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ABSTRACT 
In  studies  examining  the patterns or spectra of mutational  damage,  the  primary  variables of interest 

are expressed  typically  as  discrete counts within defined  categories  of  damage.  Various statistical 
methods  can be applied to test for heterogeneity  among  the  observed  spectra of different classes, 
treatment  groups and/or doses of a mutagen.  These are described  and  compared via computer 
simulations to determine which are most appropriate for practical use in the  evaluation of spectral 
data. Our results  suggest  that  selected,  simple  modifications of the usual Pearson statistic for 
contingency  tables  provide  stable  false  positive error rates near the usual a = 0.05 level  and  also 
acceptable sensitivity to  detect  differences  among  spectra.  Extensions to the  problem of identifying 
individual  differences within and  among  mutant  spectra are noted. 

I NCREASINGLY, scientists studying the effects of 
environmental stimuli are able to identify specific 

forms of mutagenic  damage at  the DNA or protein- 
product level. Experiments to study and  compare  the 
spectra of these  mutations are performed in a variety 
of microbial and mammalian systems; recent examples 
include works by TINDALL, STEIN and HUTCHISON 
(1988), CARIELLO et al. (1990), DEMARINI et al. 
(1  992),  and LAMBERT et al. (1  992),  among many oth- 
ers.  When the study concerns two or more  groups of 
chemicals, different doses of the same chemical, dif- 
ferent classes of effect modifiers (such as repair capac- 
ity, see the example below), etc., comparisons among 
the mutational  spectra associated with each group or 
class are desired. These comparisons are facilitated by 
use  of appropriate statistical methods.  Such  methods 
can vary, depending  on  both  the  nature of the spectral 
data  and  on  the scientific questions being raised. For 
example, if the  data take the  form of scores or ratios 
of numerical values, standard  univariate or multivar- 
iate analysis of variance methods can be employed 
(BENICNI, PALOMBO and DOCLIOTTI 1992).  If,  alter- 
natively, the  data  are counts of how often each mu- 
tation is observed for a given group,  then statistical 
methods must take this categorical nature  into ac- 
count. In this case, one  often displays the  data as R 
rows of  counts  comprising  a categorical data  table, 
with each row representing  a  different  mutant site. If 
there  are T treatments or groups  under  study,  the 
table is often  referred  to as an R X T contingency 
table; see, e.g., WEIR (1  990) or ACRESTI (1  990). 

In  the special case of T = 2  groups  under  study,  the 
issue becomes one of testing  whether or not  the re- 
sponses in the  ith row ( i  = 1, . . . , R )  across the two 
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groups are similar for each row category. For exam- 
ple, consider the  data in Table  1, which represent  a 
comparison of  G:C - A:T  transition  spectra in strains 
of the  bacterium Escherichia coli that vary by excision 
repair capability after  treatment with ethyl methane- 
sulfonate (BURNS et al. 1986).  Of  interest is the com- 
parison of DNA sequences that were ostensibly iden- 
tical  in the  different  strains  prior  to  treatment.  Table 
1  presents the mutational  counts in a 25 X 2  format 
( i .e . ,  R = 25),  where the counts are seen to vary 
somewhat across nucleotide positions. The table also 
illustrates a critical aspect of the categorical data: the 
total  number of mutations observed in each group 
may differ. Any comparison across rows must take 
these differing totals into  account. 

The statistical sampling characterization  for  data 
such as those in Table 1 involves the multinomial 
distribution (WEIR 1990, Ch. 2). ADAMS and SKOPEK 
(1987)  describe  the multinomial sampling format  as 
applied to comparisons of mutational  spectra. As they 
note, use  of the terminology “mutational  spectra” to 
describe such data is rather ambiguous. Technically, 
the  data  represent  a  per-group sample of observations 
from some underlying, unobserved spectrum. As the 
column totals increase and  more  mutations are ob- 
served in each group,  the spectral sample would be 
expected to better  represent  the  true, underlying 
spectrum. 

In what follows, we describe various statistical meth- 
odologies for  comparing spectral samples, where  the 
scientific goal is to make inferences about  the similar- 
ity or difference(s) among  the T experimental  groups. 
As will be  seen, there  are a  number of test statistics 
applicable to R X T tables; one of our  goals will be to 
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TABLE 1 

Mutational  spectra of C C  + A:T transitions in E. coli 

Row, i 
[position/sequence] 

Group 1: 
strain uur+ 

Group 2: 
strain uurB- 

1 [42/CGT] 4  2 
2  [53/TGT] 0 0 
3 [56/CGC] 9  3 
4  [57/TGC] 1 7 
5 [75/AGA] 2 10 
6 [80/TGA] 1 4 
7  [84/GGT] 3 6 
8 [9O/GGA] 2  2 
9  [92/CGG] 5 1 1  

10  [93/CGC] 4 6 
1 1  [95/CGT] 0 1 
12 [ 1 O4/TGG] 1 1 
13 [ 1 13/TGG] 0 0 
14 [ 1 2O/AGA] 0 4 
15 [ 129/CGT] 0 0 
16 [ 140/AGT] 4 5 
17 [ 174/GGG] 6 0 
18 [ 179/CGG] 0 0 
19 [ 185/GGC] 9  4 
20 [ 186/TGC] 1 3 
2 1 [ 188/TGT] 0 3 
22  [191/TGT] 3  4 
23 [ 198/CGC] 0 0 
24 [2Ol/GGC] 1 1 
25  [206/TGT] 0 2 

Total  56  79 

Data from BURNS, ALLEN and GLICKMAN (1 986). G + A transi- 
tions  occur at middle G of each  listed sequence. 

compare  their various operating characteristics in or- 
der  to make specific recommendations  for use in this 
setting. 

STATISTICAL  NOTATION 

In  the general R X T setting, we represent  the  data 
counts as variables Yq (i = 1, . . . , R ;  j = 1, . . . , T ) .  
The column totals, N, = Y, 0' = 1, . . . , T ) ,  are 
assumed fixed and known. We also write the total 
sample size as N+ = N,. For  example, in Table 1, 
R = 25 and T = 2, while N 1  = 56, N2 = 79, and  the 
total sample size is N+ = 56 + 79 = 135. 

Under this format, we assume the j t h  column of 
data possesses a multinomial sampling distribution, 
with parameters p ,  and N,; the  proportion p ,  repre- 
sents the response probability in the table's (i,j)th cell. 
A necessary structural aspect of the multinomial sam- 
pling model requires P I ,  + p ,  + , . . + p ,  = 1.0, at 
eachj = 1, . . . , T. 

