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ABSTRACT 
A new  estimator of the  essential  parameter 0 = 4 N e ~  from DNA polymorphism  data  is developed 

under  the  neutral  Wright-Fisher model without  recombination and population  subdivision,  where Ne 
is the effective population  size and ~1 is the mutation  rate  per  locus  per generation. The new  estimator 
has a variance only slightly  larger  than  the  minimum  variance of all  possible  unbiased  estimators of 
the  parameter  and  is  substantially  smaller  than  that of any existing estimator. The high effkiency of 
the new  estimator is achieved by  making full  use of phylogenetic information in a sample of DNA 
sequences from a population. An example of estimating 0 by the new method is presented using the 
mitochondrial sequences from  an  American  Indian population. 

G ENETIC variation at  the nucleotide level is a 
powerful source of information for studying the 

evolution of a population. The quantity 8 = 4N,p, 
where Ne is the effective  size  of the population and p 
is the mutation rate  per sequence (gene, locus) per 
generation, is an essential parameter because it deter- 
mines the  degree of  polymorphism at  the locus. The 
degree of  success  in our inference about  the evolution 
of a population is measured to some extent by the 
accuracy  of  estimation  of  this  essential parameter. The 
purpose of  this paper is to develop an efficient esti- 
mator of 0 under  the neutral Wright-Fisher  model 
without recombination and population subdivision. 
The estimation  of 8 becomes, on one hand,  the esti- 
mation  of the mutation rate, p,  when the effective 
population size, N e ,  is known, and,  on  the  other hand, 
the estimation  of the effective population size, N,, 
when the mutation rate, p, is known. 

There  are two  commonly  used estimators of 8 from 
a sample  of n DNA  sequences from a population. One 
is K = K / a n ,  where K is the number of segregating 
sites and a,  is given by 

A 

1  1 
2 n -  1 

a , = l + - +  ...+-. (1) 

The  other estimator is 2, the average number of 
nucleotide differences in  all  pairwise  comparisons. 
These two  estimates are unbiased under  the infinite- 
site neutral Wright-Fisher model, that is under  the 
assumptions that the population evolves according to 
the Wright-Fisher model  with a constant effective  size, 
that  the number of  sites  in the sequences is very large 
so that every mutation occurs at a new  site and  that 
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all mutations are selectively neutral. The variances of 
8 and ir were found respectively by WATTERSON 
(1  975) and TAJIMA (1 983): 

Var(?;) = 
n + l  2(n2 + n + 3) e +  f12 (3) 3(n - 1)  9n(n - 1)  

where a, is given by (1). 
Estimating 8 using either of the two estimators, in 

particular 8, is rather simple. However, the price for 
simplicity  in computation is a large variance. Although 
attempts to improve the estimation  of 8 were  made by 
STROBECK (1  983) and AVISE et al .  ( 1  988), such efforts 
had been difficult  because it was not clear how  much 
improvement can be achieved.  Recently, FELSENSTEIN 
( 1  992a) and Fu and LI (1 993a) showed that the effi- 
ciencies  of these two estimators are actually  very  low. 
This is contrary to the common  belief that by analogy 
to the number of  alleles  in a sample, the number of 
segregating sites  should  be a sufficient  statistic for  the 
parameter 8. Although this is not entirely wrong, the 
fact that the sufficiency requires an extremely large 
sample (Fu and LI 1993a) makes it necessary to ex- 
plore efficient methods for estimating 8. FEUENSTEIN 
(1 992b) proposed one method to do so, but required 
an impractical amount of computation. The new 
method developed  in  this paper is, on the one hand, 
highly  efficient by making  full use  of the phylogenetic 
information in a sample  of DNA sequences and, on 
the  other hand, practical  because the computation can 
easily  be carried out by a desktop computer. 

THEORY 

Let ml, . . . , m7 be random variables  such that their 
expectations are all linear functions of 8, and that 
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their variances and covariances are all quadratic  func- 
tions of 8. Without loss of generality, we assume that 

E(mi) = 8, 

Cov(mi, mj) = aij8 

where 

uij = "ij + pije (4) 

and 'YV and & are constants. We wish to find  a  linear 
function of the  random variables ml, . . . , my 

m = ukmk 
k 

such that m is an unbiased estimate  of 8 and  that  the 
variance of m is the minimum  among all unbiased 
estimators of 8 that are linear  functions of the  random 
variables ml ,  . . . , my. That is, we want to find the 
linear minimum variance estimate of 8. 

