion pattern is conservative (NAGYLAKI  1992a, p. 136), 
so Ne = N T .  Consequently, we obtain 

Invoking (1 35) and  then  (1  37a)  to evaluate 

verifies (1  4  1) 
Geographical differentiation is strong if 

f(Y2L) << 1 H sech a << 1 w a >> 1, (143) 

which corresponds to a  large  habitat,  strong selection, 
or weak migration. If we fix 6 in [0, 1) and let x = 
6(’/2L), then we have the approximations 

;<X) = pe-2m/L, (1  44a) 
;(X) = e-2ax/L (1  44b) 

Differentiation is weak if 

f(’/2L) = 1 w sech a = 1 w a << 1,  (145) 

which corresponds to a small habitat, weak selection, 
or strong  migration. In this case, (137a)  reduces to 
the panmictic value 

;(X> = P/.. (146) 
It is instructive to  compare  the  amount of differ- 

entiation in a  circular  habitat with that in the island 
model. For the  latter, if selection and migration are 
weak (s << 1 and m << l) ,  then  (1 19b) yields 

1 
1 + c ’  

r; = - (1  47a) 

where 

c = x = ( n - l ) - .  2s S 

m 
(1  47b) 

To effect the comparison, for  the circular  habitat we 
posit symmetric nearest-neighbor  migration at  rate 
Y2m in each direction. Then  (1 37b) becomes 

I- /- 

From (139) we get 

;4Y2L) = sech a. (149) 

Since n 2 2, we obtain  from  (1  48) 

and (147a) and  (149)  then reveal that i i  > ic(YzL), i.e., 
as expected,  differentiation is stronger in the circular 
habitat,  where isolation is  by distance,  than in the 
island model,  where the demes are equidistant with 
respect to migration. 

Convergence: In view  of (40),  (130),  and  (131), we 
set 

p ( x ,  T )  = ;(X) - e-2SoTQ(x, T ) .  (151) 

Substituting  (1  5  1)  into  (1 36) and using the fact  that 
;(X) satisfies (1 36) at equilibrium, we find 

QT = 1/2u~Qxx, 0 < X < Y2L, (1 52a) 

Q X ( 0 ,  T )  = 0,  (1  52b) 

(P,(%L, T )  = 0, (1 52c) 

q x ,  0 )  = ;(X) - P(X9  0). (1  52d) 

We  simplify (1  52) by scaling space and time: 

X = %L[, T = TOT, (1  53a) 

L2 
4 UO 

To = “;i , a([, T )  = Q(x, T ) .  (153b) 

Then (152) becomes 

+7 = 1/2+‘E‘E, 0 < [ 1, (1 54a) 

+&x 7 )  = 0 ,  (1  54b) 

+{(I, T )  = 0,  (1  54c) 

+(5, 0)  = +0(4) = Q(X, 0). (1 54d) 

It is easy to solve the  boundary-value  problem (1 54) 
ab initio with Laplace transforms.  However,  (154) is 
formally equivalent to  the mathematical description 
of the  temperature  distribution in an insulated rod  of 
unit  length with initial temperature +,.I([), and it has 
the unique solution (CHURCHILL 194  1, p. 109) 

+(E, 7) = aje-(l/2)j2 
m 

‘+ j ( [ ) ,  (1  55a) 
j-0 

1 

aj = +o(q)+j(v) dq, (1  55b) 

qo([) = 1; I)~([) = 4 cos(jr[), j 3 1. (1554 

In this Fourier cosine series, note  that  (1  53)  and  (1 30) 
give 

T = (S) t .  
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The asymptotic rate of convergence and uniformity 
both  agree with our general  theory. 

If the initial local average  phenotypes are  fixed, 
then p ( x ,  0) = 0 for all x, and  therefore *0(5) = i ( x ) .  
Inserting  (1  37a)  into (1 55b) leads to 

T H E  UNBOUNDED  LINEAR  STEPPING-STONE 
MODEL  IN T H E  DIFFUSION  LIMIT 

We suppose that colonies of individuals are located 
at 0, +-1, k2,  . . . . Such a  long  linear  habitat  might 
represent  organisms  along or in a  river, close to a 
seashore, or along  a  mountain  range. 