An important  feature of this multinomial model is 
the assumed independence  among  the observations. 
In particular, it is assumed that each tabled observa- 
tion represents  a sum of independent  contributions to 
the total  mutant  count. The validity of this assumption 
will vary from  experiment  to  experiment.  For exam- 
ple,  independence  might  be  reasonable if cells scored 

for  mutants are derived  from  a mixed population- 
such as  a tissue-but not if they are derived clonally 
from  a single progenitor cell. In all the examples and 
statistical methods described herein, we assume inde- 
pendence is valid. [In those cases where it may be 
invalid, and where  additional, extra-multinomial 
sources of variability are  present,  more complex, hi- 
erarchical statistical models are  required.  These  are 
discussed, e.g. ,  by BISHOP, FIENBERG and HOLLAND 
(1975, Ch. 12) or DIACONIS and EFRON (1985). A 
good practical exposition is given by KRAMER and 
SCHMIDHAMMER ( 1992). J 

Under multinomial sampling, the statistical hypoth- 
esis  of homogeneity, 

Ho: p i ,  = p i 2  = . . . = p, ,  (for all i), 

translates to  no differences  among spectra across 
groups. Under this null hypothesis, the maximum 
likelihood estimates of the cell response probabilities 
are 

' D T  

i = 1, . . . , R .  Notice that  the estimates do not  require 
a  column subscript under  the homogeneity constraint. 
They satisfy the constraint in the sense that $Q esti- 
mates any p, ,  for fixed i, under Ho.  

STATISTICAL  TESTS OF SPECTRAL 
HOMOGENEITY 

Chi-square  tests: T o  test the significance of the 
homogeneity hypothesis, Ho, against any departure 
from  homogeneity,  a  number of test statistics are 
available. Most common,  perhaps, is the usual Pearson 
chi-squared goodness-of-fit statistic, which takes the 
form 

The Eq are  the expected cell counts under  the null 
hypothesis of homogeneity: Eq = $QNj .  Another well 
known test statistic for Ho is the likelihood ratio statis- 
tic 

G 2  = 2 Yq log {?}. R T  

i- l  j=1 

Both these  forms can be shown to belong to a  larger 
class  of statistics, known as the power divergence 
family (CRESSIE and READ 1989). Another statistic 
from this class  is 

which we will refer  to as the CRESSIE-READ statistic. 
All the statistics in the power divergence family 
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possess approximately x2 distributions in large samples 
under  the null hypothesis of no spectral differences 
(CRESSIE and READ 1984). Thus, as the column totals, 
N j ,  become large, each of X 2 ,  G2, and C2 may be 
referred to a x2 distribution with (R - 1)(T - 1) 
degrees of freedom (d.f.): when the test statistic ex- 
ceeds a x2 table value with (R - 1)(T - 1) d.f., one 
rejects the null hypothesis of spectral  homogeneity. 

An alternative  methodology  for  testing Ho, pro- 
posed by MARGOLIN and LIGHT (1974), involves a 
modified form of analysis of variance. The method 
mimics the usual ANOVA F-ratio  adjusting  for applica- 
tion to categorical data. The test statistic is 

(N+ - 1)(R - 1) EP-1 x:-1 
(X, - Eq)’ 

M 2  = N, 
1 

N+ - - xR 
N+ 1-1 (x;, YiJ 

In large samples, M 2  is distributed  as  a weighted sum 
of x2 distributions. In some cases, this somewhat com- 
plex sum can itself be  approximated by a single x2 
distribution with (R - 1)(T - 1) d.f. We will employ 
this approximation,  and reject Ho when M 2  exceeds a 
x2 table value with (R - 1)(T - 1) d.f.,  in similar 
fashion to  the  power  divergence statistics, above. 

Modifying  the  degrees of freedom for zero  row 
totals: An important  consideration  noted by MARGO- 
LIN and LIGHT is that  the d.f. must be  delineated 
properly. If all the cells of  the R X T table are filled 
with a  non-zero entry (i.e., Y,j # 0 for all z,j), then 
there  are (R - 1)(T - 1) d.f. available in the  table for 
statistical manipulation. Indeed, even if selected rows 
have only one cell with a  non-zero entry,  the table 
again provides (R - 1)(T - 1) d.f. of information. 
Suppose, however, that there  are  one or more rows 
with a  zero row total, i.e., there is some row index i’ 
for which 

Yi.1 + Yi’2 + . . . + Yi‘T = 0. 

Then, that  i’th row contributes  no  information  to any 
of the test statistics. As such, one can eliminate  those 
rows from  consideration, and consequently reduce the 
number of degrees of freedom. Thus, if there  are I rows 
of the R X T table that exhibit  non-zero totals, then 
the  corresponding I X T table of informative  data will 
generate  the  same statistical information,  but with a 
reduced  number of d.f.: ( I  - 1)(T - 1). Under such a 
reduction,  the analysis is said to be conditional on  the 
observed pattern of zero rows, since the statistical 
inferences  from it apply technically to those  data tables 
with the same observed pattern of non-zero row totals. 
MARGOLIN and LIGHT (1 974) provide  a series of  theo- 
rems  that  help  support this conditional  reduction in 
d.f.; also see BISHOP et al. (1975, $5.2) or AGRESTI 

The effect of reducing  the d.f. can be seen with the 
(1990,  $7.7). 

E. coli data  from  Table 1, where five of the observed 
row totals are zero. These  contribute  no  information 
to any of the test statistics, but they nonetheless add 
5 X (2 - 1) = 5 d.f. to  the unconditional d.f. Under a 
conditional analysis, however, the d.f. in the table 
drop  from 24 to 19, increasing the sensitivity of the 
test statistic. (We will illustrate this in more detail 
below.) 

Largesample tests  based on a  Normal  reference 
distribution: The reference  to  a x2 distribution  for P 
values or other statistical inferences  from these var- 
ious test statistics may not  be  appropriate in selected 
settings. Of  greatest  concern is the case when the R X 
T table  exhibits many low or zero  counts. This situa- 
tion is known as “sparseness”; it is more  properly 
characterized as a situation where many  of the E ,  are 
small, especially  if  many are less than 1.0 (LEWONTIN 
and FELSENSTEIN 1965). 

One approach that  attempts  to  correct  for sparse- 
ness  involves determination of an alternative  refer- 
ence  distribution  for  these statistics, or some functions 
thereof. For example, the Pearson X‘ statistic can be 
modified to the studentized  form 

X‘ - (R - 1)(T - 1) 
J2(R - 1)(T - 1) 

zx = 

(CRESSIE and READ 1984). An updated  construction 
was suggested by ZELTERMAN (1 987): take 

I T  

D =x2 - x 2 %, 
,=I , = I  E ,  

and set P D  = - ( I  - 1)( T - 1) - IT. Also, calculate N+ 
N+ - 1 

2N+ { N+ - 1 N+ - 3 
( I  - 1)(N+ - I )  a:, = - 

where I is the  number of non-zero rows and  the 
summations  over i = 1, . . . , I are taken  over only 
those non-zero rows. Then,  the statistic 

D - CCD z, = - 

may also be employed to test Ho. (Notice  that 2, 
implicitly conditions its analysis on  the  number of 
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non-zero rows;  i.e., it does  not  include any information 
from rows that have zero row totals, and it  uses I as 
the  number of  rows for calculation.) Both Z, and Z D  
are referenced to a  standard  normal  distribution; i . e . ,  
rejection  occurs when the  absolute value of the statis- 
tic exceeds a two-sided standard  normal  table value. 

