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ABSTRACT 
The use of genetic maps  based upon molecular  markers  has allowed the dissection of some of the factors 

underlying quantitative  variation  in  crosses  between inbred lines.  For many species  crossing inbred lines 
is not a practical proposition, although crosses  between  genetically  very different outbred lines are pos- 
sible. Here we develop a least  squares method for the analysis  of  crosses  between outbred lines which 
simultaneously uses information from  multiple  linked  markers. The method is suitable for crosses  where 
the lines may be segregating at marker loci but can  be  assumed  to  be  fixed for alternative  alleles at the 
major  quantitative trait loci  (QTLs)  affecting the traits under analysis (e .g . ,  crosses  between  divergent 
selection  lines or breeds with different selection histories). The simultaneous use of multiple  markers  from 
a linkage group increases the sensitivity  of the test  statistic, and thus the power for the detection of  QTLs, 
compared to the use of single markers or markers flanking an interval. The gain is greater for more closely 
spaced markers and for markers of  lower information content. Use  of multiple  markers  can also  remove 
the bias in the estimated position and effect of a QTL  which  may result when different markers  in a linkage 
group’vary in their heterozygosity in the F, (and thus in their information content) and are considered 
only  singly or a pair at a time. The method is  relatively  simple  to  apply so that more complex  models  can 
be fitted than is currently possible by maximum likelihood. Thus fixed  effects and effects of background 
genotype can  be fitted simultaneously with the exploration of a single  linkage group which  will increase 
the power to detect QTLs by reducing the residual  variance.  More  complex  models with  several  QTLs in 
the same  linkage group and two-locus interactions between QTLs can  similarly  be examined. Thus least 
squares provides a powerful  tool to extend the range of crosses from which  QTLs can  be  dissected whilst 
at the same  time  allowing  flexible and realistic  models  to  be explored. 

0 UR ability to study gene action underlying quan- 
titative variation has been greatly enhanced by the 

rapid  development of genetic maps based on DNA mark- 
ers combined with the development of  statistical meth- 
ods which  allow the  mapping of some of the loci re- 
sponsible for quantitative variation (quantitative trait 
loci or QTLs). Among the statistical methodologies, in- 
terval mapping (LANDER and BOTSTEIN 1989) has been 
shown to  be a powerful tool for  the analysis  of popula- 
tions derived from crosses between inbred lines [e.g. ,  
PATERSON et al. (1988, 1991), JACOB et al. (1991),  and 
STUBER et al. (1992)l.  In  the  method of interval mapping 
the intervals between pairs of flanking markers are ex- 
plored in turn  for evidence of the presence of a QTL at 
various positions between the markers. The methods 
were originally implemented using maximum likeli- 
hood (LANDER and BOTSTEIN 1989), in which informa- 
tion on the  presence of a QTL is derived from both  the 
mean differences between the flanking marker  geno- 
type  classes and from  the distribution of the trait within 
each  marker genotype class. Compared  to  methods 
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which consider only a single marker at a time, interval 
mapping  methods have been shown to provide some 
additional power and much  more accurate estimates of 
QTL effect and position and to be relatively robust to 
failure of normality assumptions (LANDER and BOTSTEIN 
1989; KNon and HALEY 1992a). 

The disadvantage of maximum likelihood based 
methods  for interval mapping is their  computational 
complexity, which  makes them relatively difficult to ex- 
tend  to allow the simultaneous analysis  of  several linked 
QTLs, interactions between QTLs,  effects  of unlinked 
QTLs and fixed effects (e .g . ,  treatment and sex). The 
advantage of such simultaneous analyses is their poten- 
tial to remove bias and to increase the power  (by re- 
ducing  the residual “noise”variance) of the analyses per- 
formed. We have recently demonstrated  that ordinary 
least squares can  be used for interval mapping and pro- 
vides  very similar estimates and test  statistics to those 
obtained  from maximum likelihood (HALEY and &om 
1992). This allows  relatively complex (and potentially 
more realistic) models to be used without placing severe 
demands on computational resources (and incidentally 
demonstrates  that  the  great majority  of information ex- 
tracted using maximum likelihood derives from mean 
differences between marker genotype classes, rather 
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than from the distribution within the  marker genotype 
class). 

In a cross  between two inbred lines the markers se- 
lected for mapping have  heterozygosities of unity in  the 
F,, as do any  QTLs segregating in the cross. This greatly 
simplifies the analysis and means that,  for co-dominant 
markers under  the assumption of no interference,  it is 
only the pair of markers flanking an interval that provide 
information on  the transmission of a QTL  within that 
interval. Thus markers can be considered a pair at a time 
without loss of information. In many  cases,  however, it 
is desirable to  map QTLs in crosses  between lines which 
are genetically divergent but are  outbred.  Often it may 
be reasonable to assume that  the lines are fixed, or 
nearly so, for QTLs  of moderate or large effect ( i e . ,  
those that it is feasible to consider mapping) even 
though some or all  of the markers which are informative 
in the cross are segregating within each  outbred line. 
Examples  of such a situation would include  experimen- 
tal lines which  have undergone divergent selection or 
long established breeds of plants or animals which  have 
very different selection histories. Crosses in the  latter 
category would include  that between the Chinese Mei- 
shan pig and European commercial breeds, which differ 
for many traits (HALEY and ARCHIBALD 1992) or between 
Ndama and Boran cattle, which differ in their resistance 
to tick-borne disease (SOLLER 1990). In such cases it is 
impractical to produce  inbred lines from the original 
outbred populations. Even for lines of experimental  or- 
ganisms  which can have  several generations  per year, 
developing inbred lines may be time consuming and 

BECKMANN and SOLLER (1988) presented a method for 
the analysis of crosses between outbred lines based on 
tracing marker alleles through  the  three  generations 
( e . g . ,  parents, F, and F,) of the cross. A potential prob- 
lem in the analysis  is that  the markers are not all  com- 
pletely informative and will vary in their heterozygosity 
in the F,  cross. To overcome this problem BECKMANN and 
SOLLER (1988) suggested screening a number of markers 
in each chromosomal region and for each individual F, 
cross selecting a marker  that would be informative in the 
F, in the region. This would be potentially wasteful  of 
information, for to obtain at least one informative 
marker, several  would need  to  be scored and rejected if 
not required. An alternative to this approach would be 
to develop interval mapping so that it could be  applied 
to this data structure. However, using only flanking 
markers would lead to the same situation observed in 
analyses within outbred populations, that is that infor- 
mation, and thus power to detect a QTL, varies from 
interval to interval depending  upon  the markers flank- 
ing  that interval. This can lead to biases in the estimated 
position and effect of a QTL (KNOTT and HALEY 1992b). 
To make most efficient use  of marker  data and thus  to 
maximize experimental power and  to minimize the risk 

costly. 

of  biased estimates it is necessary to take into  account 
information  from all of the informative markers in a 
linkage group.  In this paper we develop a simple method 
which  allows least squares to be  applied  to  the  mapping 
of  QTLs in a cross between outbred lines using data from 
all markers in a linkage group simultaneously. The rela- 
tive  efficacy of using all markers in a linkage group com- 
pared  to using only those flanking an interval is dem- 
onstrated by the analysis of simulated data. 