Equilibrium: We can  obtain the equilibrium covar- 
iance most  easily  by letting the circumference tend  to 
infinity in the result  for the circular  habitat: as L + 03 

with x fixed,  (1  37)  converges to 

i(4 = Pe , x 2 0 .  ( 1 60) -2 &/a 

Therefore,  the variance and correlation are 

i ( O )  = P, ;(x) = e- (161) 2 &/a 

Thus,  the characteristic  length of the exponential 
decay is u/(2&). 

As for  the  circular  habitat, with suitable  reinterpre- 
tation of the  parameters, ;(x) differs from  the proba- 
bility of identity ?(x) in the diffusion approximation 
of  the MAL~COT model (NAGYLAKI  1974a,  1978a, 
1986) only by a multiplicative factor,  and  hence ;(x) 

With the  correct conversion of the  parameters, 
(160)  agrees with approximation  (1  2b) of LANDE 

Convergence: It is easiest to let L + 00 in (1  52). We 

= f(”. 

(1991). 

obtain 

(PT = %u@,, x > 0, (1  62a) 

PX(0, T )  = 0 ,  (1  62b) 

q x ,  0) = ‘Po(.). (1  62d) 

“(x, T )  + 0 as x + 00 with T fixed,  (162c) 

The boundary-value  problem  (162) can be solved ab 
initio with either  Fourier cosine or Laplace transforms. 
However,  (162) is formally equivalent to  the mathe- 
matical description of the  temperature distribution in 
a semi-infinite rod insulated at  the origin and with 
initial temperature ‘Po(x); it has the unique solution 
(ZAUDERER 1983, p. 222) 

P(x, T )  = Jm g(x, y, T)qo(y) dy, (1634 

where 

- L ( , x p [ - g ] + e x p [ - g ] \ .  - (163b) 

Observe  that a2t = u ~ T .  
If 

then  (163a) converges uniformly in T ,  which permits 
us to take the limit as T -+ CQ with x fixed through  the 
integral sign. Then (163) yields 

P(x, T )  - d2 Jm cP~(y)  dy (165) 
at 0 

as T + 00 with x fixed. The corresponding  time 
dependence is t-’/‘ for  the diffusion approximation of 
the MAL~COT model, which has a  linear rather  than 
uniform spatial dependence (NAGYLAKI 1978a,  1986). 

If p ( x ,  0) = 0 for all x, then 

Clearly, (1  64) holds, and  (165) simplifies to 

as T + 00 with x fixed, in  which st = soT. Substituting 
(1 66)  into (1 63a) leads to  the exact solution 

where  the  complementary error function is given by 

2 m  
& erfc u = - 1 e-”2 dv. (1  68b) 

This enables us to verify (167)  directly. 

T H E  UNBOUNDED  STEPPING-STONE  MODEL 

As discussed in the  introduction, we do not have a 
satisfactory formulation of a  continuous model in 
which individuals reproduce  and migrate  independ- 
ently of each other.  Furthermore,  the diffusion ap- 
proximation of the stepping-stone model fails  in more 
than  one spatial dimension  (FLEMING and SU 1974; 
NAGYLAKI  1974b).  This  failure  occurs essentially be- 
cause the  required scalings of space, time, and sub- 
population number N [ c j  (1  30) to  (1  34)] lead to N + 
03 only in one dimension, and  the divergence of N is 
necessary for  the  derivation of a limiting partial dif- 
ferential  equation  from the recursion  relation (NAGY- 
LAKI 1978b).  Therefore, it is important  to investigate 
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directly the n-dimensional stepping-stone model. 
Recursion  relations: Suppose there  are demes of N 

individuals each at  the points of the infinite  integer 
lattice in n dimensions. We denote position by n- 
dimensional vectors x ,   y ,  . . . with integer compo- 
nents. We assume that  migration is homogeneous, i .e. ,  
the migration rates  depend only on displacement, 
rather  than on the initial and final positions separately 
(MAL~COT 1949,  1950,  1951; KIMURA 1953): mx,y = 
m(x - y) .  The probability that  the  separation between 
two individuals changes by x reads (NAGYLAKI 1974a, 
b,  1976,  1978a) 

44 = c m(y)m(x + Y).  (169) 
Y 

Observe  that w(x)  is even (NAGYLAKI 1974a,  1978a): 

The recursion  relations  (29) now have the  form 
w(-x) = .(X). 