“Exact” hypergeometric tests One additional sta- 
tistical construction  that may be  applied in testing 
spectral homogeneity involves  so-called “exact” tests 
(WEIR 1990, pp. 76-77). The principle derives from 
the  theories of  R.  A. FISHER (1  935), who argued that 
testing for homogeneity in the special  case  of 2 X 2 
contingency tables can be  performed without call to 
large sample reference  distributions such as x’. One 
simply conditions on  the  observed pattern of column 
and row totals to construct  a test statistic. 

Note  that  “conditioning” here  refers  to  the same 
concept as described above  for  the case  of zero row 
totals: one limits the statistical inferences to only those 
cases that exhibit the same conditional  structure- 
patterns of zero row totals, or patterns of row and 
column totals, etc.-as that seen with the  current set 
of data. 

FISHER’S test reports as its P value the probability 
of recovering  a  tabular  configuration more  extreme 
than  that actually observed. The P value is based on 
the probability distribution of the  tabular  data  after 
fixing both  the row and column totals. This is known 
as a  hypergeometric  distribution, and is readily cal- 
culated in the 2 X 2 setting; see YATES (1984). An 
important  point of clarification here is that this test 
does  not  insure  a false positive error  rate of exactly a, 
even when the test is performed nominally at a-level 
significance. (One typically constructs the test to in- 
sure  that  the true false positive rate is no  larger  than 
a; a “conservative” test of Ho.) The test is often called 
“exact,”  due  to its exact calculation-as opposed  to  a 
large-sample x* ‘‘approximation’’-of the P value. 

In the  more  general case  of an R X T table, FISHER’S 
“exact”  hypergeometric  construction may be ex- 
tended in a  straightforward  manner: Simply identify 
some measure  that  integrates departure from  homo- 
geneity into  a single quantity (such as X * ) ,  and com- 
pute this measure  for all  possible R X T tables with 
the same row and column totals as the observed table. 
The “exact” P value is the sum of the  hypergeometric 
probabilities corresponding to all those tables whose 
departure measures are  more  extreme  (larger, e.g. ,  if 
the measure is X’) than  the  observed table’s. 

When sample sizes grow very large,  however, the 
calculations required  for  the exact P value can become 
unwieldy. Research into  computational  algorithms 
that  improve the computational efficiency of the R X 
T exact test has produced  a so-called “network” algo- 
rithm  for calculation of the exact P value (MEHTA and 
PATEL 1983,  1986), and implementation of this algo- 

rithm is recommended when appropriate  computer 
programming  resources  are available. 

Alternatively, an  approximation  to  the  exact test 
involves computer simulation: one  generates  ran- 
domly a  large  number of R X T tables with the same 
marginal hypergeometric structure-i.e., the same row 
and column totals-as the observed R X T table. Each 
random  table is then  compared to  the  original, ob- 
served table to determine if the  random table exhibits 
greater  departure  from Ho.  The proportion of ran- 
domly generated tables that  exhibit this departure is 
an estimate of the  true, “exact” P value (AGRESTI et 
al. 1979). This is known as a Monte Carlo  approxi- 
mation to FISHER’S exact test. Many modern  computer 
packages employ or recommend use of a Monte Carlo 
approximation when an R x T table becomes too 
large. A useful rule-of-thumb is to employ the Monte 
Carlo  approximation when the total sample size ex- 
ceeds 5(R - 1)(T - 1)  (SAS Institute Inc.1985, PROC 
FREQ). Since this condition occurs fairly often in  many 
of the settings we explore below, we will center  atten- 
tion on  the Monte  Carlo  approximation to FISHER’S 
exact test, as describe by ADAMS and SKOPEK (1987) 
or ROFF and BENTZEN (1  989). Following ADAMS and 
SKOPEK (1 987), we will refer  to this as Fisher’s hyper- 
geometric  test. 

One  important issue to note with FISHER’S exact 
test in either its fully-computed form, or in  its approx- 
imate,  Monte  Carlo  form, is that it  also conditions  the 
analysis on  the  number of non-zero rows. This is a 
consequence of the test’s conditioning on  the observed 
pattern of row and column totals: since all those rows 
with zero row totals will be preserved under  the 
hypergeometric structure, they add  no information to 
the statistical analysis. Hence,  the exact test imparts 
no additional  information to any zero rows. Compu- 
tations based on this information are restricted im- 
plicitly to  the ( I  - 1)(T - 1) d.f. provided by the non- 
zero rows. 

COMPUTER SIMULATION COMPARISONS 

All the statistical approaches  for analyzing spectral 
homogeneity discussed above provide relatively stable 
and similar statistical inferences as sample sizes grow 
large without limit. In  order  to identify relative 
strengths  and weaknesses among these approaches in 
small samples, we compared  them by simulating var- 
ious sets of R x T data tables with and without under- 
lying differences in the spectral patterns  among  the T 
groups. Similar studies were reported, e.g., by ROSCOE 
and BYARS (1 97 1) and RUDAS (1  986). For simplicity’s 
sake, we limited the investigation to  the case T = 2. 

We applied each of the statistical methods to  our 
simulated data,  and  recorded how often each method 
rejected  the null hypothesis of homogeneity. When 
the null hypothesis of homogeneity was true,  the 
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TABLE 2 

Probability  values for non-uniform  mutational  spectra in computer simulations 

R i:l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

10 0.02 0.02 0.03 0.03 0.05 0.075 0.075 0.1 0.2 0.4 

20 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.05  0.05  0.05  0.07  0.075  0.075  0.075  0.075 0.1 0.2 
15 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.05  0.05  0.075  0.075 0.1 0.1 0.1 0.3 

5 0.05 0.05 0.2 0.2 0.5 

simulations provided an empirical estimate of each 
procedure’s false positive rate. In those cases, the 
empirical rejection  rates  should  be  near the nominal 
significance rate,  or “a level.” We chose a = 5%. 
When the null hypothesis was false, however, the 
empirical rejection  rates  should  be  larger  than the 
empirical significance level, and preferably  larger  than 
a. (This is statistical power to  detect  departures  from 
the null hypothesis.) 

