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ABSTRACT

The use of genetic maps based upon molecular markers has allowed the dissection of some of the factors
underlying quantitative variation in crosses between inbred lines. For many species crossing inbred lines
is not a practical proposition, although crosses between genetically very different outbred lines are pos-
sible. Here we develop a least squares method for the analysis of crosses between outbred lines which
simultaneously uses information from multiple linked markers. The method is suitable for crosses where
the lines may be segregating at marker loci but can be assumed to be fixed for alternative alleles at the
major quantitative trait loci (QTLs) affecting the traits under analysis (e.g., crosses between divergent
selection lines or breeds with different selection histories). The simultaneous use of multiple markers from
a linkage group increases the sensitivity of the test statistic, and thus the power for the detection of QTLs,
compared to the use of single markers or markers flanking an interval. The gain is greater for more closely
spaced markers and for markers of lower information content. Use of multiple markers can also remove
the bias in the estimated position and effect of a QTL which may result when different markers in a linkage
group vary in their heterozygosity in the F, (and thus in their information content) and are considered
only singly or a pair at a time. The method is relatively simple to apply so that more complex models can
be fitted than is currently possible by maximum likelihood. Thus fixed effects and effects of background
genotype can be fitted simultaneously with the exploration of a single linkage group which will increase
the power to detect QTLs by reducing the residual variance. More complex models with several QTLs in
the same linkage group and two-locus interactions between QTLs can similarly be examined. Thus least
squares provides a powerful tool to extend the range of crosses from which QTLs can be dissected whilst

at the same time allowing flexible and realistic models to be explored.

UR ability to study gene action underlying quan-
titative variation has been greatly enhanced by the

rapid development of genetic maps based on DNA mark-
ers combined with the development of statistical meth-
ods which allow the mapping of some of the loci re-
sponsible for quantitative variation (quantitative trait
loci or QTLs). Among the statistical methodologies, in-
terval mapping (LANDER and BOTSTEIN 1989) has been
shown to be a powerful tool for the analysis of popula-
tions derived from crosses between inbred lines [e.g.,
PATERSON et al. (1988, 1991), JacoB et al. (1991), and
STUBER ¢t al. (1992) ]. In the method of interval mapping
the intervals between pairs of flanking markers are ex-
plored in turn for evidence of the presence of a QTL at
various positions between the markers. The methods
were originally implemented using maximum likeli-
hood (LANDER and BotsTEIN 1989), in which informa-
tion on the presence of a QTL is derived from both the
mean differences between the flanking marker geno-
type classes and from the distribution of the trait within
each marker genotype class. Compared to methods
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which consider only a single marker at a time, interval
mapping methods have been shown to provide some
additional power and much more accurate estimates of
QTL effect and position and to be relatively robust to
failure of normality assumptions (LANDER and BOTSTEIN
1989; KNOTT and HALEY 1992a).

The disadvantage of maximum likelihood based
methods for interval mapping is their computational
complexity, which makes them relatively difficult to ex-
tend to allow the simultaneous analysis of several linked
QTLs, interactions between QTLs, effects of unlinked
QTLs and fixed effects (e.g., treatment and sex). The
advantage of such simultaneous analyses is their poten-
tial to remove bias and to increase the power (by re-
ducing the residual “noise” variance) of the analyses per-
formed. We have recently demonstrated that ordinary
least squares can be used for interval mapping and pro-
vides very similar estimates and test statistics to those
obtained from maximum likelihood (HALEY and KNOTT
1992). This allows relatively complex (and potentially
more realistic) models to be used without placing severe
demands on computational resources (and incidentally
demonstrates that the great majority of information ex-
tracted using maximum likelihood derives from mean
differences between marker genotype classes, rather
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than from the distribution within the marker genotype
class).