METHOD 

In  the least squares method of mapping QTLs phe- 
notypic values are regressed onto genetic coefficients 
calculated for a putative QTL at a fixed position. In  the 
analysis of the  generations derived from a cross  between 
inbred lines the probability of an F, individual, for ex- 
ample, being each of the  three possible genotypes at a 
QTL in a given position in an interval can be calculated 
conditional solely upon  the genotypes at the markers 
flanking that interval and  the estimated recombination 
fraction between the markers and  the QTL. The additive 
coefficient for  the QTL in that individual is then  the 
difference between the  conditional probabilities of the 
two homozygous QTL genotypes and the  dominance co- 
effkient is equal to the  conditional probability of the 
individual being the QTL heterozygote. (In this param- 
eterization the additive and dominance coefficients, a 
and d, respectively, are  defined as deviations from the 
mean of the two homozygotes for  the QTL, i. e . ,  the dif- 
ference between the homozygotes is 2a.) For each pu- 
tative QTL position, ordinary linear least squares can be 
used to regress the trait value for each individual onto 
their calculated additive and dominance coefficients. 
This provides estimates of a and d for  that position. The 
procedure is repeated for chosen fixed positions ( e . g . ,  
at 1 c M  intervals) through a linkage group  and  the best 
estimate of the QTL  effects and position are  obtained  at 
the position at which the residual sum of squares is mini- 
mized. Multiple QTL effects can be  fitted by regression 
onto the coefficients for several  QTLs in different po- 
sitions (in  the same or different linkage groups) simul- 
taneously. We have  previously described the  method  for 
inbred line crosses in more detail and shown that it gives 
very similar results to those produced by maximum like- 
lihood (HAL.EY and KNon 1992).  The  method we de- 
velop here for analysing outbred line crosses is  very  simi- 
lar in conception. The key to applying this method is 
developing a simple means of calculating the coeffl- 
cients of a and d for each individual for a QTL in each 
putative position conditional  upon multiple markers in 
a linkage group. 

We develop the  method  throughout using an F, cross 
as an example, but the same method could be applied 
to the analysis of other types of cross. We consider that 
genotypic data is available on the F, individuals and their 
parents and grandparents  and phenotypic data is  avail- 
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TABLE 1 

Example F2 pedigree  from a cross between outbred  lines with four markers (A, B, C and D )  and  possible  line origin combinations 
of marker alleles 

Line 1: Line 2 Line 1: Line  2: 
sire of the sire (SS) dam of the  sire ( D S )  sire of the  dam ( S D )  dam of the  dam ( D D )  
~ l ~ l B 2 B 2 C l ~ P l D l  A2AZB,BZC,C3DPZ AlA1B2B2C2C4DlD2 A&2B2B2ClC4DlD2 

AIAPBIB2ClCSDlD2  A,A*B*BZCI C P P ,  

~2A2BIB2 c, C@P2 

Sire (S) Dam ( D l  

F, offspring (0) 

Line 1: Line  2:  Line 1: Line 2: Marker 
sire of dam of sire of dam of Line origin Putative 
the sire the sire the dam  the dam combination QTL A  B  C  D 

X X 11 QQ 
X X 12 Q9 

X X 21 9Q * 
X X 22 9q * * 

* * 
* 

Possible line origins of alleles are indicated by X. For each line origin  combination  the  putative  QTL  genotype  at a locus  fixed for allele Q in 
line 1 and allele a in  line 2 is shown.  The Dossible line oriein combinations  for  the F2 individual  in  the  pedigree  shown  above  are shown by  asterisks 
in  the right-hani side of the  table. 

able on the F, individuals.  For  any  locus (marker or 
QTL) an F, individual  must  receive one allele  from  ei- 
ther the sire or dam of  its sire and  one allele  from either 
the sire or dam of its dam. There are thus four possible 
combinations of  alleles  in  terms  of the outbred line from 
which  they  came.  These line origin  combinations of  al- 
leles are shown  in  Table l. As an  example,  consider the 
three generation pedigree from a cross  between two out- 
bred populations and marker  genotypes for an  indi- 
vidual and its parents and grandparents which  is  shown 
in  Table 1. For the first  marker ( A )  it is clear that the 
F, individual  has inherited two alleles  from line 2, one 
from the dam  of the sire and one from the dam of the 
dam (line origin  combination 22 in  Table 1) .  For the 
second  marker ( B )  , one allele  in the F, individual  has 
been inherited from line 2 (from the dam of the sire) 
but the inheritance of the second  allele is equivocal  be- 
cause the dam is homozygous. Thus for marker B both 
of line  origin  combinations 21 and 22 are possible.  For 
the third marker ( C )  only line origin  combination 21 is 
possible (one allele  from the dam of the sire and one 
from the sire of the dam). For a QTL  fixed for alternative 
alleles  in the two grandparental lines each line origin 
combination will correspond to one QTL genotype as 
shown  in  Table 1. 

For  each  marker the potential line origin  combina- 
tions  can  be  derived for each individual  in turn. For 
some  markers in some  individuals  all four line origin 
combinations may  be possible (e.g. ,  if  all grandparents 
are homozygous for the same  marker  allele or if marker 
data is  missing for  that individual) and  thus these 
markers are uninformative. For dominant markers for 
which the two lines are fixed for alternative alleles, F, 
individuals either have a single line origin combina- 
tion possible (if they are homozygous for  the recessive 

" 

allele) or  three  are possible (if they are homozygous 
for  the  dominant allele or heterozygous). Note that 
for  both  codominant  and  dominant loci, in any  case 
where two or more line origin combinations are pos- 
sible  in an F, individual, those that  are possible are 
equally  likely. 