The variance of the linear  function m is 

Var(m) = uiujuij. ( 5 )  

One can obtain the solutions of uifs by solving the  set 
of linear  equations 

ij 

a Var(m) 
= 0 ,  k =  1 ,  . . . ,  7 auk 

with the constraint 

U l +  . . . +  u , = 1  

because we require  that  E(m) = 8. It can be shown 
that this set of linear  equations is 

b k y  - byy + (aki - by i  - b k y  + Try)'& = 0, 
i<y k =  1, . . . , y -  1 ,  

U l +  . . . +  u , = 1 .  

A more  elegant yet equivalent  approach is to use 
the theory of linear models. Let m = (ml, . . . , rnJT 

(superscript T stands for transpose), x = ( 1 ,  . . . , l)T 
and c = (ml - 8, . . . , my - e)'. Then m can be 
expressed by the linear model 

rn=Ox+c 

and Var(c) = 8Vs where 

Ve = (q), for i = 1 ,  2, . . . , y ,  

a n d j  = 1, 2, . .  . , y. 

The estimate of 8 by the  method of generalized  linear 
square [see, e.g., Equation 38 of SEARLE (1982)l is 
therefore 

8* = uTm (6) 

where the coefficient uT = ( u I ,  . . . , u,) is 
UT = (X~V;'X)-'X=V;'. (7) 

-1 
Note  that  the scalar xTVB x is simply the sum of  all 
the elements of V,' while xTV;' is the vector with 
elements being the column-sums of VB1. Therefore, 
ui is the  ith column-sum of V;' divided by the sum of 
all column-sums. However,  Equation 6 cannot be used 
to obtain an estimate of 8 directly because it requires 
the value of 8 which is unknown. This difficulty can 
be  circumvented by an iterative  procedure. 

Suppose an initial estimate of 8, denoted by e,,,), is 
obtained. Then Equations 6 and 7 suggest that  one 
can  obtain  a series of u(k) and a series of 8 ( k )  by 

u& = (x  vB,-Ix) x v,!,, 
d ( k )  = u&m. 

T -1  "I T 

If the series u ( k ) ( k  = 1 ,  2 ,  . . .) converges, its limiting 
value U(m) can be used as an  estimate of u and 

e" = e,,, (8) 

can  be used as an estimate of 8. We  shall refer to this 
as the best linear unbiased estimator (BLUE) proce- 
dure and  gas  the BLUE of parameter 8. Although we 
are  not able to prove that  the series u ( k ) ,  (k = 1, 2, . . .) 
must converge, in the application of the BLUE 
procedure described  later, we found  that  the series 
q h , ( k  = 1 ,  2 ,  . . .) not only always converges, but  does 
so rapidly. When WATTERSON'S estimate of 8 is taken 
as the initial estimate of 8 (8(0) = k) ,  the iterative 
process usually needs no  more  than  four cycles. That 
is, 8 = 1 9 ~ ~ ) .  

It should  be  pointed out  that  although we intended 
to find  an  estimate of 8 that is a  linear  function of  ml, 
. . . , my, strictly speaking, e" is not  a  linear  function of 
m l ,  . . . , my because depends  on 8(m) which is a 
function of ml,  . . . , my. This makes it difficult to 
obtain an exact sampling variance of e" and also  im- 
plies that e" may not  be unbiased. However, numerical 
results  later will show that  treating u as a vector 
of  constants is appropriate  for studying the sampling 
properties of e". Doing so, we have 

Var(e") = uT(M,8 + 8'Mp)u 

= ai8 + bAO2 

where M, = ( q ]  for i , j  = 1, . . . , y, MB = (Pqs,) for i, 
j = 1, . . . , 7, a i  = uTM,u and 6: = uTM~u. Since the 
unbiased estimate of 8' is 

- 

e"@ - a:) 
1 + b i  ' 

an approximately unbiased estimate of the variance 
of e" is 

-2 
However, if we estimate 8' directly by 8 , we can take 
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the advantage of Equation 7 and obtain an estimate 
of the variance  of e' as 

e 
X T V p X  

v,, = - . 