To generate  the simulated  data sets, we selected 
four possible values for  the  number of categories R :  
R = 5,  10,  15, 20, and  four possible values for  the 
total sample size N,: N+ = 20, 50,  100, 150. We 
designed the  computer simulations so that  the two 
groups always had  equal  numbers of total  mutants, 
i .e. ,  N ,  = N2 = N + / 2 ,  and chose two different  patterns 
of  spectral  response for  the p,: (a) uniform p ,  = 1/R 
for all i = 1, . . . , R ( j  fixed), and (b)  non-uniform p,’s 
varying from between 0.01 and  0.05 to between 0.2 
and 0.5,  depending on R. The non-uniform probabil- 
ities employed under  pattern (b) are  an  attempt to 
mimic approximately spectral patterns seen in prac- 
tice; they are given in Table 2. Notice that  the sum of 
the individual p ,  across i = 1, . . . , R equals 1.0 for 
both  the  uniform  and non-uniform  patterns. 

T o  compare false positive performance,  both 
groups were assigned the same multinomial probabil- 
ities, either  under  the  uniform or  the non-uniform 
patterns. T o  compare powers, group j = 1 was as- 
signed the  uniform probability pattern  and groupj  = 
2 was assigned the  non-uniform  pattern  from Table 2 
(for fixed R). This led to 30 different  homogeneous 
parameter  configurations  for  comparison:  four sample 
sizes X four row sizes x two probability patterns (when 
N+ = 20, we did  not simulate responses with R = 20), 
and  to  15  heterogeneous  “power” configurations.  For 
each configuration, we generated  10,000 simulated R 
X 2 tables under a multinomial sampling assumption, 
and  counted  the  number of rejections of Ho that were 
observed  for each of the statistical methods discussed 
above. The resulting  proportion of rejections is an 
estimate of each statistic’s false positive rate  under 
homogeneity between groups, or of its power under 
heterogeneity  between  groups. With 10,000 simu- 
lated samples per setting, the empirical false positive 
error rates themselves ossess approximate  standard 
errors of f F a(l - a)/lOOO; near LY = 0.05, this is 

f0.002. For empirical powers, near  true power = 
50%,  the  approximate  standard  error is k0.005; near 
power = 90%, it is k0.003. 

The multinomial variates were generated via an 
algorithm given by DEVROYE (1986, p. 559). For 
FISHER’S hypergeometric  test, we employed only the 
first 1000 simulated tables, and followed ACRESTI et 
al. (1979)  to  generate  1700  Monte  Carlo hypergeo- 
metric tables for each of these 1000 simulations. To 
generate  the hypergeometric tables we used the al- 
gorithm  due  to BOYETT (1 979). 

One additional  feature  incorporated  into  the simu- 
lations involved the issue of zero row totals and  the 
effect of conditioning  thereupon  to  reduce  d.f.  For 
all approaches  except Fisher’s hypergeometric test 
and Zelterman’s Z D  (both of  which condition implicitly 
on the  number  of non-zero rows), we computed the 
proportion of rejections under both  an unconditional 
and a  conditional  number of d.f. That is, for  the 
unconditional analyses we set the  degrees of freedom 
equal to ( R  - 1)(T - l), which is- simply R - 1 for 
these simulations. For the  conditional analyses, we 
counted  the  number of non-zero rows, denoted by I, 
and set instead the d.f. and any other computations 
involving the  number of rows for  that table to I - 1. 

The simulation results for estimated false positive 
errors  under homogeneity are presented in Table 3. 
The table  reports results for  the following statistics: 
the  three power divergence statistics X 2 ,  G 2 ,  C2; the 
Margolin-Light statistic M 2 ;  the  studentized statistics 
Zx and 20; and FISHER’S hypergeometric test using 
either X 2  as the  measure of departure in each R x 2 
table  (denoted hg-X) as employed by ROFF and 
BENTZEN (1  989), or  the table’s actual  hypergeometric 
probability as the measure of departure  (denoted hg- 
P )  as employed by ADAMS and SKOPEK (1987). (We 
also evaluated FISHER’S hypergeometric test using the 
C 2  statistic as the measure of departure. The empirical 
false positive rates under this measure were almost 
identical to those using X 2 ,  and we do not  present the 
hypergeometric C 2  rates  here.)  Table 3 also reports 
the average  number of zero cells per R X 2 table 
observed among  the  10,000 simulated tables for each 
of the  parameter  configurations  considered. This is a 
simple measure of the sparseness evidenced under 
each configuration.  Larger  numbers, relative to  the 
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TABLE 3 

Empirical false positive error  rates  under  spectral  homogeneity; nominal a-level = 5% 

(a)  Inter-group homogeneity: uniform pattern 
5 

10 

15 

20 

20 

50 

100 

150 

20 

50 

100 

150 

20 

50 

100 

150 

50 

100 

150 

unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 

unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 

unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 

unconditional d.f. 
conditional d.f. 
unconditional d.f. 
conditional d.f. 
unconditional d.f. 
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(b)  Inter-group homogeneity: non-uniform pattern (from Table 2) 
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TABLE 3 

Continued 

R N+ X2 GZ C2 M2 Z X  Z D  
hg-X hg-P Sparse 

150 unconditional d.f.  0.018  0.087  0.025  0.085  0.018 
0.026  0.115  0.035  0.080  0.023  0.039  0.036  0.036 conditional d.f. 

6.1 1 

R, number of mutant categories; N+, total sample size; X 2 ,  Pearson goodness-of-fit statistic; G2, likelihood ratio statistic; c2, CRESSIE-READ 
statistic; M2, Margolin-Light ANOVA statistic; Zx, Studentized X2 statistic; ZD, Zelterman Studentized D statistic; hg-X, Monte Carlo hypergeo- 
metric test over 1700 pseudo-samples, using X2 as measure of departure; hg-P, Monte Carlo hypergeometric test over 1700 pseudo-samples, 
using hypergeometric Probability as measure of departure; and “sparse” indicates average number of zero cells per table. 

u -  unconditional d.f. 
c . . . . .  conditional d.f. 

I I 1 

0 10 20 30 

Ratio of Sample Size to Degrees of Freedom 

FIGURE 1 .-Empirical false posi- 
tive error rates from Table 3 for 
CRESSIE-READ C2 statistic as a func- 
tion of sample size-to-(unconditional) 
d.f. ratio, N + / ( R  - 1). Comparison is 
made between unconditional and 
conditional d.f. calculations under 
non-uniform pattern of response 
probabilities (Table 2). Nominal a 
level is 0.05 (horizontal line: -). 

total number of  cells, 2 R ,  suggest increasing sparse- 
ness. 

The results from  Table 3 are somewhat varied. Of 
greatest significance is the observation that, in gen- 
eral, tests performed using the conditional  d.f., I - 1, 
appear  more stable than  the  unconditional tests. (We 
define  “stable” to be false positive errors  that  are 
either close to the nominal a-level, or below it-“con- 
servative”-if departing by more  than 0.5% or so from 
a.) This stability is best seen by plotting the estimated 
false positive rate as a  function of the  ratio of sample 
size to  unconditional  d.f., N+/(R - 1). The ratio is a 
summary measure of the potential sparseness in a 
given table or experiment. Small  levels of N+/(R - 1) 
suggest greater potential sparseness, hence greater 
potential instability in a test statistic’s performance. 
Figure 1 illustrates the effect with the CRESSIE-READ 
statistic, C2, using the non-uniform  patterns  from 
Table 2 .  The estimated  rates begin below the nominal 
level of a = 0.05,  and gradually move closer to it as 
N+/(R - 1) increases. This increase is more  pro- 
nounced,  however, when employing  the  conditional 
d.f. Similar effects occur  for most  of the statistics 
studied in Table 3. 