This  simple method of assigning  line  origin  to the 
markers considering each F, individual  in turn is  easily 
implemented and rapid. It should  be noted, however, 
that it does not necessarily  use  all  of the information. 
Consider  marker D in Table 1. Both the sire of the dam 
and the dam of the dam are heterozygous  for the same 
alleles as is the dam. The dam is thus  an  uninformative 
heterozygote  because,  considering  only a single F, in- 
dividual and this  marker, line origin  combinations 21 
and 22 are both possible and they  have equal probability 
( i. e. ,  it is not possible  to  infer  whether  offspring of this 
dam have inherited their allele  from the sire of the dam 
or from the dam  of the dam  at  this marker). As in  most 
studies F, individuals  would  be  from  groups  of  full and 
halfsibs, the joint use  of information  from sibs and flank- 
ing  markers would indicate the likely  linkage  phase  in 
the dam and thus allow the relative  probabilities  of  line 
origin  combinations 21 and 22 to  be calculated. How- 
ever, the maximum  expected  frequency of such unin- 
formative heterozygous parents is 0.125 (for markers 
at which both lines have two alleles at equal frequen- 
cies) and it will  usually be much less,  as  many markers 
are multi-allelic and allele frequencies at segregating 
markers are  often markedly different in different 
lines. Thus in many  cases the benefits of the rapid and 
simple analysis  possible treating each F, individual in 
turn will often outweigh the small amount of extra 
information that might be recovered by considering 
sibs jointly. 
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TABLE 2 

The  probability of the  line origin combination of a locus 
conditional  upon  the  line origin combination of a  linked locus 

and  the  recombination  fractions  between  the two loci 

Line 
- 

origin Line origin combination 
combina- 

tion 11 12 21 22 

(1-rmb/ ( 1 4  &/) rmr/ z-rf) 
U-rm)(l-rf) (I-rJr 

rmr/ 8 1  -r,) (l-rm)rf ( 1 - 7 ~  h-7~ 

11 
12 
21 rm(l-r,) 
22 

(l-rm)(l-?))  (1-r ) r  rm(l-?)) 

Conditional probabilities for the line origin combinations given in 
Table 1. The recombination frequencies between the pair of loci in 
the male and female parent are r,,, and rp respectively. 

Once the possible line origin combinations of the 
markers have been derived, the probabilities of each of 
the four line origin combinations for a QTL at a given 
position in an F2 individual  can be calculated condi- 
tional upon  the possible line origin combinations of the 
markers, the previously estimated recombination frac- 
tions between the markers and  the recombination frac- 
tion  between the assumed  position of the QTL and the 
markers. Table 2 gives the probability of the line origin 
combination of a locus conditional upon  the line origin 
combination of a linked locus and  the recombination 
fraction between the two loci. The probabilities in Table 
2 have been written  allowing for different recombina- 
tion rates in the two sexes;  when  these are  the same 
Table 2 can be simplified.  For each individual, each sec- 
tion of chromosome between  pairs of markers which 
both have  only a single  possible line origin combination 
can be considered separately (as, in the absence of in- 
terference, markers outside this  section  provide no in- 
formation about  the line origin of positions  within the 
section). The probability of each of the four line origin 
combinations for any point between  these markers (2. e. ,  
the position of a putative  QTL)  conditional upon the ob- 
served  marker  genotypes  can be calculated as a product of 
the probabilities  shown in Table 2 for any  possible  com- 
bination of line  origins of the markers  scaled so that the 
total  over  all  possible  combinations  sums  to one. The for- 
mal  derivation of this method is  shown  in the APPENDIX. 

To clarify the calculation of these conditional prob- 
abilities, consider the example in Table 3. Marker  loci 
A, B and C are used (these correspond to markers A, B 
and C for the pedigree of the F, individual  shown in 
Table 1). Note that as markers A and C are fully infor- 
mative,  with  only a single line origin combination each, 
markers outside this region add no  further information 
for positions  within the region for this  individual.  Con- 
sider there to be a QTL (@ at  the midpoint between 
markers B and C. The first  possible combination of line 
origins  shown in Table 3 for the three markers and the 
QTL is 22,21,11  and 21 for A, B, Qand C, respectively. 
As shown in Table 2, the conditional probability of a 21 
line origin combination at marker B given a 22 line ori- 

gin combination at marker A is (1 - rABm) rABr where r,,, 
and rABf are  the recombination fractions between  loci A 
and B in males and females,  respectively. (This combi- 
nation of line origins at markers A and B requires there 
to have been no recombination between markers A and 
B in the first (male) F, parent  and a single recombina- 
tion between the markers in the second (female) F, par- 
ent). Similarly, the conditional probability of a 11 line 
origin combination at the QTL  given a 21 line origin 
combination at marker B is rBQm(l - rBw) and the con- 
ditional probability of a 21 line origin combination at 
marker C given a 11 line origin combination at the QTL 
is  rQcT"( 1 - rQcr). The probability of the line origin  com- 
binaoons 21 , l l  and 21 at B, Q and C conditional on a 
22 line origin combination at A is thus the  product of 
these  probabilities: 

(1 - rAB&AB/ra,(l - rBcu)rQcm(l - rQc/) 

or: 

(1 - rdrAB rBQ(1 - r,Q)rQc(l - rQJ 

on  the assumption of equal recombination frequencies 
in males and females.  Division by the sum of these prob- 
abilities for the possible line origin combinations (eight 
are possible in the example in Table 3) gives the prob- 
ability conditional on the possible line origin combina- 
tions (and thus on  the observed marker genotypes). 

Once the conditional probabilities for the line origin 
combinations have been calculated the coeffkients for 
a and d for a putative QTL in this  position  can be de- 
termined as: 

a : probability of line origin 11 conditional on the 
marker genotypes minus probability of line origin 
22 conditional on the marker genotypes 

d : probability of line origin 12 conditional on the 
marker genotypes plus probability of line origin 21 
conditional on the marker genotypes 

or in the notation used in the  APPENDIX: 

a : prob(o,, I P) - prob(o,, I P) 

and 

d : prob(o,, I P) + prob(w,, I P) 

where prob(w, I P) is the probability of line origin  com- 
bination i for a QTL at a given  position conditional on 
the observed marker genotypes in the individual and its 
parents and grandparents. 