P : , ~  = q m(x - z)m(y - W ) P = , ~  + (170) 

where r = VEIN,  and = 1 if x = y and = 0 if 
x # y .  An easy proof shows that  (1  70) preserves initial 
homogeneity of the covariances, which we posit. Writ- 
ing px,y = p(x - y ,  t ) ,  we reduce  (170)  to 

Z,W 

p(x ,  t + 1) = c w(y)p(x - y ,  t )  + (171) 
Y 

We define p(x ,  0) to  be even. Then (171) implies 

p(-x,  t )  = 4 x 9  t )  (172) 

for every x and t. 

obtained correctly from (1 7 1). 

the Fourier coefficients of the function 

Since the  equilibrium of (1 70) is unique, it will be 

Equilibrium: We identify the probabilities w(x)  as 

q e )  = w(x)e-*.x, (1 73) 
X 

in  which 0.x signifies the scalar product. Since w(x) is 
even,  (173) implies that Q(0) is eken and real: 

q - e )  = wye) = q e ) ,  
where  the asterisk denotes complex conjugation 
ting 

M(8)  = m(x)e-"'", 
X 

174) 

Put- 

175) 

from  (173),  (169),  and  (175) we establish easily that 
q e )  = I M(e)  I P 0. Since 0 c @ ( x )  c 1,  from  (1 73) we 
infer  that Q(0) C 1. 

At equilibrium, (1 7 1) becomes 

i ( q ,  x) = q c w ( y ) i ( q ,  x - y )  + r6x,o, (176) 
Y 

in which we have displayed explicitly the  dependence 
on q. From  (176) we deduce  that 

P(q ,  e) = i ( q ,  x)e-a.x (177) 
X 

satisfies 

Solving (1  78)  for 5 and evaluating the Fourier coeffi- 
cients in (1 77) yields 

where R designates the n-dimensional cube 10, I C a 
f o r j  = 1, 2, . . . , n. 

We  wish to approximate i ( q ,  x )  for weak selection, 
i .e. ,  as s + O+ and hence q + 1-.  We place two 
biologically trivial restrictions on the migration pat- 
tern m. First, we posit that  the  random walk generated 
by m is strongly aperiodic (SAWYER 1976,  1977; 
SPITZER 1976, p. 42). Then  after a sufficiently long 
time any two genes have positive probability of being 
descended  from the same gene.  Second, we suppose 
that  the covariance matrix of m is finite. Our two 
assumptions jointly imply that  the eigenvalues of the 
covariance matrix of m are positive. From (1  69) it is 
easy to prove  that the covariance matrix of w is twice 
that of m. 

Inserting  the  identity 

1 qfl 
1 - q9 1 - q f l  
" - 1 +- 

into  (1 79) gives 

where the function 

has been extensively analyzed in studies of the MA- 
L ~ C O T  model (NAGYLAKI 1976; SAWYER 1977). 

T o  express the results in simple form, first rotate 
coordinates so as to diagonalize the covariance matrix 
of w(x)  (the same rotation diagonalizes that of m ) ;  
denote  the eigenvalues by u; > 0 for j = 1, 2, . . . , n 
and set 

in the  rotated coordinates ij. Thus, [ represents  a 
scaled separation  between  demes. 
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One  dimension: We have (NAGYLAKI 1976) 

where 

i ( q ,  x) = o(1) (1 83a) 

LqIXl"'") < w (1 83b) 

uniformly in x as s + 0. If w ( x )  satisfies 

for some 7 such that 0 < 71 d 1,  then (183a) can be 
strengthened to 

L(q, x) = O(&) (1 83c) 

uniformly  in x as s -+ 0. The condition (183b) is 
biologically  plausible and holds  whenever the  fourth 
moment %(x4) exists. See SAWYER (1 977) for similar 
results. 

Substituting (1 82)  into (1 80a), we get 

r 
2 6 4  

i(q, x) = - [e-' + h(q, x)], (184a) 

where 

h(q, x) = 2a&'6,,o + q q ,  x) (1 84b) 

also  satisfies (183). Thus, if [ is bounded above, we 
may approximate i by neglecting h in (184a). More 
precisely, 

as s 4 0 and x + 00 with [ fixed, in agreement with 
(1 60)  and approximation (1 2b)  of Lande (1 99 1). 