Among  the results under conditional d.f.,  greatest 
stability in  false positive error rates at levels  of N+/  
( R  - 1) above  about 10 is seen with Fisher’s hyper- 
geometric tests (hg-P and hg-X), the Pearson X’ and 
CRESSIE-READ C 2  statistics, and  the  Studentized 2, 
statistic. This is illustrated in Figure 2 for  the  non- 
uniform pattern of response probabilities. The figure 
also illustrates that small values of N + / ( R  - 1) tend  to 
drive false positive error rates below a = 0.05 for 
most of these methods. As might be expected, how- 
ever,  the  hypergeometric tests’ false  positive rates 
remain  near the nominal 5%-level, although in  se- 
lected cases  with very sparse tables, they exhibit some 
instability. [The probability-computed form (hg-P) ap- 
pears slightly less stable  than the X2-computed form 
(hg-X) in Table 3, hence only the  latter is presented 
for  comparison in Figure 2.1 

Table 3 also indicates that  the MARGOLIN-LIGHT 
M 2  statistic exhibits very strong stability under  the 
uniform  pattern (a), but this is not  maintained when 
the within-group probabilities differ drastically, as in 
pattern ( b ) .  Thus the simple x 2  approximation to  the 
true, weighted sum of x2’s representing the limiting 
distribution of M 2  may be  a  poor one in selected 
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FIGURE 2.-Empirical  false posi- 
tive error rates from Table 3 for 
Monte Carlo hypergeometric test (h)  
using X' measure of departure, and 
CRESSIE-READ C', Person X', and 
Zelterman Z D  statistics as a function 
of sample size-to-(unconditional) d.f. 
ratio, N+/(R - 1). Rates are calcu- 
lated for conditional d.f. and non- 
uniform pattern of response proba- 
bilities (Table 2). Nominal a level is 
0.05 (horizonal line: -). 

Ratio of Sample Size to Degrees of Freedom Ratio of Sample Sire to Degrees of Freedom 

settings. We do not  recommend its use for  testing 
mutational spectra,  although  development of the ap- 
propriate weighted sum of x2's for  the  true limiting 
distribution of M 2  may be  a  rich  avenue of further 
research in this area; see, e.g., TANECHI (1988). Simi- 
larly, the likelihood ratio statistic, G2, exhibits  gener- 
ally poor  performance at almost every level and setting 
studied. This is not  surprising; many authors have 
noted  that  the G2 statistic can exhibit  extremely high 
false  positive rates in  small samples when referred  to 
a x2 distribution; see CRESSIE and  READ (1989). We 
will note  an  alternative to  the x2 reference  distribution 
when employing the G2 statistic for some extensions 
discussed below. 

Table 4 presents  estimated powers under spectral 
heterogeneity  for  a limited subset of the statistics and 
cases presented in Table 3. Only tests that condition 
on the  non-zero rows are  presented,  and  among these 
only those tests that  exhibited relatively stable false 
positive errors (from Table 3) are studied in detail. 
These restrictions led to consideration of the follow- 
ing statistics: X 2 ,  C2, ZD,  Zx, and hg-X. The table 
illustrates superiority in power  for the Monte  Carlo 
hypergeometric (hg-X) test,  although  at values of N+/ 
(R  - 1) above  about 7 the zero-row-conditional C2 
power divergence statistic exhibits performance com- 
parable with the hg-X test. 

All of the statistics considered  herein  perform bet- 
ter with increasing sample size and, in particular, with 
increasing N+/(R - 1). If N + / ( R  - 1) is greater  than 
about 10, the C2 statistic and  the 20 statistic perform 
adequately  enough  to  recommend  their use. (Use ZD 
if 25% or more of the  data table's cells exhibit  zero 
counts.) If N+/(R - 1) is  less than 10, and if appropri- 

ate  computer  resources  are available, consider instead 
hypergeometric tests, such as hg-X. The C2 and ZD 
statistics are still reasonable choices for small N+/ (R  - 
l), if, e.g., digital computing  resources are not avail- 
able. They may not  be as powerful as  the hypergeo- 
metric tests in these cases, however. 

If N + / ( R  - 1) is  less than  about 5, then  an "exact" 
version of FISHER'S test (MEHTA and PATEL 1983) can 
be  considered  as well. 

EXAMPLE 

T o  illustrate use  of these test statistics, consider 
again the  data  from  Table 1. Recall that  these are 
counts of G:C + A:T transition mutants in T = 2 
different  strains of E .  coli after  treatment with ethyl 
methanesulfonate (BURNS et al. 1986). As the table 
indicates, although R = 25 different sites were dis- 
played by the  authors, only I = 20 sites exhibited one 
or more  mutants for  either  strain.  Conditioning  the 
analysis on  these  non-zero rows yields (20 - 1)(2 - 1) 
= 19 d.f. The ratio of sample size to unconditional 
d.f., N + / ( R  - 1) = 135/25 = 5.6, is  low enough  that 
use of the Monte  Carlo version of FISHER'S hypergeo- 
metric tests may be warranted,  although  for illustra- 
tive purposes we will also compute  the C2 and ZD 
statistics. 

The null hypothesis of homogeneity between the 
two spectra is Ho: pi1 = p i2  (for all i ) .  Table 5 gives the 
expected cell counts, E ,  = $pNj. Notice that a number 
of these values are below 1 .O, suggesting a fair degree 
of sparseness for  these  data: 5/50 cells, or lo%, of the 
original table  exhibit  zero observed counts. Again, 
FISHER'S hypergeometric test appears  warranted. Ap- 
plying the Monte  Carlo  form of the test with X 2  as the 
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TABLE 4 

Estimated  powers (conditional d.f.) under  spectral  heterogeneity;  nominal  u-level = 5% 

41  1 

R N+ N+/W - 1) X2 c2 Z D  z x  hg-x 
5  20 5 0.181 0.203 0.191 0.184 0.221 

100 25 0.925 0.928 0.919 0.920 0.920 

10 20 2.2 0.106 0.149 0.165 0.091 0.225 

100 11.1 0.939 0.944 0.935 0.927 0.944 

50 12.5 0.596 0.61 1 0.590 0.591 0.605 

150 37.5 0.992 0.992 0.990 0.991 0.989 

50 5.6 0.552 0.589 0.584 0.519 0.637 

150 16.7 0.995 0.996 0.995 0.994 0.996 

15 20 1.4 0.034 0.060 0.086 0.027 0.168 
50 3.6 0.286 0.348 0.343 0.269 0.404 

150 10.7 0.953 0.958 0.953 0.950 0.968 
100 7.1  0.767 0.793 0.771 0.739 0.788 

20 50 2.6 0.140 0.203 0.196 0.105 0.266 
100 5.3 0.543 0.598 0.550 0.491 0.622 
150 7.9 0.833 0.857 0.8 17 0.801 0.838 

See Table 3 for abbreviations and symbols. 