After  calculation of the predicted coefficients for a 
putative  QTL in a given  position for all  individuals, a and 
d can be estimated for that position by ordinary least 
squares, regressing the phenotypic values on to these 
coefficients. Several (or many) putative QTLs in a 
number of positions (linked or  unlinked) can be fit- 
ted simultaneously and covariates or fixed effects can 
also be included  in  the  model. For a fixed position of 
QTL, the  ratio of the regression mean  square  to  the 
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TABLE 3 

1199 

Example calculation of the  probabilities of line origin combinations of a putative QTL conditional upon  the possible  line origin 
combinations of flanking markers 

Line  origin  combination  Example: 
of alleles ( A - B Q C )  Conditional probability rAB = rBQ = rQc = 0.1 

22-21-11-21 ~ A B ( 1 - ~ A B ) ~ B ~ ( 1 ~ ~ B ~ ) ~ ~ c ( l - r ~ c ) / P  0.004 

22-21-12-21 rAB(1-rAB)  rBQ2rQc2/P 0.000 

22-22-12-21 ( 1 - ~ A B ) 2 ~ B ~ ( 1 - ~ g ~ ) ~ ~ c 2 / P  0.004 
22-21-21-21 ‘AB(l%B) (l-rBQ)z(l-rQC)z/P 0.328 
22-22-21-21 (l-rAB)zrBQ(l-rBQ) (1-rQc)2/P 0.328 
22-21-22-21 rAB(l-rAB)~BQ(l-rBq)rQc(l-rQc)/P 0.004 
22-22-22-21 (1-rAB)2(1-rB,)2rQc(l~rQc)/P 0.328 

22-22-11-21 0.004 

For this  individual  the  line  origin  combination  (as defined in  Table 1) of the  first  marker ( A )  is 22, that of the  second marker ( B )  may  be either 
21 or 22 and  that of the third  marker ( C) is 21. The putative QTL (4) is  placed  between B and C. The  recombination  frequencies are  assumed 
to  be the  same  in  both  sexes  and  that  between A and B is rAB, that  between B and  the  putative position of the QTL  is rBe and  that  between the 
QTL  and C is rQc. Pis the sum of  the  numerators of the  conditional  probabilities. An example  is  given  for rAB = rBQ = rQC = 0.1, For this  individual 
the  predicted coefficient for a would  be -0.324 (= 0.004 + 0.004 - 0.004 - 0.328) and  for d would  be 0.660 (= 0.000 + 0.004 + 0.328 + 0.328). 

residual mean  square  provides  the usual variance ( F )  
ratio  test statistic. 

An alternative approximate log-likelihood ratio test 
statistic is provided by: 

residual sum of squares reduced  model 
n log.( residual sum of squares full model ) 

where n is the  number of observations. This test statistic 
is distributed approximately as a chi-square with degrees 
of freedom  equal to the  number of parameters  included 
in the full model (2. e . ,  estimating the QTL effects) but 
omitted  from  the  reduced model ( i .  e . ,  omitting QTL) 
(AITKEN et al. 1989). Dividing this test statistic by 
(210gJO) would approximately give the LOD score. The 
use of  LOD  is  of little relevance, however, for tests such 
as this which  have more  than a single degree of freedom. 

When fitting a single QTL any of these test statistics 
can be  plotted against position to give a curve or when 
fitting two QTLs this can be visualized  as a surface 
(HALEY and KNOTT 1992). The maximum point of the 
curve or surface indicates the most likely position of the 
QTL and this point will be at  the same position for any 
of the test statistics. We use the  approximate log- 
likelihood ratio test statistic throughout this paper for 
consistency and to facilitate comparison with our pre- 
vious  work ( e .g . ,  HALEY and KNOTT 1992; KNOTT and 
HALEY 1992a, b) . 

SIMULATIONS 

General: The analysis  of simulated data was used to 
explore  the characteristics of the  method. Each set of 
data  included 500 F2 individuals in 50 full-sib families of 
size 10 with their  parents and grandparents. The geno- 
type  of each individual comprised a pair of chromo- 
somes 100 cM in length.  Depending upon  the simula- 
tion there were either  three markers at 50 cM spacing, 

six markers at 20 cM spacing or eleven markers at 10 cM 
spacing. Markers  of three types  were generated,  either 
fixed for alternative alleles in the two grandparental 
lines ( i .  e. ,  as in a cross between inbred  lines), or seg- 
regating with the same two alleles at equal frequency in 
both  grandparental lines or segregating with the same 
four alleles at equal frequency in both  grandparental 
lines. QTLs ofvarious effect and position were simulated 
(see below). In  the analyses the additive and dominance 
effects ( a  and d, respectively)  of a single QTL  were es- 
timated sequentially at each 1 c M  point  along  the  chro- 
mosome, with the distance between the markers set at 
that used to  generate  the  data.  The  point  along  the chro- 
mosome at which the test  statistic was highest was used 
to provide the estimates of the QTL position and effect 
for  that analysis.  Unless otherwise stated, 100 replicates 
were simulated and analyzed for each combination of 
parameters. The data were generated  and analyzed  us- 
ing programs written in FORTRAN 77, supplemented 
with routines from the NAG library (Numerical Algo- 
rithms  Group 1990) for random  number  generation 
and for ordinary least squares analysis (routine 
G02DAF). 
AU markers us. flanking markers and size of QTL: To 

explore  the  general  properties of the  method  and  the 
advantage of using all markers on a chromosome, its 
behavior was compared to ordinary least squares in 
which  only the  pair of markers flanking an interval was 
used to predict  the probabilities of each QTL genotype 
at a given point within the interval. For each replicate in 
these analyses a single set of phenotypic data  (including 
effect of  QTL and residual variance) was generated with 
a QTL of additive effect ( i e . ,  half the difference be- 
tween the homozygotes) of either 0.25,  0.5 or 1.0  re- 
sidual (Le . ,  within QTL genotype) standard deviations 
30 cM from one  end of the  chromosome. QTLs  of these 
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FIGURE 1.-Examples of test statistic  curves  using  either  only  flanking  markers  or  all  markers. For each  analysis  markers were 

all  of one of three levels of information  content  (fixed  for  alternative  alleles  in  the two lines,  or  segregating  with  either two or 
four alleles  at  equal  frequency  in  both  lines)  and  were  spaced at 2 k M  intervals  starting  at 0 cM. The  simulated  QTL was additive 
in effect with  two residual  standard  deviations  between  homozygotes  and was located  at the 3 k M  position on the chromosome. 
The  phenotypic  data  were the same for all analyses. 

sizes  would account  for 3.396, 11.1% or 33.3%, respec- 
tively,  of the variance in the F, population. Each set of 
phenotypic data was analyzed  with markers at 20cM 
spacing which  were  all  of one of the  three levels  of in- 
formation content (i.e., k e d  for alternative  alleles  in the 
two grandparental lines or segregating  with either the 
same two alleles at equal frequency or with the same four 
alleles at equal frequency in the two grandparental lines). 