From (1 84a) we obtain the correlation 

i ( q ,  x) = e+ + &q, x), (186) 

where &q, x) also  satisfies (183). Consequently, 

;(q, x) + e-€ (187) 

as s 4 0 and x + 00 with [ fixed, in agreement with 
f(x)/f(O) for the MAL~COT model (MAL~COT 1950, 
1965; WEISS and KIMURA 1965; NAGYLAKI 1976, 
1986; SAWYER 1977). 

Two dimensions: Now  we have (NAGYLAKI 1976) 

where 

i ( q ,  0)  = o(1) (1 89a) 

L q X Z + T )  < w (1 89b) 

as s + 0. If 

for some 7 such that 0 < 7 d 2, where X = IlXll 

denotes the length of the random vector X, then 
(1 89a) can  be strengthened to 

as s -+ 0. The condition (189b) is  biologically trivial; 
again, the existence  of the  fourth moment  suffices. 
See SAWYER (1 977) for similar  results. 

Substituting (188) into (180a) produces the local 
variance 

I' In  2s 
i ( S 3  0 )  = -2pa162 [l + h(q, O)], (190a) 

where 

also  satisfies (189).  Therefore, we  may neglect the 
error term h in (1 90a). If migration is isotropic (a1 = 
6 2  = a), the leading term in (1 90a) reduces to approx- 
imation (1 3a) of LANDE (199 1). 

For the decay  in  space, SAWYER  (1977, Appendix 
11) assumed (1 89b) and proved that 

for x # 0, in  which KO designates the modified Bessel 
function of the second  kind  of order zero, O(s) is 
uniform in x as s + 0, and 

where 

h1(q, x) = O(s"2) (191c) 

uniformly in x as s + 0 and (x = 11 x 11 ) 

uniformly in s as x + w. 
Inserting (1 9 la) into (1 80a) produces 

i ( q 9  x) = 1TblQ2 rKo(8 [ l  + O(s)] + h(q, x), (192a) 

where 

also  satisfies  (191b-d). Thus, if [ is bounded away 
from 0 and 00, we  may approximate i by neglecting 
O(s) and h in  (1 92a). From (1 9 1) and (1 92) we infer 

as s + 0 and x + rn with [ fixed, which reduces to 
LANDE'S (1 99 1) approximation (1 3c)  in the isotropic 
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case. If 5' >> 1, we may approximate  (193) as (OLVER 
1964, p. 378) 

From  (1  90) and  (1  93) we see that 

2KO(t) i ( q ,  x) - - - 
In  2s 

as s 2 0 and x -+ co with [ fixed, in agreement with 
f(x)/f(O) for the MAL~COT model (SAWYER 1977). If 
5' >> 1,  (1  95) simplifies to 

i ( q ,  x) = - 5 In  2s 

Convergence: In accordance with (40), we let 

4x9 t )  = i ( q ,  x) - q ' q x ,  t ) .  (197) 

We present here  the asymptotic form of V(x, t )  as t + 
m with x fixed; the proofs are in the APPENDIX. 

We suppose that  the initial covariance decays fairly 
fast  in  space: there exists q > 0 such that 

p(x ,  0) = O ( P " )  (1  98) 

as x -+ 00. The mild assumption (198) obviously holds 
in the  important special  case p(x,  0) = 0. 

We posit also that (8(x, t ) )  and (tco(x, t ) )  are mono- 
tone  for sufficiently large t and fixed x in one  and two 
dimensions, respectively. This ultimate monotonicity 
is plausible, but  ought  to  be  proved. Similar hy- 
potheses are  required  to  derive  the asymptotic behav- 
ior of the M A L ~ C O T  model (NAGYLAKI 1976; SAWYER 
1976). 

As t -+ 00 with x fixed, we have 

A 
n = 1, (199a) 

, n = 2,  (199b) 

where  the  constant A depends on the initial covari- 
ance: 

Y 

(200b) 

Observe that  the convergence pattern  (199) is uni- 
form, in contrast to  the complex spatial dependence 
in the MAL~COT model (NAGYLAKI 1976; SAWYER 
1976).  Here,  convergence is slower in one dimension 
than in two; for  the M A L ~ C O T  model, the opposite 
holds because the  corresponding  rates  are  propor- 

tional to t-"' and t"(1n t ) - ' ,  respectively (NAGYLAKI 
1976; SAWYER 1976). 