In a cross between two inbred lines the markers se-
lected for mapping have heterozygosities of unity in the
F,, as do any QTLs segregating in the cross. This greatly
simplifies the analysis and means that, for co-dominant
markers under the assumption of no interference, it is
only the pair of markers flanking an interval that provide
information on the transmission of a QTL within that
interval. Thus markers can be considered a pair ata time
without loss of information. In many cases, however, it
is desirable to map QTLs in crosses between lines which
are genetically divergent but are outbred. Often it may
be reasonable to assume that the lines are fixed, or
nearly so, for QTLs of moderate or large effect (i.e.,
those that it is feasible to consider mapping) even
though some or all of the markers which are informative
in the cross are segregating within each outbred line.
Examples of such a situation would include experimen-
tal lines which have undergone divergent selection or
long established breeds of plants or animals which have
very different selection histories. Crosses in the latter
category would include that between the Chinese Mei-
shan pig and European commercial breeds, which differ
for many traits (HALEY and ARCHIBALD 1992) or between
Ndama and Boran cattle, which differ in their resistance
to tick-borne disease (SOLLER 1990). In such cases it is
impractical to produce inbred lines from the original
outbred populations. Even for lines of experimental or-
ganisms which can have several generations per year,
developing inbred lines may be time consuming and
costly.

BECKMANN and SOLLER (1988) presented a method for
the analysis of crosses between outbred lines based on
tracing marker alleles through the three generations
(e.g., parents, F, and F,) of the cross. A potential prob-
lem in the analysis is that the markers are not all com-
pletely informative and will vary in their heterozygosity
in the F, cross. To overcome this problem BECKMANN and
SoLLER (1988) suggested screening a number of markers
in each chromosomal region and for each individual F,
cross selecting a marker that would be informative in the
F, in the region. This would be potentially wasteful of
information, for to obtain at least one informative
marker, several would need to be scored and rejected if
not required. An alternative to this approach would be
to develop interval mapping so that it could be applied
to this data structure. However, using only flanking
markers would lead to the same situation observed in
analyses within outbred populations, that is that infor-
mation, and thus power to detect a QTL, varies from
interval to interval depending upon the markers flank-
ing that interval. This can lead to biases in the estimated
position and effect of a QTL (KNOTT and HALEY 1992b).
To make most efficient use of marker data and thus to
maximize experimental power and to minimize the risk

of biased estimates it is necessary to take into account
information from all of the informative markers in a
linkage group. In this paper we develop a simple method
which allows least squares to be applied to the mapping
of QTLsin a cross between outbred lines using data from
all markers in a linkage group simultaneously. The rela-
tive efficacy of using all markers in a linkage group com-
pared to using only those flanking an interval is dem-
onstrated by the analysis of simulated data.

METHOD

In the least squares method of mapping QTLs phe-
notypic values are regressed onto genetic coefficients
calculated for a putative QTL at a fixed position. In the
analysis of the generations derived from a cross between
inbred lines the probability of an F, individual, for ex-
ample, being each of the three possible genotypes at a
QTL in a given position in an interval can be calculated
conditional solely upon the genotypes at the markers
flanking that interval and the estimated recombination
fraction between the markers and the QTL. The additive
coefficient for the QTL in that individual is then the
difference between the conditional probabilities of the
two homozygous QTL genotypes and the dominance co-
efficient is equal to the conditional probability of the
individual being the QTL heterozygote. (In this param-
eterization the additive and dominance coefficients, a
and d, respectively, are defined as deviations from the
mean of the two homozygotes for the QTL, i.e., the dif-
ference between the homozygotes is 2a.) For each pu-
tative QTL position, ordinary linear least squares can be
used to regress the trait value for each individual onto
their calculated additive and dominance coefficients.
This provides estimates of @ and d for that position. The
procedure is repeated for chosen fixed positions (e.g.,
at 1-cM intervals) through a linkage group and the best
estimate of the QTL effects and position are obtained at
the position at which the residual sum of squares is mini-
mized. Multiple QTL effects can be fitted by regression
onto the coefficients for several QTLs in different po-
sitions (in the same or different linkage groups) simul-
taneously. We have previously described the method for
inbred line crosses in more detail and shown that it gives
very similar results to those produced by maximum like-
lihood (HALEY and KNOTT 1992). The method we de-
velop here for analysing outbred line crosses is very simi-
lar in conception. The key to applying this method is
developing a simple means of calculating the coeffi-
cients of a and d for each individual for a QTL in each
putative position conditional upon multiple markers in
a linkage group.