Marker  density: Data were generated with a QTL with 
an additive  effect  of 0.5 residual standard deviation at 25 
cM from one  end of the chromosome. Each set of data had 
markers of the three levels  of information content  at either 
l k M  spacing or at 5 k M  spacing and were  analyzed  using 
information from all markers  simultaneously. 

Position of QTL: Data generated with a QTL with an 
additive effect of 0.5 residual standard deviations at ei- 
ther 10 or 50 cM from one  end of the chromosome. Each 
set of data  had markers of the  three levels of information 
content  at  20cM spacing and were  analyzed using in- 
formation  from all markers simultaneously. 

Markers of varying information content: In these 
analyses markers varied in  their  information  content 
along the  chromosome. Data were generated with a 
QTL with an additive effect of 0.5 residual standard de- 

viations at 30 cM from one  end of the chromosome and 
markers at 2 k M  spacing. For each  set of data  the first 
three markers (at positions 0,20 and 40 cM)  were of  low 
information content ( i. e. ,  the same two alleles at equal 
frequency segregating in each  grandparental  line) and 
the last three markers (at 60, 80 and 100 cM)  were  of 
higher  information  content (all three  either having four 
alleles at  equal frequency segregating in  the  grandpa- 
rental lines or being fixed for alternative alleles in the 
grandparental  lines). The data were  analysed using ei- 
ther  information only from flanking markers or using 
information from all markers simultaneously. 

Null hypothesis: Data were generated with no QTL 
but with markers at  either lo-, 20- or  50cM spacing. For 
each marker density, markers of the  three levels  of in- 
formation  content were used to analyze the  data. The 
data were  analyzed using information from all markers 
simultaneously. For each combination of parameters 
1000 replicates were generated and analyzed. 

RESULTS 

AU markers us. flanking markers: Examples of the 
curves produced by plotting the values  of the test statistic 
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TABLE 4 

Relative  mean test statistics and empirical standard deviations of parameter  estimates using either only flanking markers or all 
linked  markers 

SD Of 
Marker  QTL  effect T~~~ statistic test  statistic 
spacing simulated 

position additive  effect 
SD Of SD Of 

Marker type (cM) (a) F A F A F A F A 

Fixed, alternative alleles in two lines 20  1.0 (155.5 155.5  20.2  20.2 1.9 1.9  0.066 0.066)* 
20 
10 

1.0 1 .o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
0.5  0.35  0.72  2.11  1.09 

20 
50 

0.5 0.32  0.32  0.60  0.60  2.15  2.15  0.96  0.96 
0.5 0.21  0.49 5.37 1.30 

20 0.25  0.10  0.10  0.34  0.34  8.16 8.16 1.17 1.17 
Segregating, 4 alleles in each line 20 1 .o 0.81 0.88  0.87  0.91 1.74 1.16 1.09  1.06 

10 0.5 0.33 0.70  2.16  1.12 
20 0.5 0.27  0.29 0.54 0.59 4.00  3.42 1.08 1.05 
50 0.5  0.16  0.46 6.63 
20 

1.59 
0.25  0.09  0.09 0.32  0.33 9.58 9.32 1.21 1.14 

Segregating, 2 alleles in each line 20 1 .o 0.41 0.53 0.62  0.81  3.58  2.37 1.78 1.53 
10 0.5  0.26  0.56  4.26 1.15 
20 
50 

0.5 0.15 0.18  0.40  0.47  8.11  6.79  1.56  1.39 
0.5  0.09 0.34 11.18 2.20 

20 0.25  0.07 0.07 0.24  0.26 13.37 13.32 1.83 1.45 
~ ~ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

F, A, analyses  using flanking or all markers, respectively.  Each  value  is  based upon 100 replicate simulations. Simulated QTLs  were located 30 
cM from one  end of the 100-cM chromosome with 20-cM spaced markers or 25 cM from one  end of the 100-cM chromosome with 10- and 50-cM 
spaced markers. Simulated QTLs were additive in effect. The sue of the additive  effect (a) of the QTL is  given as half the difference between the 
homozygotes in terms of the residual (ie., within  QTL genotype) standard deviation. 

* Absolute  values  this line only,  all other values are given  relative  to these. 

against the  chromosomal position are shown in Figure 
1. These curves  were produced  from  a single set of phe- 
notypic data analysed using markers of one of the  three 
levels  of information  content at 20-cM spacing and ei- 
ther  predicting  the QTL genotype using just flanking 
markers or using all markers on the chromosome. The 
two curves (usingjust flanking markers or using all mark- 
ers)  produced when the markers were fixed for alter- 
native alleles in  the two lines are exactly the same, con- 
firming that  the flanking markers contain all the 
information on  the interval between them  for this type 
of marker under  the assumption of no interference. For 
the less informative markers the use of just flanking 
markers produces steps in the curve between intervals 
and the maximum value  of the test statistic reduces with 
the  information  content of the markers. The steps result 
because the  different markers, and  hence intervals, vary 
by chance  in  the  information they contain. The use of 
multiple markers to predict  the QTL genotype removes 
these steps and also increases the test  statistic, although 
the maximum test statistic  still increases with increasing 
marker  information  content. 

For data in which the markers in a linkage group were 
all  of the same type, estimates of position and effect of 
the QTL for  the analyses using either all markers or  just 
flanking markers were  very  close to those simulated and 
are not shown. The relative  values  of the mean (over 
replicate simulations) of the maximum test statistic on 
the  chromosome and  the empirical (over replicate simu- 
lations) standard deviations of estimates of position and 
additive effect for  the analyses using either all markers 
or  just flanking markers are shown in Table 4 for these 

analyses. Trends for the  dominance  effect were  similar 
to those for  the additive effect and  are  not shown. When 
the markers were fixed for alternative alleles in the two 
grandparental breeds, the results from analyses using all 
or flanking markers were, as expected, identical. For the 
less informative markers using all markers in the analysis 
generally increased the maximum test statistic. The larg- 
est increase (approximately 30%) was found  for  the least 
informative markers and for the QTL  of largest effect, 
whereas for the QTL of  smallest effect, no increase in the 
maximum test statistic was observed when using all 
markers rather  than  just flanking markers. The empiri- 
cal standard deviation of the estimates of position and 
effect was decreased for markers which  were not com- 
pletely informative by using all markers in the analysis. 
For position, the  magnitude of the decrease in the em- 
pirical standard deviation was greatest for the QTL  of 
largest effect, but  for  the additive effect the  magnitude 
of the decrease in the empirical standard deviation was 
greatest for  the QTL  of  smallest  effect. 