TABLE 5 

Observed  and expected cell counts for Table 1 

Non-zero row, i Group 1 Group 2 
[position/sequence] Observed, Y, ,  Expected, E,,  Observed, Y.n Expected, E,* 

1 [42/CGT] 4  2.49 2 3.51 
2 [56/CGC] 9 4.98 3 7.02 
3 [57/TGC] 1  3.32 7 4.68 
4  [75/AGA] 2 4.98 10 7.02 
5 [80/TGA] 1 2.07 4 2.93 
6 [84/GGT] 3 3.73 6 5.27 
7 [QO/GGA] 2 1.66 2 2.34 
8 [92/CGG] 5 6.64 11 9.36 

10  [95/CGT] 0 0.41 1 0.59 
1  1 [ 104/TGG] 1 0.83 1 1.17 
12 [ 120/AGA] 0 1.66 4 2.34 
13 [ 140/AGT] 4 3.73 5  5.27 
14 [174/GGG] 6 2.49 0 3.51 
15 [ 185/GGC] 9 5.39 4  7.61 
16 [ 186/TGC] 1 1.66 3 2.34 
17 [ 188/TGT] 0 1.24 3  1.76 
18 [ lQl/TGT] 3 2.90 4  4.10 

20 [206/TGT] 0 0.83 2 1.17 

Total 56 55.99 79 79.01 

9 [93/CGC]  4 4.15 6 5.85 

19  [201/GGC]  1  0.83  1 1.17 

measure of departure as described  above (hg-X) yields 
an estimated P value of 0.007. Since the  estimated P 
can  change,  depending  on  form of random  number 
generator, seed values, etc.,  one  should also calculate 
a confidence interval on  the estimated P value; e.g., at 
99% confidence with 1700 Monte  Carlo pseudo-sam- 
ples, use P f 2.58dP(1 - P)/1700. Here, such a 99% 
confidence  interval on  the Monte  Carlo  estimated P 
of 0.007 is 0.002 < P C 0.012. 

The values in Table 5 also yield the test statistics C 2  
= 36.18 and 1.2, I = 1(-4.05) - (-20.86) I/d%%% = 
3.13. On 19 d.f., the x* reference  distribution  for the 
C 2  statistic provides  a P value of 0.010. The P value 

for ZD based on a  standard  normal  distribution is 
0.002. Thus all three methods suggest significant 
departure  from homogeneity between the two spec- 
tra. 

EXTENSION:  MULTIPLE  COMPARISONS  AMONG 
SITES AND SPECTRA 

The tests for  spectral homogeneity described above 
are global in nature: when significant, they suggest 
evidence for  differences  among the column variables 
(spectra)  without specifying where such differences 
may  lie. It is well known, however, that the mutability 
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TABLE 6 

Mutational  spectra of single basepair substitutions in S. 
cerevisiae 

Row, i [site] Group 1: 
strain RAD3 

Group 2: 
strain rad3-102 

17 
2 
5 
0 

1 1  
10 

121 

166 

1 
8 
7 
7 
4 
0 

56 

83 

Data from MONTELONE et al. (1 992). 

of DNA varies substantively across sites in a  genome 
(FOSTER, EISENSTADT and CAIRNS 1982), and  an im- 
portant question left unanswered by the global tests is 
precisely where or between which spectra the differ- 
ences, if any, exist. For example,  can we identify 
potential mutational “hot spots” within a  target  gene, 
or can we form sub-tables of the full R X T table that 
indicate associated forms of heterogeneity in the mu- 
tant  spectra? 

Consider, e.g., the  data in Table 6, which are counts 
of single base pair  mutations in T = 2 strains of the 
yeast Saccharomyces cerevisiae at R = 7 different sites 
(MONTELONE et al .  1992). For this 7 X 2 table, C2 = 
39.18 ( P  < 0.001 on 6 d.f.); very significant departure 
from homogeneity is evidenced.  Of  additional  interest 
in this study, however, is the identification of those 
sites that  differed significantly between the two 
strains. For  example, MONTELONE et al .  (1992) re- 
ported  that  the 3 X 2 sub-table consisting of only sites 
29,  83, and 90 (i .e. ,  rows 3, 5 ,  and 7 in Table 6) was 
the largest sub-table constructed  from the full table 
that  exhibited evidence of spectral homogeneity. This 
suggests that  the  other  four sites drive  the  spectral 
heterogeneity seen in the full table. Statistically, one 
wishes to  determine  the a-level at which these  differ- 
ences are significant. 

Clearly, repeated,  unadjusted application of C2, X 2 ,  
or any other statistical method  to recursive sub-tables 
is a  form of multiple comparison. As is well known, 
repeating comparisons at individual significance levels 
of, say, a = 0.05 drives the experiment-wise false 
positive rate  above 0.05, and, in some instances, well 
above it (WEIR 1990, pp. 109-1 10). T o  correct  for 
such false positive error inflation, simultaneous  infer- 
ence procedures are required. 

For the specific problem of testing homogeneity 
across multiple sub-tables of an R X T contingency 
table, one can apply a  simultaneous  method due to 
GABRIEL (1966). In  the  method’s  general form,  one 
supposes that  a  particular sub-table with A 5 I rows 
and B 5 T columns is of interest.  (Notice  that the 
inference is conditional on  the I 5 R non-zero rows.) 

:h and A. J. Bailer 

For simplicity  of presentation, we will suppose that 
these are  the first i = 1 ,  . . . , A rows and  the first j = 
1 ,  . . . , B columns of the full table. We also require A 
L 2 and B 2 2. Of interest is whether  the A X B sub- 
table exhibits homogeneity, i.e., if 

H f :  pil = p i2  = . . . = pa (for all i = 1 ,  . . . , A),  

holds. 
Obviously, if this particular sub-hypothesis were the 

only hypothesis of interest,  one would simply apply 
the method(s)  recommended  above to test the AB-fold 
homogeneity. GABRIEL’S ( 1  966) approach applies, 
however, if one is simultaneously testing any or all  of 
the possible A X B sub-tables constructed  from  the full 
I X T table. It employs the log-likelihood statistic, G 2 ,  
noted above: for any A X B sub-table, compute  the 
associated sub-statistic, say G : B ,  which can be  written 
in closed form as 

Yij log(YJ - 
i=l 

Reject H t B  when G h  exceeds the  upper-a  quantile of 
a X2-distribution with (I - 1)(T - 1 )  d.f. Notice that 
the  d.f.  are those employed from  the original I X T 
table, and  that they do not  change, regardless of the 
number or form of sub-tables tested. GABRIEL shows 
that this approach  restricts the experiment-wise false 
positive rate  to  no  more  than a as the smallest Nj + 
00. In  addition,  the overall inference possesses a  form 
of coherence: when any A X B sub-table is seen to 
exhibit  heterogeneity based on G i B ,  so must all larger 
sub-tables that  contain the A X B heterogeneous sub- 
table. 