We develop the method throughout using an F, cross
as an example, but the same method could be applied
to the analysis of other types of cross. We consider that
genotypic data is available on the F, individuals and their
parents and grandparents and phenotypic data is avail-
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TABLE 1

Example F, pedigree from a cross between outbred lines with four markers (4, B, C and D) and possible line origin combinations
of marker alleles

Line 1: Line 2: Line 1: Line 2:
sire of the sire (SS) dam of the sire (DS) sire of the dam (SD) dam of the dam (DD)
A,4,B,8,C,C,D\D, AyAyB; B,y CyCsDyD,y 4,4,8,8,C,C,D\D, 4.4:8,B,C,C,D, D,
Sire (S) Dam (D)
A,A,B,B,C,CD\D, A,4,B,B,C,C,D\D,
F, offspring (O)
AyAyB, By Gy CoDyD,y
Line 1: Line 2: Line 1: Line 2: Marker
sire of dam of sire of dam of Line origin Putative
the sire the sire the dam the dam combination QTL A B c D
X X 11 QQ
X X 12 Qq
X X 21 q0 * * *

Possible line origins of alleles are indicated by X. For each line origin combination the putative QTL genotype at a locus fixed for allele Q in
line 1 and allele ¢ in line 2 is shown. The possible line origin combinations for the F, individual in the pedigree shown above are shown by asterisks

in the right-hand side of the table.

able on the F, individuals. For any locus (marker or
QTL) an F, individual must receive one allele from ei-
ther the sire or dam of its sire and one allele from either
the sire or dam of its dam. There are thus four possible
combinations of alleles in terms of the outbred line from
which they came. These line origin combinations of al-
leles are shown in Table 1. As an example, consider the
three generation pedigree from a cross between two out-
bred populations and marker genotypes for an indi-
vidual and its parents and grandparents which is shown
in Table 1. For the first marker (A) it is clear that the
F, individual has inherited two alleles from line 2, one
from the dam of the sire and one from the dam of the
dam (line origin combination 22 in Table 1). For the
second marker (B), one allele in the F, individual has
been inherited from line 2 (from the dam of the sire)
but the inheritance of the second allele is equivocal be-
cause the dam is homozygous. Thus for marker B both
of line origin combinations 21 and 22 are possible. For
the third marker ( C) only line origin combination 21 is
possible (one allele from the dam of the sire and one
from the sire of the dam). For a QTL fixed for alternative
alleles in the two grandparental lines each line origin
combination will correspond to one QTL genotype as
shown in Table 1.

For each marker the potential line origin combina-
tions can be derived for each individual in turn. For
some markers in some individuals all four line origin
combinations may be possible (e.g., if all grandparents
are homozygous for the same marker allele or if marker
data is missing for that individual) and thus these
markers are uninformative. For dominant markers for
which the two lines are fixed for alternative alleles, F,
individuals either have a single line origin combina-
tion possible (if they are homozygous for the recessive

allele) or three are possible (if they are homozygous
for the dominant allele or heterozygous). Note that
for both codominant and dominant loci, in any case
where two or more line origin combinations are pos-
sible in an F, individual, those that are possible are
equally likely.

This simple method of assigning line origin to the
markers considering each F, individual in turn is easily
implemented and rapid. It should be noted, however,
that it does not necessarily use all of the information.
Consider marker D in Table 1. Both the sire of the dam
and the dam of the dam are heterozygous for the same
alleles as is the dam. The dam is thus an uninformative
heterozygote because, considering only a single F, in-
dividual and this marker, line origin combinations 21
and 22 are both possible and they have equal probability
(i.e., it is not possible to infer whether offspring of this
dam have inherited their allele from the sire of the dam
or from the dam of the dam at this marker). As in most
studies F, individuals would be from groups of full and
half sibs, the joint use of information from sibs and flank-
ing markers would indicate the likely linkage phase in
the dam and thus allow the relative probabilities of line
origin combinations 21 and 22 to be calculated. How-
ever, the maximum expected frequency of such unin-
formative heterozygous parents is 0.125 (for markers
at which both lines have two alleles at equal frequen-
cies) and it will usually be much less, as many markers
are multi-allelic and allele frequencies at segregating
markers are often markedly different in different
lines. Thus in many cases the benefits of the rapid and
simple analysis possible treating each F, individual in
turn will often outweigh the small amount of extra
information that might be recovered by considering
sibs jointly.
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TABLE 2