Marker density: The relative mean of the maximum 
test statistic on a chromosome and empirical standard 
deviations of estimates of position and effect for  the 
analyses using all markers at 10 and 50 cM spacing and 
the QTL at 25 cM are shown in Table 4. The relative 
increase in the maximum test statistic  as the  marker  den- 
sity increases is greatest for  the least informative mark- 
ers. Moving from 50-cM to l k M  spaced markers in- 
creased the maximum test statistic by 2.7-fold for the 
least informative markers (two  alleles segregating in 
each line)  compared  to  a 1.6 fold increase for  the most 
informative markers (fmed for alternative alleles in the 
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FIGURE 2.-Examples  of  test  statistic  curves  using either  flanking  markers  only  or  all  markers  and  markers  which  vary  in  infor- 
mation  content  along  the  chromosome.  In  both  cases  markers  at  positions 0,20 and 40 cM were of relatively  low  information  content 
(two alleles  at  equal  frequency  in  the  two  lines)  and  those  at  positions 60,80 and 100 cM were  of  relatively  high  information content 
(case  1:  with  four  alleles at  equal  frequency  segregating  in  the two  lines or case  2:  fixed  for  alternative  alleles  in the two lines). 
The  simulated QTL was  additive  in  effect  with one  residual  standard  deviation  between  homozygotes  and was located  at  the 30 
cM position  on  the  chromosome.  The  phenotypic  data  were  the  same  for  all  analyses. 

two lines). This difference can be explained by the fact that 
an increase in marker density  when  markers are not com- 
pletely  informative  increases the probability that a QTL  is 
flanked by informative  markers,  whereas  this is not the case 
if the markers are already  completely  informative. 

Position of Qm The mean of the maximum test sta- 
tistic on a chromosome and estimates of position and 
effect for  the analyses using all markers at 20cM spacing 
were little affected by the position of the QTL no matter 
what the  information  content of the markers. For a QTL 
at 10 and 50 cM,  respectively, the mean maximum test 
statistics  over 100 replicates were 50.3 and 48.2 for mark- 
ers fixed for alternative alleles in the two lines, 27.9 and 
29.2 for markers with the same two alleles at equal fre- 
quency in  the two lines and 44.2 and 43.4 for markers 
with the same four alleles at equal  frequency in the 
two lines. Thus  for this  marker  spacing,  position of the 
QTL has little  effect on  the power of its detection, 
despite a QTL at  the  centre of the  chromosome hav- 
ing a greater  chance of being  flanked by two infor- 
mative markers. 

Markers of varying information content: Examples of 
the curves produced by plotting  the values  of the test 

statistic against the chromosomal position when mark- 
ers vary in information  content  along  the chromosome 
are shown in Figure 2. These curves  were produced from 
the analysis  of data in which there was a QTL at 30 cM and 
the first three markers had the same two alleles  segregating 
at equal frequency in the two grandparental breeds and 
the last three markers  were of higher information content 
(either four alleles  segregating  in both breeds or fixed for 
alternative  alleles in the two breeds). In these  analyses the 
use of just flanking  markers  results in the highest  test  sta- 
tistic being in the third interval,  which  is the first  interval 
to be flanked by a marker of  relatively high information 
content.  Analyzing the same data using  all  markers  results 
in the highest  test  statistic being in the second interval, 
which contained the simulated  QTL. 

The mean maximum test statistics and estimates of 
position and effect for  the analyses using either all orjust 
flanking markers at 20cM spacing are shown in Table 5. 
The use of just flanking markers results in a significant 
bias in the estimated position of the QTL toward the 
more informative markers, with the bias being greater 
for the most informative markers. The use  of  all markers 
in  the analysis both removes the bias in the estimated 
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TABLE 5 

Mean  test statistics and parameter  estimates  with  markers varying in information content along the  chromosome 

Markers  used 
Marker  type  QTL  effect 

(last 3 markers) simulated ( a )  Parameter Flanking All 

Fixed, alternative alleles in two lines 0.5 Test statistic  26.9  (8.7)  32.2  (10.1) 
Position (cM) 36.8  (12.9)  29.6  (8.9) 
Additive  effect ( a )  0.473 (0.103) 0.493 (0.085) 

Segregating, 4 alleles in each line 0.5 Test statistic  26.0 (8.2) 33.1 (10.2) 
Position (cM) 34.5 (15.2) 29.0 (8.9) 
Additive  effect (a) 0.498  (0.113)  0.511  (0.088) 

Each mean is based upon 100 replicate simulations and analyses and is  shown  with its empirical standard deviation  over the replicates in 
parentheses. All simulated QTLs  were located 30  cM from one  end of a 100-cM chromosome with  20-cM spaced markers and were  additive in 
effect. In each case the first three markers on the chromosome (at 0, 20 and 40  cM)  were  relatively low in information content, with the same 
two alleles at equal frequency segregating in both  grandparental lines, and the last three markers (at  60,80 and 100 cM)  were more informative. 
The size  of the additive effect ( a )  of the QTL is  given  as half the difference between the homozygotes in terms of the residual ( i . e . ,  within  QTL 
genotype) standard deviation. 

position of the QTL and increases the mean maximum 
test statistic. 

Null hypothesis: Results  of the analyses  of data  gen- 
erated with no QTL but with markers at  either lo-, 20- 
or 50-cM spacing are shown in Table 6. For all marker 
densities and markers of different  information  content 
a test performed at a fixed position on the  chromosome 
has a mean and a standard deviation of  close to 2,  as 
expected  for a test statistic distributed as a chi-square 
with 2 d.f. (2 d.f.  as both  an additive and a dominance 
effect have been  estimated). The mean over replicates 
of the highest test statistic on the  chromosome increases 
both with increasing marker density and with marker 
information  content. The approximate empirical 5% 
threshold calculated from these simulations as the  mean 
of the 50th and 51st highest test statistics  over replicates 
is also  shown in Table 6; this value increases with marker 
density but shows no consistent trend with marker in- 
formation  content. 

DISCUSSION 

The explosion in  the availability  of molecular genetic 
markers and  the  rapid  development of linkage maps 
based on these markers is providing the geneticist with 
new tools to explore  the  genome (SOLLER and BECKMANN 
1988; TANKSLEY et al. 1989). Interval mapping (LANDER 
and BOTSTEIN 1989) has proven to be a powerful tool for 
the dissection of some of the  genetic factors underlying 
quantitative genetic variation in crosses between inbred 
lines (e .g . ,  PATERSON et al. 1988,1991; JACOB et al. 1991; 
STUBER et al. 1992). As more species become amenable 
to this form of probing, however,  statistical tools are 
needed to analyze a wider range of types of population. 
We have  shown here  that, as  is the case for crosses  be- 
tween inbred lines (HALEY and ho rn  1992), a simple 
ordinary least squares method can be applied to the 
analysis  of populations resulting from crosses between 
outbred  populations which are fixed for alternative QTL 
alleles. 