These inferences hold for all  possible A X B sub- 
tables due  to  their simultaneous construction. Thus, 
as GABRIEL (1966, p. 1082) notes, with this method 
“it is in no way necessary to decide a priori,  i.e., before 
seeing the  data, what combinations [of sub-tables] are 
to be  tested, and  one may be  guided by the  data 
themselves in selecting what to test.” (In most data- 
analytic settings, such a posteriori, data-driven com- 
parisons are strictly forbidden,  due  to  the false  positive 
error inflation they engender.) The cost of this a 
posteriori luxury is that  the  procedure is inherently 
conservative. That is, since it protects against false 
positive errors across all  possible sub-tables, the false 
positive rate  for only a selected sub-collection of A X 
B tables will be generally less than a. This is countered, 
however, by the fact that in  small samples, the G 2  
statistic’s false positive rate often exceeds a. Thus, 
there is the possibility that in practice,  these two 
conflicting features will counterbalance one  another. 

Unfortunately, GABRIEL’S method  for testing row 
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TABLE 7 

Empirical false positive error  rates for likelihood ratio  statistic 
C‘ at  large  sample  sizes; conditional d.f. only, nominal a-level 

= 5% 

R N+ N+IW - 1) False positive rate 

(a) Inter-group homogeneity; uniform pattern from Table 3 
5 200 50.0  0.030 

250 62.5  0.028 
10  200 22.2  0.040 

250 27.8  0.035 

5 200 50.0  0.033 
250 62.5  0.031 

10  200 22.2 0.049 
250 27.8  0.048 

(b) Inter-group homogeneity; non-uniform pattern from Table 3 

deletions is tied to  the G 2  form  for  the test statistic. 
Its  desirable  property of coherence,  noted  above,  does 
not hold if the  more  stable C2 or X 2  statistics are 
calculated instead. 

Selected recommendations  can be  made  regarding 
application of the G 2  statistic. For instance, for very 
large values of N + / ( R  - l), the G statistic does behave 
in a stable fashion. T o  illustrate this, we recalculated 
the simulations from  Table 3 at N+ = 200,  250,  and 
recorded  the empirical false positive rates  for the G2 
statistic using conditional d.f. at a = 0.05  for R = 5, 
10. This gave values for N+/(R - 1) of at least 22.2. 
The resulting false positive rates are given in Table 
7. As can be seen therein, G2’s empirical false positive 
rate  for N+/ (R  - 1) > 20 does  exhibit  reasonable 
stability. 

For cases where N+/ (R  - 1) < 20,  a small-sample 
adjustment to  the x2 quantile  can  be employed in- 
stead: rather  than reject when G i B  exceeds the  upper- 
a quantile of a X2-distribution with ( I  - 1)(T - 1) d.f., 
reject when G i B / ( I  - 1)(T - 1) exceeds the  upper-a 
quantile of an F-distribution with ( I  - 1)(T - 1) and 
N+ - ( I  - 1)(T - 1) = N+ - 1 + I + T - IT d.f. This 
has the effect of reducing  the  rate  at which G 2  rejects 
each null hypothesis, providing greater stability in 
terms of closer-to-nominal false positive error rates. 
T o  illustrate this, we recomputed  the simulated false 
positive rates  for the G 2  statistic using the F-quantile, 
and  compared  them  to  the X2-based rates  from Table 
3. The results, using conditional d.f. and  the non- 
uniform  patterns in Table 2, are  compared in Figure 
3  as  a  function of N+/ (R  - 1). The closer-to-nominal 
error rates under  the F-quantile illustrate the im- 
provement available. 

Example using S. cereuisiae data: As an example 
of the GABRIEL method’s use, consider again the S .  
cereuisiae data (MONTELONE et al. 1992) in Table  6. 
Recall that  the overall hypothesis of 7 x 2  homoge- 
neity was rejected by the C2 statistic ( P  < 0.001). The 
G 2  statistic is also very significant: G2  = 44.62 ( P  < 
0.001; since N+ = 249  and N+/(R - 1) = 41.5  are so 

large with these  data, we are employing x2 as the 
reference  distribution, rather than the F-distribution 
approximation  noted above.) At a = 0.05, the x2 table 
value with (7 - 1)(2 - 1) = 6 d.f. is 12.59. Thus, any 
A X 2 sub-table whose associated Gi.? statistic is larger 
than  12.59 also exhibits significant heterogeneity 
among its A rows according to  the GABRIEL procedure. 
The 4 X 2 sub-table consisting of rows 1, 2, 4,  and 6 
suggested by the study’s authors is one such collection: 
its G$2 statistic is 40.84. Conversely, the complemen- 
tary sub-table of rows 3, 5 ,  and 7 generates  a G$2 
statistic of  3.66, which is clearly non-significant. As 
the study’s authors  noted (MONTELONE et al. 1992), 
the spectral heterogeneity evidenced in’ the original 
table  appears due to significant heterogeneity at  the 
four rows, 1,  2,  4,  and  6 ( i .e . ,  sites 18, 27, 64,  and 88) 
at a = 0.05. 

Example using E.  coli data: Application of GA- 
BRIEL’S method  to  the E .  coli data  from  Table  5 
produces  a rather  different  set of inferences. Recall 
that  the overall hypothesis of 20 X 2 homogeneity for 
these data was rejected by the C 2  statistic ( P  = 0.010). 
As expected, G 2  is also significant: G 2  = 41.88 ( P  = 
0.005  for  comparing  41.88/19 = 2.20 against an F 
reference  distribution with 19  and  116 d.f.). 

With these  data, N+/ (R  - 1) = 5.6 is  low enough 
that  an F-distribution  adjustment to G 2  may help 
reduce  potential inflation in  false positive error; see 
Figure 3. If a = 0.05,  one employs the  upper  0.05 
table value from  the FI9, 116 distribution, which is 1.68. 
Thus rejection occurs if G2/19 is greater  than  1.68, 
or, alternatively, if G 2  > 31.86. GABRIEL’S method 
requires  that  the G:B statistic from any A X B sub- 
table must exceed this F-based value  in order  to be 
considered  heterogeneous. 