A third method of estimating the variance of e will be 
introduced later. 

In the simplest  case  in  which y = 2, we have 

Therefore 

Although the exact values  of u1 and u:, depend on  the 
6 values, it is  always true from the above two equations 
that  the random variable  with a smaller variance has 
a larger value for its  coefficient u than  that with a 
larger variance. In other words, the variable  with a 
smaller  variance  has a higher weight on the outcome 
of estimation, which  is naturally what one would  ex- 
pect. 

ESTIMATION OF e WHEN THE GENEALOGY OF 
A SAMPLE IS KNOWN 

We assume in this  section that  the genealogy  of 
genes in a random sample from a population is known. 
By genealogy, we mean  collectively the topology con- 
necting the genes in a sample to  their most recent 
common ancestor, the  order of branchings in the 
topology and  the number of mutations on each branch 
of the topology. We study the estimation of 8 under  a 
known  genealogy not only  because it provides a 
method to estimate 8 from an estimated genealogy 
but also  because  such a study provides the minimum 
variance  of  all  possible  unbiased  estimates  of 8.  Fu and 
LI  (1 993a) have derived one lower bound of the 
variances of  all  possible  unbiased estimates, but their 
derivation was based on information that could never 
be fully recovered from sequence data. The genealogy 
of a sample  can  be estimated and  there are chances 
that  the reconstructions are perfect. Therefore,  the 
best estimator under  a known  genealogy represents 
the most one could hope to achieve  in practice. The 
variance  of the best estimator will  be a more realistic 
lower bound than the one we derived earlier. 

Let the branching events be numbered successively 
so that  the 1st branching event is the  root  and  n - 
lth is the most recent branching event. For conven- 
ience, the time when the sample was taken (the  exter- 
nal  nodes) is considered as the  nth branching event 
(see Figure 1). Let 4, commonly referred to as the k- 

A 

FIGURE 1.-An  example of a topology of four  sequences. The 
lst, 2nd, 3rd and 4th branching events are A, B, C and D respec- 
tively. 

coalescent time, be the time length (in terms of num- 
ber of generations) between (k - 1)th  and kth branch- 
ing  events. Then under  the assumptions that  the 
population from which the sample is drawn  has a 
constant effective  size  Ne and evolves according to the 
Wright-Fisher model, that all mutations on the DNA 
sequences are selectively neutral and that there is no 
recombination, t k  is a random variable  with exponen- 
tial distribution and parameter k(k - l)/(4Ne) (KING- 
MAN 1982; HUDSON 1982; TAJIMA 1983). Therefore 

where E stands for mathematical expectation. It 
should be noted that  there are several definitions of 
effective population size (for example, see  EWENS 
1979) but for many  models  in population genetics 
they do not differ much; nevertheless, from the deri- 
vations of the distribution of  coalescent  times (KING- 
MAN 1982; HUDSON 1982; TAJIMA 1983), inbreeding 
effective population size  seems to be the most  suitable 
definition for N, in  this paper. 

The genealogy of n genes  has  exactly  2(n - 1) 
branches. For branch a, we define n - 1 index  vari- 
ables s,h(k = 2, . . . , n) such that sg = 1 if the branch 
has a segment between the ( j  - 1)th and  the j th  
branching events and sg = 0 otherwise. The topology 
of a genealogy  of n genes is completely characterized 
by these 2(n - 1)' index variables. For example, the 
topology in Figure 1 has 18 index variables (Table 1). 

Let Zi be the time length of branch i and nk be the 
number of mutations occurred on branch which  is 
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TABLE I 

s, for the  genealogy in Figure 1 

j 

i 2 3 4 

1 0 0 1 
2 0 0 1 
3 0 1 1 
4 0 1 1 
5 1 1 0 
6 1 0 0 

assumed to follow a Poisson distribution with param- 
eter p l i .  Then it is easy to see that 

It follows that 

= oie + &e2 
where 

Furthermore, we have 

Define 

mi = -, i = 1 , .  . . , 2(n - 1) ni 
(16) 

wi 

Then E(mi) = 8 and  the variance  of mi and  the covar- 
iance  between mi and mj are all quadratic functions of 
8. Therefore,  the BLUE procedure developed earlier 
can  be applied to these 2(n - 1) variables to obtain e", 

the BLUE  of 8. Note that  the q a n d  pv in (4) for these 
2(n - 1) variables are 

(y.. = 
'I (1 7) 

0 otherwise. 