The least squares method is  relatively simple to apply 
and can extract most of the information contained in 
multiple linked markers. The use  of  all the markers in 
a linkage group simultaneously increases the test statis- 
tic, and  thus  the power for  the  detection of  QTLs. It also 
removes  bias in the estimated position and effect of a 
QTL which can result when markers vary in information 
content  and are only considered a pair at a time [Table 
5 and &om and H A L E Y  (1992b)l. 

The prediction of the QTL genotype using all markers 
in a linkage group is more  diffkult  than  the use ofjust 
the flanking markers, which is all that is required for 
crosses between inbred lines. Thus  programming  the 
entire analysis in the language of a single statistical  pack- 
age, as is possible for  inbred lines (HALEY and horn 
1992), becomes intractable. Once  the  predicted QTL 
genotypes have been calculated using a custom written 
computer  program, however, these can be stored and 
the  remainder of the analysis performed using a general 
statistical package. 

The least squares analysis  is very rapid and  the time 
taken for  computation  does not increase greatlywith the 
number of parameters estimated, as it  does in many 
maximum likelihood analyses. Thus  the  great advantage 
of least squares methods,  other  than  their simplicity, is 
that many parameters can be fitted simultaneously. This 
first allows the inclusion of fixed effects such as treat- 
ment or sex in the model. Second, when exploring one 
chromosome, background genetic noise attributable to 
the  other chromosomes can be  reduced by the inclusion 
of  QTLs at reasonable (say 30-50 cM) intervals down the 
remaining chromosomes in the model [e.g., JANSEN 

(1992)l. Both  of these strategies should increase the 
power to  detect QTLs on  the chromosome under study 
by minimizing the residual variance. Third, several 
linked QTLs can be fitted simultaneously to the  chro- 
mosome under study (HALEY and h o r n  1992). (It is 
unlikely,  however, that most studies carried  out at pre- 
sent will be of sufficient scale to  detect  more  than two 
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TABLE 6 

Test statistic distribution under the null hypothesis 

Marker spacing 

Marker  type statistic 10 cM 20 cM 50 cM 

Fixed, alternative alleles in two lines Mean  test  statistic 2.09 (2.09) 2.06 (2.03) 1.95 (1.97) 
Highest test  statistic 5.49 (2.85) 4.80 (2.65) 3.92 (2.56) 
Empirical 5% threshold 10.96 9.67 8.51 

Segregating, 4 alleles in each line Mean  test  statistic 2.10 (2.05) 2.09 (2.05) 1.98 (1.93) 
Highest test  statistic 5.23 (2.76) 4.66 (2.61) 3.88 (2.41) 
Empirical 5% threshold 10.85 9.85  8.34 

Segregating, 2 alleles in each line Mean  test  statistic 2.08 (2.09) 2.08 (2.11) 2.04 (2.06) 
Highest test  statistic 4.72  (2.80)  4.22 (2.72) 3.79 (2.58) 
Empirical 5 %  threshold 10.07 9.12 8.81 

The mean test  statistic  is based upon the mean of 101 positions (l-cM intervals on a 100-cM chromosome) over 1000 replicate simulations and 
analyses. The empirical  standard deviation of the test  statistic  over the 1000 replicates averaged  over the 101 positions is  shown in parentheses. 
The highest test  statistic represents the mean over 1000 replicates and its  empirical  standard deviation over the replicates is given in parentheses. 
The empirical 5% threshold is calculated as the mean of the 50th and 51st highest test  statistics  over the 1000 replicates. 

or three linked QTLs.) This can remove bias introduced 
when linked QTLs are  present but only a single QTL is 
fitted in the analysis (HALEY and KNOTT 1992; KNOTT and 
HALEY 1992a; MARTINEZ and CURNOW 1992).  Fourth, 
more complex models of QTL gene action can be ex- 
plored relatively  easily, for example two locus epistasis 
(HALEY and KNOTT 1992). Finally, using the same pre- 
dicted probabilities of QTL genotype the  data  could be 
analyzed using a generalized linear model, which is 
again possible in a number of  statistical  packages [e.g., 
AITKEN et al. (1989)l. This would  allow QTLs underlying 
non-continuously distributed traits, such as binomial 
threshold traits, to  be  detected and mapped. 

The  need for the  outbred  populations to be fixed, or 
nearly so, for alternative QTL  alleles may be  considered 
restrictive, but in fact many populations may be of this 
type for some traits. Such populations would include 
divergently selected experimental lines and breeds with 
very different selection histories. When the populations 
crossed are  not fixed for alternative QTL  alleles, the 
power to detect a QTL will be increasingly reduced  and 
its effect will be increasingly underestimated as the QTL 
allele frequencies in the two populations become  more 
similar. The ability to  detect only  QTLs  which differ in 
allele frequency between two populations may not be a 
great disadvantage in some circumstances, particularly 
when it is desired to detect favorable alleles found in one 
breed  for introgression into a second. In fact the least 
squares method could be modified to  detect QTLs 
which  were segregating at intermediate  frequencies in 
the populations which  were crossed. Such QTLs  would 
result in there  being  an  interaction between the esti- 
mated effect of the QTL and F, family and such an in- 
teraction could be  included in a least squares analysis. 
The detection of such an  interaction, however,  would 
require  the use  of F, families  of reasonable size. 

The simple method we  have used here to predict prob- 
abilities of QX genotypes does not extract all  possible  in- 
formation from the markers. There is a potential loss  of 
information when both an F, parent and its parents are 

heterozygous for the Same alleles and thus it is not possible 
to  simply infer from  which of these grandparents an F, 
individual inherits an allele. The proportion of these non- 
informative  heterozygous parents is not expected to be 
greater than 0.125 (for markers at which the same two 
alleles are segregating at equal frequency  in the grandpa- 
rental lines) and will often be much less than this. In a 
recent analysis  of data from a cross  between two outbred 
pig breeds (the European Wild  Boar and the Large White), 
across 70 markers  (approximately equal numbers of pro- 
tein  polymorphisms, RFLps and mini or microsatellites) 
the average  heterozygosity in the F, animals was 0.60 with 
less than 0.01 of these being non-informative  heterozy- 
gotes  (L. ANDERSON, personal communication). 