Rewriting (200a) in one dimension as 

m 

A = cP(0, 0) + 2 V(y, 0) (20  1) 
Y=1 

and passing to  the  continuum, we see that  (199a) 
agrees with the diffusion result  (165). 

If p(x, 0) = 0 for all x, the sum is absent  from 
(200b); by recalling (137c) and  the fact that  1 - q - 
2s as s + 0, we see that  (199a)  agrees with (167). 

DISCUSSION 

Here, we reference  and summarize our main results 
and discuss open  problems. 

As discussed in the  introduction,  the discrete-space 
model constructed and investigated in this paper is a 
more  natural,  rigorous,  and  general  reformulation of 
LANDE'S (1 99  1) continuous-space model. Our asymp- 
totic results  for the one- and two-dimensional step- 
ping-stone model at equilibrium  confirm LANDE'S ap- 
proximations  for isolation by distance. The same 
agreement  occurs in the M A L ~ C O T  model (NAGYLAKI 
1989b  and references  therein). 

We established a  number of general  properties of 
our model for  the  evolution of the local averages of a 
quantitative  character under migration, selection, and 
random genetic  drift in a subdivided population. The 
general solution for  the  random vector Z( t )  of  local 
averages in generation t is (1 3). If the  number  of 
demes is finite and  the backward migration  matrix, 
M ,  is irreducible,  then  (1 8) gives the weighted grand 
mean Z(t)  of the local averages. The solution (13) 
corresponds to the characteristic  function (22), which 
has the stationary limit (23). 

As t --.* a, the vector of means p ( t )  = wZ(t)] 
converges to  the  optimum (0) at least  as  fast  as p' = 
(1 - s)', where s denotes  the selection intensity, and 
the equilibrium p = 0 is unique. For finitely many 
demes, p ( t )  is given by (26). If M is irreducible, we 
have the simple solution (28)  for  the weighted grand 
mean 6 = %'(Z). If M is ergodic ( i e . ,  irreducible and 
aperiodic),  then p ( t )  + 0 at  the  generic asymptotic 
rate p' ,  and  the asymptotic pattern of the means is 
uniform. 

The rest of our general and specific results concern 
the covariances (1  1). As t + m, the matrix of covari- 
ances p ( t )  converges at least as fast  as q' = (1 - s)" to 
the unique  equilibrium 6. For finitely many demes, 
(44) is the transient  solution; if M is irreducible, the 
grand mean (45) is constant. If M is ergodic, the 
asymptotic rate of convergence is generically q', and 
the asymptotic transient pattern of the covariances is 
uniform. 

- 

- 
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For finitely many demes, (48) provides the matrix 
solution for  the  equilibrium i .  If M is irreducible,  the 
variance (33) of the  grand mean is given at equilib- 
rium in terms of the migration effective population 
number (35) by the simple formula (50). If M is 
ergodic  and if selection and  random  drift  are  both 
much weaker than migration, then  the  approximation 
(61) holds for  the covariances. This strong-migration 
limit is equivalent to panmixia if and only if the 
migration effective population number N ,  equals N T ,  

the total  population number,  and this occurs if and 
only if migration is conservative, i e . ,  does  not  change 
the subpopulation  numbers. 

Random outbreeding  and site homing is a model of 
population subdivision without isolation by distance; 
it  has the Levene and island models as important 
special  cases. Equation 71 specifies the covariances 
and correlations at equilibrium; this yields the condi- 
tions (76) and (80) for  strong  and weak interdeme 
differentiation, which lead to  the simplifications (77) 
and (79), and (81), respectively. Further  reduction 
occurs  for weak selection [see (82) to (SS)] and weak 
migration [see (89) to (92)]. The exact  transient solu- 
tion is (95); it exemplifies our general  result on  the 
asymptotic rate  and  pattern of convergence with er- 
godic M .  

For the Levene  model, (97) gives the covariances 
and correlations at equilibrium;  differentiation is 
strong or weak according as (98) or (100) holds. For 
weak selection, (97) simplifies to (1  0 1). 