The probability of the line origin combination of a locus
conditional upon the line origin combination of a linked locus
and the recombination fractions between the two loci

Line . ..
origin Line origin combination
combina-

tion 11 12 21 22
11 (1-r,) (1-r) (1-r,)7, (11 7,7
12 (1), Q- Qry o r(1r)
21 7, (1-1) 1,7 (L-r,) (1-r) (I-r,)7
29 o, ra(l) (1)1, (1-r7) (1-r)

Conditional probabilities for the line origin combinations given in
Table 1. The recombination frequencies between the pair of loci in
the male and female parent are r,, and 7, respectively.

Once the possible line origin combinations of the
markers have been derived, the probabilities of each of
the four line origin combinations for a QTL at a given
position in an F, individual can be calculated condi-
tional upon the possible line origin combinations of the
markers, the previously estimated recombination frac-
tions between the markers and the recombination frac-
tion between the assumed position of the QTL and the
markers. Table 2 gives the probability of the line origin
combination of a locus conditional upon the line origin
combination of a linked locus and the recombination
fraction between the two loci. The probabilities in Table
2 have been written allowing for different recombina-
tion rates in the two sexes; when these are the same
Table 2 can be simplified. For each individual, each sec-
tion of chromosome between pairs of markers which
both have only a single possible line origin combination
can be considered separately (as, in the absence of in-
terference, markers outside this section provide no in-
formation about the line origin of positions within the
section). The probability of each of the four line origin
combinations for any point between these markers (i.e.,
the position of a putative QTL) conditional upon the ob-
served marker genotypes can be calculated as a product of
the probabilities shown in Table 2 for any possible com-
bination of line origins of the markers scaled so that the
total over all possible combinations sums to one. The for-
mal derivation of this method is shown in the APPENDIX.

To clarify the calculation of these conditional prob-
abilities, consider the example in Table 3. Marker loci
A, Band C are used (these correspond to markers A, B
and C for the pedigree of the F, individual shown in
Table 1). Note that as markers A and C are fully infor-
mative, with only a single line origin combination each,
markers outside this region add no further information
for positions within the region for this individual. Con-
sider there to be a QTL (Q) at the midpoint between
markers B and C. The first possible combination of line
origins shown in Table 3 for the three markers and the
QTL is 22, 21, 11 and 21 for A, B, Q and C, respectively.
As shown in Table 2, the conditional probability of a 21
line origin combination at marker B given a 22 line ori-

gin combination at marker A is (1 - 7,,,) 7,5, where 7,5,
and 7,5, are the recombination fractions between loci A
and B in males and females, respectively. (This combi-
nation of line origins at markers A and B requires there
to have been no recombination between markers A and
Bin the first (male) F, parent and a single recombina-
tion between the markers in the second (female) F, par-
ent). Similarly, the conditional probability of a 11 line
origin combination at the QTL given a 21 line origin
combination at marker B is r4,,(1 ~ 75, and the con-
ditional probability of a 21 line origin combination at
marker Cgiven a 11 line origin combination at the QTL
18 7pca(1 — 7o) . The probability of the line origin com-
binations 21, 11 and 21 at B, Q and C conditional on a
22 line origin combination at A is thus the product of
these probabilities:

(1 = 74pm)Tags Togm(1l — rBQf)rQCm(l ~ Tog)

or:

(1 = 7p)145 1oL — 70)70c(1 ~ 75¢)

on the assumption of equal recombination frequencies
in males and females. Division by the sum of these prob-
abilities for the possible line origin combinations (eight
are possible in the example in Table 3) gives the prob-
ability conditional on the possible line origin combina-
tions (and thus on the observed marker genotypes).