When there  are only  two  genes  in the sample 
(n = 2), it  is  easy to see that 

w1 = up = '/z and & 1  = &2 = qhp2 = l/4. 

Therefore, 

ull  = np2 = 2 + 8, and u12 = ~9 

Putting these quantities into (1 1) and (1  2), we have 

u1 = up = ' /2 . 
It follows that 8 = K = ?i when n = 2. 

The efficiency  of the BLUE procedure for these 
2(n - 1) random variables ml, . . , mp(,-]) can be 
measured against a lower bound of  variances  of  all 
possible  unbiased estimators of the parameter 8. One 
such  lower bound from Equation  28  of Fu and LI 
(1 993a) is 

We  use simulated samples to evaluate the performance 
of the BLUE procedure. For a combination  of the 
values  of 8 and n, we simulated a number of genealo- 
gies according to  the values of the parameters and 
coalescent theory (KINGMAN 1982; HUDSON 1982; 
TAJIMA 1983). For each simulated  genealogy, we ob- 
serve the values  of ni ,  i = 1, . . . ,2(n - 1) and compute 
the values of s i s .  From these quantities, the value  of 
mi, av and pq are computed respectively from (1 6), 
(17) and (18). Then the BLUE procedure is applied 
to these  2(n - 1) random variables and  the BLUE  of 
parameter 8 is obtained. Statistics  measuring the per- 
formance of the BLUE procedure can thus be  calcu- 
lated. One such  statistic is the theoretical variance of 
the BLUE  of 8, which  is computed from (10) by 
substituting B for e". Results of these  simulations are 
summarized in Table 2. 

It is clear from Table 2 that  the iterative nature of 
the BLUE procedure does not reduce the quality  of 
estimation  because e" is unbiased (or at least  has no 
obvious  bias) and its sampling  variance is indistinguish- 
able from the theoretical va_riance. It is encouraging 
to see that the variance  of 8, the BLUE  of 8, is only 
slightly larger than the lower bound of  variances (1 9), 
confirming our prediction (Fu and LI 1993b) that  a 
genealogy contains nearly  as  much information as that 
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TABLE 2 

Properties of BLUE procedures  and  comparisons to other two estimators 

e n Var(+) var(F2) Vmi. BLUE e S.V. vc 
2 5 2.47 2.27 2.1 1 2.13 2.01 2.15 2.14 

10 1.93 1.48 1.32 1.33 2.00 1.33 1.33 
20 1.73 1.07 0.93 0.94 2.00 0.95 0.94 
50 1.62 0.77 0.66 0.67 1.98 0.65 0.66 

100 1.59 0.63 0.54 0.54 2.01 0.54 0.55 

5 5 11.67 10.60 9.16 9.29 4.98 9.21 9.21 
10 9.01 6.58 5.16 5.25 5.00 5.30 5.24 
20 8.03 4.57 3.35 3.41 5.00 3.37 3.39 
50 7.52 3.14 2.18 2.21 5.00 2.27 2.20 

100 7.37 2.49  1.70 1.72 5.02 1.73 1.72 

10 5 41.67 37.60 31.00 31.38 9.99 30.96 3 1.20 
10 31.98 22.77 16.16 16.44 10.02 16.37 16.45 
20 28.42 15.48 9.68 9.86 10.00 10.25 9.85 
50 26.63 10.33 5.77 5.86 9.97 5.78 5.82 

100 26.08 8.03  4.27 4.32 9.94 4.41 4.28 

20 5 156.67 140.80 112.22 113.18 19.96 114.55 113.03 
10 119.75 84.03 54.96 55.74 20.00 56.70 55.76 
20 106.32 56.28 30.50 3 1.03 20.00 30.85 30.97 
50 99.56 36.86 16.38 16.67 20.02 16.23 16.66 