Notice then  that in Table  5, by removing the row 
at i = 14 corresponding  to position #174/sequence 
GGG, the G 2  statistic from  the associated 19 X 2  table 
drops  to  30.92. Employing the F-based quantile, the 
method suggests that  the  reduced table exhibits ho- 
mogeneity, since 30.92 3 3  1.86. No other row can be 
removed  from the original table, and still reduce the 
corresponding  19 X 2 G 2  statistic to below 31.86. For 
example, if  we force row 14  to remain in the table, 
the greatest  reduction is achieved by removing row 2 
in Table 5: this yields a 19 X 2 G 2  statistic of 35.77. 
This suggests that  the row 14  data  appear  heteroge- 
neous relative to  the rest of the original table,  but that 
we are unable to distinguish heterogeneity  among the 
other  19 rows, at a = 0.05. 

Multiple  comparison  adjustments for collapsing 
contingency  tables: Corrections  for  performing mul- 
tiple comparisons with contingency tables are many 
and varied. For example, rather than  delete rows or 
columns from  the original Z X T  table to construct 
sub-tables for multiple comparison, one may  wish to 
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FIGURE 3.-Empirical  false  posi- 
tive error rates for likelihood ratio 
G’ statistic  as a function of sample 
size-to-(unconditional) d.f. ratio, N+/ 
( R  - 1). Rates  are  calculated  for con- 
ditional d.f. and under non-uniform 
pattern of response  probabilities 
(Table 2). Comparison  is  made be- 
tween x* ( x )  and F-distribution (F) 
reference quantiles for GZ rejection. 
Nominal a level is 0.05 (horizonal 
line: -). 

combine or collapse rows or columns and  perform 
comparisons among various forms of collapsed sub- 
tables; see ADAMS and SKOPEK (1 987) or WEIR (1 990, 
pp. 1 10-1 1 1). In this case, it is the Pearson X 2  statistic, 
rather  than  the G2 statistic, that should  be employed 
to measure the  departure  from homogeneity in each 
sub-table. Such a simultaneous collapsing method  for 
Z X T tables has been  described by GILULA (1 986) and 
GILULA and KRIEGER (1 989): begin by calculating the 
X 2  statistic for  the  original Z X T table,  denoted by 
X;T. As above,  reject the overall null hypothesis of Z 
X T homogeneity if X;= exceeds a x2 quantile with 
(Z - 1)(T - 1) d.f. Then, for any collapsed table of 
dimension A X B,  reject  homogeneity within that table 
if the associated X *  statistic, Xis,  shows a significant 
reduction in x2, i .e.,  if X &  - exceeds an a-level x2 
table value with (Z - 1)(T - 1) d.f. In  the same manner 
as GABRIEL’S simultaneous method  for row deletions 
(above), the original d.f. from  the full table are  em- 
ployed in the x2 table value to correct  for multiple 
comparisons across all possible collapsings. Even if the 
experimenter chooses to inspect the  data a posteriori 
and select rows or columns for collapsing based on 
this inspection, the experiment-wise false positive rate 
is held at CY under this approach. 

Of  course, further research is needed to identify 
and study other methods  that  can identify specific 
spectral differences with good  power, and yet correct 
for multiplicity and associated false positive error in- 
flation. In this endeavor, simplicity and ease of appli- 
cation are additional,  important  criteria to keep in 
mind, since methods  requiring  prohibitive sample 
sizes or extensive computer  resources face greater 
obstacles to  their  implementation. 

DISCUSSION 

The problem of assessing differences in mutational 
spectra is of growing  interest, and experiments to 
detect such differences will multiply with further  ad- 
vances  in microbiology and biotechnology. Statistical 
methods to facilitate these analyses are important,  and 
our goal has been to identify such methods  for  data 
in categorical form, as  illustrated in Tables 1 and 6. 
As we noted, many different  forms exist for  the test 
statistics. Based on  the conditions and forms we have 
evaluated, we conclude that  four  important features 
require  recognition when analyzing tables of muta- 
tional spectra: first, the simple chi-square approxima- 
tion to  the common X 2  or G2 statistics is not reliable. 
Second, the  natural  extension of FISHER’S exact test 
to R X T tables-a hypergeometric test described 
herein in its computer-intensive Monte  Carlo imple- 
mentation (AGRESTI, WACKERLY and BOYETT 1979; 
ADAMS and SKOPEK 1987; ROFF and BENTZEN 1989)- 
exhibits stable false positive error properties, and also 
good power to detect global differences  among truly 
divergent  spectra. We recommend  the exact test’s use 
for  comparing  mutational  spectra in categorical form. 
When the “exact”  formulation is computationally in- 
tractable, we found  the  Monte  Carlo  form with the 
X2 statistic as the measure of departure  to be  a stable 
and fairly powerful test of spectral homogeneity. 
Third, when sample sizes are large  enough, as meas- 
ured when the  ratio of total sample size to d.f. exceeds 
about 10, a modified goodness-of-fit statistic, the 
CRESSIE-READ C2, also performs well, and may be 
recommended when computational resources do not 
allow for calculation of the exact test. Fourth, in sparse 
tables where the  percentage of zero cells is greater 
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than  about  25%, a  Studentized statistic, given above 
as Z,, exhibits  roughly similar characteristics to  the 
C2 statistic. We recommended its use in such cases. 

In passing, we should note  that  other simulation 
results and analytical results exist that provide limited 
corroboration of the simulation values we achieve 
herein,  particularly for  the  performance of the X 2  
statistic. For example,  direct  comparison of our em- 
pirical false positive errors  for X2 (Table 3) can  be 
made with the simulation results of ROSCOE and BYARS 
(1  97  1,  Table 4). Those  authors  reported  an estimated 
error for X2 of 0.0296 when R = 5 and N+ = 20 (in 
our notation), and  an  error of 0.0508 when R = 5 
and N+ = 100  at  the nominal a = 0.05 level. These 
compare favorably with our own results of 0.033  and 
0.053, respectively. 

Further results on  the small sample powers of the 
X 2  and C2 statistics were reported by READ (1984, 
Table 1). Although  not  directly  comparable with our 
parameter  configurations, READ’S calculations do 
show some similarities with selected powers that we 
achieved for X 2  and C2. His “alternative  1” configu- 
ration is roughly similar to our heterogeneity model 
at R = 5, with  his calculated powers for X 2  and C2 
given as 0.6997  and  0.6890, respectively. The roughly 
comparable  setting  from our Table 4 yields powers of 
0.596 and  0.61  1. While not precisely equivalent, the 
values do suggest a  reasonable level of similarity be- 
tween the calculated and simulated results. 

For the problem of identifying specific differences 
among selected sub-tables of the original I X T table, 
we have illustrated the use  of a  simultaneous  inference 
procedure  due  to GABRIEL (1 966). The method allows 
the  data analyst to compare various collections of rows 
and columns from  the full table, and even select these 
after  examining the  data, while  still retaining a-level 
significance. A similar method  that allows for collaps- 
ing rows or columns within the full data (GILULA 
1986) was also noted. Both can be  recommended  for 
use. 
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