Once the conditional probabilities for the line origin
combinations have been calculated the coefficients for
a and d for a putative QTL in this position can be de-
termined as:

a : probability of line origin 11 conditional on the
marker genotypes minus probability of line origin
22 conditional on the marker genotypes

d : probability of line origin 12 conditional on the
marker genotypes plus probability of line origin 21
conditional on the marker genotypes

or in the notation used in the APPENDIX:
a: prob(w,; | P) — prob(wy,!P)
and
d: prob(w,| P) + prob(w,, | P)

where prob(w,|P) is the probability of line origin com-
bination ¢ for 2 QTL at a given position conditional on
the observed marker genotypes in the individual and its
parents and grandparents.

After calculation of the predicted coefficients for a
putative QTL in a given position for all individuals, a and
d can be estimated for that position by ordinary least
squares, regressing the phenotypic values on to these
coefficients. Several (or many) putative QTLs in a
number of positions (linked or unlinked) can be fit-
ted simultaneously and covariates or fixed effects can
also be included in the model. For a fixed position of
QTL, the ratio of the regression mean square to the
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TABLE 3

Example calculation of the probabilities of line origin combinations of a putative QTL conditional upon the possible line origin
combinations of flanking markers

Line origin combination
of alleles (A-B-Q-C)

Conditional probability

Example:
Tap = Tgp = Toc = 0.1

99-91-11-21 75 (0T48) o150 Toc (1700 / P 0.004
99-99-11-21 (17,0 ragtrac(1-r0) / P 0.004
22-21-12-21 5174 5) 1710/ P 0.000
22-29-12-91 (1) (1730 7o/ P 0.004
29-91-21-21 Tas(175) (1730 H(1-70)*/ P 0.328
22-92-21-21 (1r,0) rgq(1-raq) (1-700) /P 0.328
29919291 7an(1748) 70 (1730 Toe(1-700) / P 0.004
99-99-99-21 (17,5) 2 (1-730) o (L-70) /P 0.328

For this individual the line origin combination (as defined in Table 1) of the first marker (A) is 22, that of the second marker (B) may be either
21 or 22 and that of the third marker (C) is 21. The putative QTL (Q) is placed between B and C. The recombination frequencies are assumed
to be the same in both sexes and that between A and B is r,;, that between B and the putative posit_ion of the QTL is 754 and that between the

QTL and Cis . Pis the sum of the numerators of the conditional probabilities. An example is given for 7,, = 75,

= 0.1. For this individual

Tac
the predicted coefficient for a would be -0.324 (= 0.004 + 0.004 - 0.004 - 0.328) and for ¢ would be 0.660 (= 0 000 + 0.004 + 0.328 + 0.328).

residual mean square provides the usual variance (F)
ratio test statistic.

An alternative approximate log-likelihood ratio test
statistic is provided by:

residual sum of squares reduced model
" 798\ " residual sum of squares full model

where 7 is the number of observations. This test statistic
is distributed approximately as a chi-square with degrees
of freedom equal to the number of parameters included
in the full model (:.e., estimating the QTL effects) but
omitted from the reduced model (i.e., omitting QTL)
(AITKEN et al. 1989). Dividing this test statistic by
(2log,10) would approximately give the LOD score. The
use of LOD is of little relevance, however, for tests such
as this which have more than a single degree of freedom.

When fitting a single QTL any of these test statistics
can be plotted against position to give a curve or when
fitting two QTLs this can be visualized as a surface
(HaLey and KnotT 1992). The maximum point of the
curve or surface indicates the most likely position of the
QTL and this point will be at the same position for any
of the test statistics. We use the approximate log-
likelihood ratio test statistic throughout this paper for
consistency and to facilitate comparison with our pre-
vious work (e.g., HALEY and KnoTT 1992; KNOTT and
HALEY 1992a, b).