100  97.51  28.26 11.35 11.52 19.99 12.27 11.50 

30 5 345.00 309.60 243.46 245.03 30.04 246.04 245.72 
10 263.33 183.76 116.03 117.37 29.95 122.1 1 117.42 
20 233.68 122.4 1 61.96 62.93 29.94 62.91 62.66 
50 2 18.82 79.58 31.32 31.88 29.96 32.31 31.79 

100 214.30 60.69 20.75 21.09  29.94 24.53 2 1.04 
- 
8, the average of 8 over_simulated samples; Vmin, the lower bound of variances (19); BLUE, theoretical variance of 8 (see text for details); 

s.v., sampling variance of 0 and V,: the average of V,  over simulated samples. The results for each combination of 8 and n are from 50,000 
simulated samples for n = 5, 10 and 20 and 25,000 simulated samples for n = 50 and 100. 

used to derive the lower bound (1 9). Considering the 
magnitude of the difference between Vmin and Var(e"), 
we are confident that e" has a minimum variance 
among all  practically  possible  unbiased estimators of 
0, although theoretically  it is only a minimum  variance 
estimator among all linear unbiased estimators of 6. 

Table 2 also  shows that  the variance of e" estimated 
by equation (9) is appropriate. Since the variance  of 
e" is very  close to the lower bound (19), it  suggests that 
Var(e")  can  be estimated by 

e" 

1=1 0 + k c -  
V m  = ,,-I 1 '  (20) 

It appears at first glance that V, may  be an underes- 
timate of  Var(e")  because  it is supposed to estimate Vmin 

which is smaller than Var(e"). On  the contrary, V, on 
average overestimates Var(6)  slightly. This is because 
for a non-negative random variable, r,  E(l/r) > 
l/E(r), therefore,  the denominator in V, is often an 
underestimate of its true value  which  leads to an 
overestimate of Vmin. Simulation results which are not 
presented show that  the  three estimates  of the vari- 
ance of e" have the relationship Var(e") E V, < V,, d V, 

in general when  sample  sizes are small (n  Q 15),  and 
have the relationship V,, d Var(e") V, d V, when 
sample  sizes are large, which is a little unexpected 
because  without correction for bias, V,, is likely to be 
larger than V,. However, the differences among the 
three estimates of  Var(e") are usually quite small, there- 
fore they  all  seem to be appropriate for estimating the 
variance  of e". Overall, V, appears to be the best  esti- 
mator while, on the  other hand, V,,, has the advantage 
of  being the simplest to compute. 

A PHYLOGENETIC ESTIMATOR OF e 
Since the genealogy  of  genes in a sample is  usually 

unknown in reality, one has to estimate the genealogy 
in order to apply the BLUE procedure for estimating 
6. The errors in the reconstructed genealogy are 
expected to cause  bias  in the estimation of 6 and may 
also  increase the variance  of  estimation  as  well. The 
usefulness of the BLUE procedure depends on 
whether the bias  can  be corrected. The degree of  bias 
in the estimation of 0 is likely to depend on the method 
used to construct the genealogy of a sample.  Among 
several methods that can provide all the required 
information for use  with the BLUE procedure,  the 
maximum  likelihood method with a molecular  clock 
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may be the best choice from  a  theoretical  point of 
view, but is impractical when the sample size is large 
or when many genealogies have to  be studied. The 
unweighted pair-group  method with arithmetic  mean 
(UPGMA)  represents another  extreme  and it will be 
used to derive  a phylogenetic estimator of 8 [see, e.g., 
NEI (1 987)  for  a  detailed  description of the method]. 
The UPGMA is not only the simplest in computation 
but also an efficient method  under  the assumption of 
constant rate of evolution, which is true  under  the 
neutral  Wright-Fisher  model. 

Computer simulation is an efficient way to study 
the  properties of estimation of 8 from UPGMA trees. 
Given the values of 8 and sample size n, we simulated 
a  large  number of samples and  for each  simulated 
sample, we computed the  number of mutations sepa- 
rating each pair of sequences. That is the  number of 
mutations  that  occurred on  the two sequences since 
their most recent  common  ancestor. These  numbers 
formed  the distance matrix  upon which the UPGMA 
tree of the sample was constructed. We used the 
infinite-site model for our simulations so that these 
numbers were obtained  accurately. This is because 
under  the infinite-site model, the  number of muta- 
tions separating  a  pair of sequences is simply the 
number of nucleotide  differences between the pair of 
sequences. The length of branch i of an UPGMA tree 
is taken as the value of n, although strictly speaking 
this is not  right because the  branch lengths of an 
UPGMA tree may not  be  integers since UPGMA gives 
the expected number of mutations on a  branch  instead 
of the realized number of mutations. An obvious 
alternative is to  round each branch  length to its near- 
est integer.  This second approach, however, does  not 
perform as well as the first. For  each UPGMA tree, 
the quantities mi,  L Y ~  and & are, respectively, com- 
puted by (16), (1 7) and (1 8). The BLUE procedure is 
then  applied to  the 2(n - 1) variables ml, . . . , m2(,,-1) 