For the island model, ( 1  10) is the exact  equilibrium. 
For  strong  differentiation [(113) or ( 1  15)], we have 
(1  14) or ( 1  16); under  the condition ( 1  17) for weak 
differentiation, ( 1  18) holds. If selection is weak, we 
have the  approximate results ( 1  20) to ( 1  22). The exact 
transient solution is ( 1  25). 

Our remaining models involve isolation by distance. 
For  a  finite  population, the simplest of them is the 
circular  habitat, which we investigated in the diffusion 
approximation. The covariance, local variance, and 
correlation are given by (137),  (138), and (139), re- 
spectively. Differentiation is strong if (1  43) applies, in 
which  case we have the  approximation (144); differ- 
entiation is  weak  if (145) applies, in which case the 
panmictic approximation (1  46) holds. We proved  that, 
for  properly  identified  parameters,  differentiation at 
equilibrium is stronger in the circular  habitat  than in 
the island model. The exact  transient  solution is ( 1  55) ,  
with the  important special case ( 1  59) for  fixed initial 
local averages ( i . e . ,  initial covariance zero). The 
asymptotic rate  and  pattern of convergence (158) 
again exemplify our  general  theory. 

From the diffusion solution for  the circular  habitat, 
we deduced  that  for  the  unbounded  linear stepping- 
stone model. At equilibrium, we have ( 1  60) and (1 6 1).  
The exact  transient solution is ( 1  63), with the asymp- 

- 
totic form ( 1  65). If the initial covariance is zero, these 
reduce  to (1  68) and ( 1  67), respectively. 

Finally, we analyzed the  unbounded stepping-stone 
model in one  and two dimensions. As explained at the 
beginning of the previous section, because of the 
unavailability of a satisfactory continuous model and 
the failure of the diffusion approximation in more 
than  one spatial dimension, this is the only known 
rigorous  approach to  the  important bidimensional 
case. For weak selection, the unidimensional equilib- 
rium covariance has the approximations (184) and 
(1  85), and  the correlation satisfies ( 1  86) and ( 1  87). In 
two dimensions, we have the approximations (190) 
for  the local variance, (192) to (194) for  the spatial 
decay of the covariance, and (195) and (196) for  the 
correlation. Equations 199 and 200 give the asymp- 
totic rate  and  pattern  of convergence. 

The models treated in this paper involve no envi- 
ronmental  inhomogeneities. The influence of bound- 
aries and geographical  barriers will be  studied in 
future work. More difficult would be the incorpora- 
tion of spatial variation in the selection pattern, which 
would enable us to investigate clines. 
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tional Science Foundation grant BSR-9006285. 
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APPENDIX 

Here, we prove the results ( 1  99) and (200) for  the 
rate of convergence of the  unbounded stepping-stone 
model in one  and two dimensions. 

Inserting (197) into (17 1 )  and appealing to (176), 
we obtain 

q x ,  t + 1 )  = o(y)P(x - y, t ) .  (AI) 
Y 

Recalling (1 73), we see that 

+(e, t )  = V(X, t)e-".x (A2) 
x 

satisfies 

whence 

+(e, t )  = +(e, o)[n(e)y. (A4) 

Consequently, the  Fourier coefficients in (A2) are 

= C P(y, O)G(x - y, t ) ,  (A6) 
Y 

where R is the same as in (179) and 

We use probability-generating  functions and a 
Tauberian  theorem  to investigate the behavior of (A6) 
as t + 00 with x fixed. Since 0 d Q(0) d 1, expanding 
the fraction in (180b) in a Maclaurin series and em- 
ploying (A?') yields 

m 

H(z ,  x) = G(x, t ) z f  (A8) 
I==l 

for I z I C 1 .  From (A6) and (A8) we deduce 
m 

F ( r ,  x) = q x ,  t ) z '  (A9) 
I= 1 

= p(y, O)H(z,  x - y). (A10) 

In principle, we know P(x, 0) and C(x, t ) .  We wish 
to determine  from (As) the behavior of H ( z ,  x) as 

Y 

z + 1- with x fixed, and hence  that of F ( z ,  x) from 
(A10); then (A9) and  the  Tauberian  theorem will  give 
the behavior of V(x, t )  as t + co with x fixed. 