SIMULATIONS

General: The analysis of simulated data was used to
explore the characteristics of the method. Each set of
data included 500 F, individuals in 50 full-sib families of
size 10 with their parents and grandparents. The geno-
type of each individual comprised a pair of chromo-
somes 100 cM in length. Depending upon the simula-
tion there were either three markers at 50 cM spacing,

six markers at 20 cM spacing or eleven markers at 10 cM
spacing. Markers of three types were generated, either
fixed for alternative alleles in the two grandparental
lines (i.e., as in a cross between inbred lines), or seg-
regating with the same two alleles at equal frequency in
both grandparental lines or segregating with the same
four alleles at equal frequency in both grandparental
lines. QTLs of various effect and position were simulated
(see below). In the analyses the additive and dominance
effects (a and d, respectively) of a single QTL were es-
timated sequentially at each 1-cM point along the chro-
mosome, with the distance between the markers set at
that used to generate the data. The point along the chro-
mosome at which the test statistic was highest was used
to provide the estimates of the QTL position and effect
for that analysis. Unless otherwise stated, 100 replicates
were simulated and analyzed for each combination of
parameters. The data were generated and analyzed us-
ing programs written in FORTRAN 77, supplemented
with routines from the NAG library (Numerical Algo-
rithms Group 1990) for random number generation
and for ordinary least squares analysis (routine
GO2DAF).

All markers vs. flanking markers and size of QTL: To
explore the general properties of the method and the
advantage of using all markers on a chromosome, its
behavior was compared to ordinary least squares in
which only the pair of markers flanking an interval was
used to predict the probabilities of each QTL genotype
at a given point within the interval. For each replicate in
these analyses a single set of phenotypic data (including
effect of QTL and residual variance) was generated with
a QTL of additive effect (i.e., half the difference be-
tween the homozygotes) of either 0.25, 0.5 or 1.0 re-
sidual (i.e., within QTL genotype) standard deviations
30 cM from one end of the chromosome. QTLs of these
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Ficure 1.—Examples of test statistic curves using either only flanking markers or all markers. For each analysis markers were
all of one of three levels of information content (fixed for alternative alleles in the two lines, or segregating with either two or
four alleles at equal frequency in both lines) and were spaced at 20-cM intervals starting at 0 ¢M. The simulated QTL was additive
in effect with two residual standard deviations between homozygotes and was located at the 30-cM position on the chromosome.

The phenotypic data were the same for all analyses.

sizes would account for 3.3%, 11.1% or 33.3%, respec-
tively, of the variance in the F, population. Each set of
phenotypic data was analyzed with markers at 20-cM
spacing which were all of one of the three levels of in-
formation content (i.¢, fixed for alternative alleles in the
two grandparental lines or segregating with either the
same two alleles at equal frequency or with the same four
alleles at equal frequency in the two grandparental lines).

Marker density: Data were generated with a QTL with
an additive effect of 0.5 residual standard deviation at 25
cM from one end of the chromosome. Each set of data had
markers of the three levels of information content at either
10-cM spacing or at 50-cM spacing and were analyzed using
information from all markers simultaneously.

Position of QTL: Data generated with a QTL with an
additive effect of 0.5 residual standard deviations at ei-
ther 10 or 50 cM from one end of the chromosome. Each
set of data had markers of the three levels of information
content at 20-cM spacing and were analyzed using in-
formation from all markers simultaneously.

Markers of varying information content: In these
analyses markers varied in their information content
along the chromosome. Data were generated with a
QTL with an additive effect of 0.5 residual standard de-

viations at 30 cM from one end of the chromosome and
markers at 20-cM spacing. For each set of data the first
three markers (at positions 0, 20 and 40 cM) were of low
information content (i.e., the same two alleles at equal
frequency segregating in each grandparental line) and
the last three markers (at 60, 80 and 100 cM) were of
higher information content (all three either having four
alleles at equal frequency segregating in the grandpa-
rental lines or being fixed for alternative alleles in the
grandparental lines). The data were analysed using ei-
ther information only from flanking markers or using
information from all markers simultaneously.