and  the BLUE of 8, denoted by &, is obtained.  Some 
of the simulation results are shown in Figure 2 where 
each point in the  figure is the mean of &J over  at least 
2000 simulated samples. Figure 2 shows that 8~ is on 
average an underestimate of 8. However the  extent of 
underestimation is largely a  function of sample size n 
with some effects from 8. A regression analysis shows 
that  the following regression equation summarizes 
remarkably well (R2 = 99.9%) the relationship be- 
tween 8, n and mean of & (see Figure 2) 

6" = (-0.0336- + 1.002&)*.  (21) 

This regression equation suggests that  one can  obtain 
an unbiased (or nearly unbiased)  estimate of 8 by the 
following equation: 

6 = (0.0335- + 0 . 9 9 8 a ) ' .  (22) 

From the above analysis, I propose  a procedure  for 

f 
0 M 40 60 80 1W 

Sample size, n 

FIGURE 2.-Relationship between 8,  sample size ~t and mean of 
&I. Each dot is the mean of L% over at  least 2000 simulations and 
curves are the regression Equation 21.  The number on the right 
side of each curve is the 0 value for simulating the samples upon 
which the mean 8" is based. 

estimating 8, which will be referred  to as UPBLUE in 
the subsequent discussion, as follows: (1) calculate the 
number of mutations  separating each pair of  se- 
quences and  form  a distance matrix, (2) use UPGMA 
to construct  a genealogy, (3) obtain the estimate & 
from  the UPGMA tree by BLUE procedure, (4) use 
Equation 22 to obtain  a nearly unbiased estimate, e, 
of 8 and (5) compute  the variance of e  ̂ by Equation 9, 
substituting 8 by 6. 

The performance of UPBLUE was also investigated 
by simulations. For  a given combination of 8 and 
sample size n, we simulated  a  large  number of samples 
and UPBLUE was applied to each sample to obtain  a 
value of ê . The results which are summarized in Table 
3 justify  step 5 of UPBLUE  for  computing the vari- 
ance of ê . Table 3 also shows that 6 is a nearly unbiased 
estimate of 8. The small  biases of 6 in some combina- 
tions of 8 and sample size n are unlikely to be signifi- 
cant in practice  compared to its varian$e. What is most 
encouraging is that  the variance of 8 is only slightly 
larger  than  the lower bound of variances (1 9)  and is 
almost the same as the variance of iobtained assuming 
a known genealogy (Table 2). This indicates that  the 
correction  for bias  by Equation 22 is quite effective 
and UPGMA does  not inflate greatly the variance of 
estimation. It also suggests that V,,, a?d V,,, are ap- 
propriate estimates of the variance of 8. We thus con- 
clude  that  UPBLUE gives a nearly unbiased estimate 
of 8 with nearly minimum variance. A  Fortran  pro- 
gram of the UPBLUE  procedure is available upon 
request  to  the  author (E-mail address: 
fu@gsbs18.gs.uth.tmc.edu). The program takes a dis; 
tance  matrix as its input  and  outputs  the estimate 8 
and its variance together with other estimates of 8. 
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TABLE 3 

Properties of UPBLUE of 0 

8 n e S.V. vc Vmi. 