Instead of treating  the  general case immediately, 
we shall begin with the  important special  case ~ ( x ,  0) 
= 0 ,  for which the derivation is much  easier. 

An important special case: If p(x, 0) = 0 for all x, 
then setting t = 0 in (197) shows that (A10) becomes 

F ( z ,  X) = Fo(z, X) = i ( q ,  y ) H ( z ,  X - y). (A1 1 )  
Y 

We define  the  functions 

F0(z, e) = F ~ ( z ,  x)e-a.x, (A1 2) 

I?(z, e) = H ( Z ,  x)e-"'%, (A1 3) 

X 

X 

recall (177), and  transform  the convolution (A1 1) into 

F o ( ~ ,  e) = b(q, e)I?(z ,  e). (A 1 4) 

We substitute  for 6 and I? from (179) and (180b), 
respectively, and  rearrange to  deduce 

z F0(r-, e) = - [ b ( ~ ,  e) - ~ ( q ,  e)], ( ~ 1 5 )  
z - 9  

which  yields the  Fourier coefficients 

Finally, we insert (180a) into (A16) to derive 

Fo(z,  x) = - [ H ( z ,  x) - H ( q ,  x)] (A171 

- [H(G O ) - f i ( z ,  x ) - H ( q ,  X)], (A1 8) 

rz 

r z  
2 - 9  

" 

2 - 9  

where 

E(%, x) = H ( z ,  0)  - H ( z ,  x). (A19) 

Note  that  (NAGYLAKI 1976; SPITZER 1976, pp. 124, 
345) 

B(z, x) + fi( 1 ,  x) < 03 (A20) 

as z + 1- with x fixed. 
We must treat  one  and two dimensions separately. 
One  dimension: From (AIS),  (182), and (A20) we 

find 

as z + 1-  with x fixed. If ('P(x, t ) )  is ultimately 
monotone in t with x fixed,  then (A9),  (A21), and a 
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standard  Tauberian  theorem (FELLER 1971, p. 447) 
give 

as t + 00 with x fixed. This proves the special  case  of 
(1 99a). 

Two dimensions: To apply the  Tauberian  theorem, 
we must study the partial  derivative of FO with respect 
to z. From (A9) we get 

m 

Fo,,(z, x) = z-l #(x, t )z ' .  (A2 3) 
l=l 

Formal differentiation of (1  88) suggests that 

as z + 1 -. Although asymptotic results cannot always 
be differentiated, it follows from  SAWYER (1976, pp. 
7 12-7 14,  72  1) that (A24) is,  in fact,  correct. One can 
also prove (A24) ab initio by direct asymptotic analysis 
of (188b). We have also (NAGYLAKI 1976) 

as z + 1- with x fixed,  where i, = i,/u, is the scaled, 
rotated j t h  coordinate and i = 11 i 11. 

Differentiating (A1  8), letting z + 1- with x fixed, 
and inserting (1 88), (A20),  (A24), and (A25), we find 

If (#(x, t ) ]  is ultimately monotone in t with x fixed, 
then (A23),  (A26), and  the  Tauberian  theorem 
(FELLER 197  1, p. 447) imply 

as t + 00 with x fixed. This proves the special  case  of 
(1 99b). 

The  general  case: Substituting (A19) into (A10) 
yields 

F ( z ,  X) = A H ( z ,  0)  - Fl(z, X), (A28) 

where A is given by (200a) and 

FI(L X) = p(y, o)R(z, X - y). (A29) 

According to (182),  (188), and (A20), the function 
H ( z ,  0)  diverges as z + 1-, whereas R(z, x) does 
not.  Therefore, we expect the first term in (A28) to 
dominate as z + 1-, as it does in (A18). This suggests 
that  the general  result can be  obtained by replacing 
r / ( l  - q) in (A22) and (A27) by A. Demonstrating 
this will establish (1  99). 