Null hypothesis: Data were generated with no QTL
but with markers at either 10-, 20- or 50-cM spacing. For
each marker density, markers of the three levels of in-
formation content were used to analyze the data. The
data were analyzed using information from all markers
simultaneously. For each combination of parameters
1000 replicates were generated and analyzed.

RESULTS

All markers vs. flanking markers: Examples of the
curves produced by plotting the values of the test statistic
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TABLE 4
Relative mean test statistics and empirical standard deviations of parameter estimates using either only flanking markers or all
linked markers
sD of sp of sb of
Marker ~ QTL effect Test statistic test statistic position additive effect
spacing  simulated
Marker type (cM) (a) F A F A F A F A
Fixed, alternative alleles in two lines 20 1.0 (155.5 155.5 20.2 20.2 1.9 1.9 0.066  0.066)*
20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10 0.5 0.35 0.72 2.11 1.09
20 0.5 0.32 0.32 0.60 0.60 2.15 215 0.96 0.96
50 0.5 0.21 0.49 5.37 1.30
20 0.25 0.10 0.10 0.34 0.34 8.16 8.16 1.17 1.17
Segregating, 4 alleles in each line 20 1.0 0.81 0.88 0.87 0.91 1.74 1.16 1.09 1.06
10 0.5 0.33 0.70 2.16 1.12
20 0.5 0.27 0.29 0.54 0.59 4.00 342 1.08 1.05
50 0.5 0.16 0.46 6.63 1.59
20 0.25 0.09 0.09 0.32 0.33 9.58 932 121 1.14
Segregating, 2 alleles in each line 20 1.0 0.41 0.53 0.62 0.81 3.58 237 178 1.53
10 0.5 0.26 0.56 4.26 1.15
20 0.5 0.15 0.18 0.40 0.47 8.11 6.79 1.56 1.39
50 0.5 0.09 0.34 11.18 2.20
20 0.25 0.07 0.07 0.24 026 13.37 1332 1.83 1.45

F, A, analyses using flanking or all markers, respectively. Each value is based upon 100 replicate simulations. Simulated QTLs were located 30
cM from one end of the 100cM chromosome with 20-cM spaced markers or 25 cM from one end of the 100-cM chromosome with 10- and 50-cM
spaced markers. Simulated QTLs were additive in effect. The size of the additive effect (a) of the QTL is given as half the difference between the
homozygotes in terms of the residual (i.e., within QTL genotype) standard deviation.

* Absolute values this line only, all other values are given relative to these.

against the chromosomal position are shown in Figure
1. These curves were produced from a single set of phe-
notypic data analysed using markers of one of the three
levels of information content at 20-cM spacing and ei-
ther predicting the QTL genotype using just flanking
markers or using all markers on the chromosome. The
two curves (using just flanking markers or using all mark-
ers) produced when the markers were fixed for alter-
native alleles in the two lines are exactly the same, con-
firming that the flanking markers contain all the
information on the interval between them for this type
of marker under the assumption of no interference. For
the less informative markers the use of just flanking
markers produces steps in the curve between intervals
and the maximum value of the test statistic reduces with
the information content of the markers. The steps result
because the different markers, and hence intervals, vary
by chance in the information they contain. The use of
multiple markers to predict the QTL genotype removes
these steps and also increases the test statistic, although
the maximum test statistic still increases with increasing
marker information content.

For data in which the markers in a linkage group were
all of the same type, estimates of position and effect of
the QTL for the analyses using either all markers or just
flanking markers were very close to those simulated and
are not shown. The relative values of the mean (over
replicate simulations) of the maximum test statistic on
the chromosome and the empirical (over replicate simu-
lations) standard deviations of estimates of position and
additive effect for the analyses using either all markers
or just flanking markers are shown in Table 4 for these

analyses. Trends for the dominance effect were similar
to those for the additive effect and are not shown. When
the markers were fixed for alternative alleles in the two
grandparental breeds, the results from analyses using all
or flanking markers were, as expected, identical. For the
less informative markers using all markers in the analysis
generally increased the maximum test statistic. The larg-
estincrease (approximately 30%) was found for the least
informative markers and for the QTL of largest effect,
whereas for