2  5 
10 
20 
50 

100 

5  5 
10 
20 
50 

100 

10 5 
10 
20 
50 

100 

20  5 
10 
20 
50 

100 

30  5 
10 
20 
50 

100 

1.97 
1.96 
1.95 
2.10 
2.32 

5.05 
4.97 
4.92 
4.99 
5.36 

9.92 
9.87 
9.85 
9.88 

10.25 

19.97 
20.05 
19.82 
20.09 
20.00 

29.88 
30.06 
29.79 
29.7  1 
29.61 

2.15 
1.36 
0.92 
0.68 
0.54 

9.41 
5.48 
3.41 
2.19 
1.71 

32.19 
17.14 
9.80 
5.80 
4.29 

1  15.39 
58.62 
3  1.29 
16.29 
11.52 

244.29 
119.12 
64.97 
3  1.47 
21.34 

2.09 
1.29 
0.91 
0.71 
0.65 

9.42 
5.21 
3.32 
2.20 
1.88 

31.15 
16.15 
9.62 
5.75 
4.47 

113.26 
56.21 
30.56 
16.76 
11.53 

243.32 
117.85 
62.23 
31.35 
20.68 

2.1  1 
1.32 
0.93 
0.66 
0.54 

9.16 
5.16 
3.35 
2.18 
1.70 

31.00 
16.16 
9.68 
5.77 
4.27 

112.22 
54.96 
30.50 
16.38 
11.35 

243.46 
116.03 
61.96 
31.32 
20.75 - 

8 ,  the_average of 0 over simulated samples; s.v., sampling variance 
of 0; V,, the average of V, over simulated samples (see step 5 of 
UPBLUE procedure) and V,,,i,, the lower bound of variances (19). 

APPLICATION TO  THE NUU-CHAH-NULTH 
DATA 

We  now apply UPBLUE to a  set of mitochondrial 
sequences. For mitochondrial  sequences, 8 is defined 
as 2N,p where Ne is the effective female  population 
size and p is the  mutation  rate  per sequence per 
generation because mitochondrial  sequences are ma- 
ternally  inherited.  Sequences of 360 bp of 63 Nuu- 
Chah-Nulth  (Nootka) in the  control region of the 
mitochondrial  genome  were reported by WARD et al. 
( 1  991). There  are 26 segregating sites in this set of 
sequences. However, parsimony analyses (WARD et al. 
199 1 ; LUNDSTROM et al. 1992) indicated that many of 
the segregating sites had  experienced  multiple  muta- 
tions because the most parsimonious tree  required  at 
least 41 mutations. Therefore,  the infinite-site model 
does  not  hold  for this set of sequences and conse- 
quently calculating the  number of mutations  separat- 
ing  a  pair of sequences by the  number of nucleotide 
differences between the pair of sequences will often 
be  an underestimate. T o  obtain  better estimates, we 
constructed  a most parsimonious tree of the se- 
quences. From the parsimony tree  the  number of 
mutations  separating  a  pair of sequences was calcu- 
lated, which was simply the sum of branch  lengths of 
the shortest  path  between the pair sequences. The 

TABLE 4 

Comparison of the variances (X105) of estimates of 0/360 

8 

Estimator 5 10 15 20 25 

7P 5.75 20.36 43.82 76.14 117.32 
I? 2.23 7.30 15.19 25.91 39.47 
EWENS~ 2.30 6.90 13.85 23.40 35.83 
UPBLUEd 1.54 3.99 7.19 11.08 15.64 

Variance calculated by (3). 
Variance calculated by (2). 
Variance calculated by Equation 15 in CHAKRAFKIRTY and 

Variance calculated by (20). 
SCHWARTZ (1990). 

resulting distance matrix was then used to construct 
the UPGMA tree. The value of &I from  the UPGMA 
tree is 11.52 and  from Equation 22 we obtain e  ̂ = 
13.32 and  the variance of ê  is estimated to be 7.78. 
The estimate of 8 can be  converted into  an estimate 
of nucleotide diversity by e^/360 = 0.037 with variance 
estimated to be 6.0 X In comparison,  Watter- 
son's estimate Z? of 8 with 41 mutations gives 8.90, ii 
based on  the parsimony tree gives 6.56 and EWENS' 
estimate based on  the  number of alleles is 19 (WARD 
et al. 199 1).  Table 4 shows the variances of these four 
estimates for several possible values of 8. It is clear 
that ê  has a substantially smaller variance than any of 
the existing methods.  Of  course, we should  take  into 
account the ambiguity in constructing the distance 
matrix because the infinite-site model does  not hold 
for this data  set.  However, all four estimators are 
affected by the violation of the infinite-site model. 
The considerable  differences  among  these four esti- 
mates of 8 may well be  a result of the large variances 
of these estimates but it  may also be a consequence 
that  these 63 individuals do not  form  a  truly  random 
sample because they were chosen from 13 of the 14 
tribal  bands and had to be maternally unrelated  for 
four  generations (LUNDSTROM et al. 1992). On  the 
other  hand,  one may argue  that our estimate of 8 may 
be  unreliable because it was based on a single parsi- 
mony tree.  In  fact, we analyzed one  hundred-most 
parsimonious trees  and  found  that ê  and Var(8) dif- 
fered little among  these  trees. 