Y 

First, we prove (200b). From (197) at t = 0, (177) 
with 8 = 0, (179), and  the fact  that Q(0) = 1 [see 
(1  73)], we derive 

A = c [ a q ,  Y) - P(Y9  0)l 

= P ( q 9  0 )  - c P ( Y ,  0) 

Y 

Y 

as required. On account of (198), we have A < w. 
Next, use (197) to decompose F1: 

Fl(2, x) = Fl&, x) - F 1 2 ( G  x), (A314 

F l l ( Z ,  x) = c i q q ,  y)R(z, x - y), (A31b) 

F12(%, x) = c P(Y, O)fi(Z, x - Y). (A314 

where 

Y 

Y 

For FI1,  we invoke (A19), the calculation that leads 
to (A30),  (A1 l ) ,  and (A18): 

Fll(Z, x) = e i qq ,  y)[H(z, 0 )  - H(G x - Y)1 
Y 

From (182),  (188), and (A20) we get 

r 
Fll(%, x) + 1 [ R ( L  x) + H ( q ,  4 1  (A33) 

- 4  
as z + 1- with x fixed. 

From (A1  9),  (1 80b), and (1  74) we obtain 
The investigation of F12 requires some estimates. 

Since, as observed below (1  75), we have 0 d Q(8) d 1, 
therefore R(z, x) 3 0 and R Z ( z ,  x) 3 0 if 0 z 1. 
Furthermore (NAGYLAKI 1976; SAWYER 1976; 
SPITZER 1976, pp. 124,  345), 

( i / u ,  n = 1, 
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which demonstrates  that  (A3  IC)  converges  uniformly 
in z for 0 < z d 1. Hence, we  may take the limit as 
z + 1- with x fixed through  the summation sign: 

F12(& x) + c P(Y, 0 ) m L  x - y). (-437) 
Y 

Then (A28), (A3la), (A33),  and (A37)  inform us that 

F ( z ,  x) = AH(%, 0) + 0(1) (-438) 

as z + 1-  with x fixed. 

(1 99a). 

derivatives. From  (A28) and  (A3 la) we get 

In one dimension, (A21) shows that (A38)  proves 

In two dimensions, we must again employ partial 

F,(z, x) = AH&, 0) - F&, x), (A39a) 

where 

FI, , (~,  X) = FII,~(.z,  X) - FIZ,~(G X). (A39b) 
Appealing to  (A32),  (1  88),  (A24),  (A20),  and  (A25), 

we find 

F , I , z ( % ,  x) 

=- rq H(z ,  0) + (z) a ( % ,  x) + O( 1) 
(1 - d 2  1-q 

I' In( 1 - z) 
" 

as z 3 1- with x  fixed. Therefore, by (A24), to 
demonstrate  that  the  first  term  dominates in (A39a), 
it will suffice to establish that 

F12.2(%, x) = o[l/(l - z)] (A41) 
as z + 1 - with x fixed. This will prove  (1 99b). 

By (A3 IC), 

F ~ ~ . , ( Z ,  X) = c P(Y, o ) l f , ( ~ ,  X - Y), ( ~ 4 2 )  
Y 

so we need  a  suitable  estimate on R,. 
From  (A34) we obtain 

Q(8)sin2(l/,8.x) d26 
[ I  - zn(e)12 2 2  

- P 0, (A43) 

whence 

where t9 = ll8ll and RO denotes  the part of R with t9 d 1~ 
excluded. 

T o  estimate J ,  observe first that 

%ex 1 

for all a in [0 ,  13. Second,  note that  for every aperiodic 
random walk, there exists X > 0 such that 

Re Q(8) d 1 - he2 (A46) 

for all 8 in R (SPITZER 1976, p. 70). Here, Q(B) is real. 
Inserting  (A45)  and (A46)  into  (A44b) and  then 

performing  the  angular  integration leads to 

The substitutions 

{=-  1 - z  

X% 
, e = &  

reduce  (A47)  to 

Taking  a < 1, we  may replace the  upper limit  in (A49) 
by infinity. For 0 < zo d z < 1, we conclude  that 

J ( z ,  x) d CX2"(1 - q - 1 ,  (A50a) 

where 

and  therefore  (A44a) becomes 

E z ( z ,  X) d B + C P ( 1  - (A51) 

Inserting  (A5 1) into  (A42) yields 

IFIz&, x) I d D + +(x)(l - z)O-', (A53a) 

where 

provided 2a < q. Thus,  (A4I) holds if we choose a = 
I / q  and 0 < q < 4.  This completes the  proof. 