DISCUSSION 

The new method of estimating 0, UPBLUE, makes 
full use of the information  from  a  population sample 
of sequences, so the resulting  estimate is highly effi- 
cient. This study shows that  the estimated genealogies 
provide substantially more information for estimating 
8 than do pairwise differences, the  number of segre- 
gating sites or the  number of haplotypes. The BLUE 
procedure based on  an UPGMA tree is on average  an 
underestimate of the  true 0 but  the bias can be cor- 
rected.  This  method is therefore  not very sensitive to 
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minor errors in the reconstruction of a genealogy. 
This is not surprising because  only the number of 
mutations between  successive branching events are 
needed to achieve the minimum  variance (Fu and LI 
1993a). The present version  of the UPBLUE proce- 
dure is derived from simulation studies using param- 
eter values  in the  range 8 d 30 and n d 100. The 
pattern of 8" in Figure 2 suggests that it should be 
applicable to a wider range of parameter values  unless 
8 is considerably larger than 30 or n is substantially 
larger than 100. Nevertheless, the  procedure can  be 
extended to cover  wider range of parameter values 
when  it is necessary. 

An important advantage of the BLUE procedure is 
that it  can  be applied to partial information in a 
genealogy.  For example, one can obtain BLUE  of 8 
based on only the internal branches or only the  exter- 
nal branches of a genealogy. Therefore,  the BLUE 
procedure may be very  useful for testing hypotheses 
about 8. Because  of the smaller  variance  of  BLUE  of 
8 ,  statistical  tests  of the hypothesis  of neutrality of 
mutations based on BLUE  of 8 for different parts of 
a genealogy are likely to be more powerful than those 
proposed by TAJIMA (1989) and Fu and LI (1993b). 

The nearly  minimum  variance  of 6 suggests that 
further efforts to improve the estimate of 8 will not 
be fruitful under  the neutral infinite-site Wright- 
Fisher  model  without recombination and population 
subdivision. However, any real sample  of  DNA  se- 
quences is  likely to violate to certain degree the infi- 
nite-site neutral Wright-Fisher  model. Therefore it is 
not necessary that UPGMA  is the best treeing method 
to use  with the BLUE procedure. Other more robust 
distance methods, such as neighbor-joining or mini- 
mum evolution, may be better choices  when the neu- 
tral infinite-site Wright-Fisher model is slightly  vio- 
lated. Investigations on  the performances of other 
treeing methods, including Maximum  likelihood 
method, with the BLUE procedure will be useful. It 
is clear that the keys for constructing a good phylo- 
genetic estimator of 8 are to accurately construct the 
genealogy  of a sample and to know the distributions 
of the times  between  consecutive branching events in 
the genealogy.  When the neutral Wright-Fisher  model 
without recombination and population subdivision is 
severely  violated,  phylogenetic estimators may  be dif- 
ficult to construct. For example, when recombinations 
are frequent,  a reconstructed genealogy by any  exist- 
ing treeing method may  be  grossly  misleading (HUD- 
SON and KAPLAN 1985), estimation of 8 based on such 
an erroneous genealogy is unlikely to be much better, 

for example, than WATTERSON'S estimator. However, 
the BLUE procedure developed in  this paper does not 
have to be  associated  with a genealogy. In a subse- 
quent  paper, I shall consider a different use  of the 
BLUE procedure  for estimating 8 which  is applicable 
under  the neutral Wright-Fisher  model  with or with- 
out recombination and population subdivision. 

I thank B. GOLDING, W. H. LI and two anonymous reviewers for 
suggestions for improving the manuscript. 
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