Some of the information lost from non-informative 
heterozygotes by the simple method used here to infer 
genotype could be retrieved by the use of maximum 
likelihood methods to infer  parental phase if there is 
data available on contemporary F, individuals (e.g., full 
or half-sibs).  However, the  extra information gained is 
likely to be slight, in part because non-informative het- 
erozygotes will often be relatively rare and also because 
the use  of  all markers means that some of the informa- 
tion lost is retrieved from informative flanking markers. 

LANDER and BOTSTEIN (1989) suggested an approxi- 
mation for  the  predicted size  of the test statistic from 
interval mapping with a QTL responsible for a propor- 
tion p of the total variance, midway between two markers 
a recombination  fraction of 8 apart in a sample of  size 
N. This approximation is equivalent to: 

[(l - 28)/(1 - ~>lNlog,[l/(l - $41 
for  the test statistic we use in an F, cross  between inbred 
lines, and we have  previously found  that this provides a 
good prediction  for  the  mean of replicated simulations 
(KNOTT and HAL,EY 1992a).  Thus for markers fixed for 
alternative alleles in the  grandparental lines the test sta- 
tistic is expected to scale approximately with the pro- 
portion of the variance due to the QTL and Table 4 
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shows that this relationship  appears  to  hold  for markers 
which are less informative. The above formula predicts 
that  reducing  the distance between markers from 20 to 
10 cM  will increase the test statistic by around  12%, 
which is about  the increase observed for  the most in- 
formative markers. When the markers are less informa- 
tive, increasing their density has greater effect, the in- 
crease in the test statistic for  the least informative 
markers being around 38% for the same change in 
marker spacing. 

For the sake  of consistency with previous work, we 
have chosen  to use the  approximate log-likelihood ratio 
test statistic rather  than  the F-ratio test statistic in this 
study. In practice familiarity might lead to  the use  of the 
F-ratio test statistic, but  for  neither of these test statistics 
is the distribution under  the null hypothesis well un- 
derstood when multiple correlated tests are being per- 
formed.  Thus which ever test statistic is chosen it will 
probably be necessary to  probe  the null hypothesis dis- 
tribution using simulation. The limited simulations of 
the null hypothesis situation which we have performed 
bear  out  the results of LANDER and BOTSTEIN (1989) in 
that  the  mean highest test statistic on achromosome  and 
the  5% significance threshold increases with marker 
density. The mean highest test statistic on a chromo- 
some also increases with marker  information  content 
but  the  trend in the 5% significance threshold value is 
not so clear cut. In practice both  marker density and 
marker  information  content will  vary from experiment 
to experiment  and even between different regions of the 
genome.  Thus it will probably be necessary to use Monte- 
Carlo methods to derive an  approximate  genome wide 
threshold  for a chosen level  of  false-positives for each 
experiment. The least squares method  lends itself to this 
approach because for a given set of marker  data  the 
probabilities of QTL genotypes at each position in each 
individual need only be derived once and stored. Then 
the phenotypic data can be simulated repeatedly and 
analysed by least squares. Nonetheless, even the modest 
number of 1000 replicate simulations and analyses for 
the 1500 1 c M  spaced analyses in a 15-Morgan genome 
would be  quite time consuming. 

For slow breeding  plant  or animal species, especially 
those that suffer severely from inbreeding  depression, 
the  production of inbred lines prior  to  the establish- 
ment of a QTL mapping study is not  an option. For other 
species, such as mice, it is an  option, albeit a relatively 
slow and costly one.  The advantage of inbreeding is that 
any markers that are useful in the cross between the 
inbred lines will be fixed for alternative alleles in the two 
lines and thus fully informative as will any segregating 
QTLs.  However, some markers that would  have been 
partially informative in the cross between outbred lines 
may be fixed for  the same allele and thus become non- 
informative in the  inbred  line cross. To take an  extreme 
example,  consider markers at lOcM intervals with two 
alleles at equal  frequencies in each of the two outbred 

lines. Inbreeding these lines would result in one fully 
informative marker on average  every  20 cM (as half  of 
the markers are  expected  to  be fixed for  different alleles 
and half for  the same allele). In this case our results 
(Table 4) suggest that  producing  inbred lines would re- 
sult in a more powerful test for  the QTL.  Most markers, 
however, are likely to  be  more informative in the cross 
between the  outbred lines than in the example given 
above (as drift alone is  likely to have made  the allele 
frequencies differ between the  lines),  and so the choice 
based upon power alone is not likely to be clear-cut. 
Often  other considerations, such as time and cost, will 
preclude  the use  of inbreeding making a cross between 
outbred lines the only  viable solution. 
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APPENDIX 

We consider a  three  generation family (Table 1) with 
four  grandparents  from two outbred lines (sire of sire, 
SS; dam of sire, DS; sire of dam, SD and dam of dam, 
DD), two F, parents (sire, S and dam, D) and  one F, 
offspring ( 0). The seven members of the family are all 
typed for  codominant markers at Iloci which  have been 
already mapped. Let P be  the vector of marker  pheno- 
types. P comprises 7 X I terms. 

We require  the posterior probability, given P, of the 
grandparental origin w of the two alleles at any position 
in the  genome  for  the offspring, prob (w I P) . 

Notation: The vector of marker phenotypes, P, is  sub- 
divided into seven  sub-vectors, 

P = (Po Ps PD Pss Pm  PsD  PDD ) 

with P, = (Ps P,) and P, = (P,, P,,  P,, PDD). At a 
particular locus, the genotype of an individual is defined 
by an  ordered couplet of digits with,  in the first position 
the allele received from the sire and in the second po- 
sition the allele received from  the  dam. Avector of geno- 
types G, with 7 X I couplets, underlies  the vector P. 
Hence  for  an observation P with a total (over all marker 
loci in all  seven individuals in  the  pedigree) of H het- 
erozygous loci there  are 2H corresponding different pos- 
sible  vectors G.  

Let be a vector of grandparental origins of the 
I marker loci in the offspring, a = (fl, a, . . . aI). 
ai ( i  = 1 . . . I) represents  the  line  origin  combina- 
tion of the  marker alleles and takes the value 11 when 
the offspring received the SS and SD alleles, 12 
when SS and DD, 21 when DS and SD and 22 when DS 
and DD. 

Result: If the markers are  codominant and without 
missing data, assuming linkage equilibrium in the 
grandparents between the loci and  no interference  in 
recombination,  the probability of the  grandparental ori- 
gin at any position in  the offspring genome, given the 
phenotypes P is: 

prob(wI P ) = prob(w I aj)prob(aj+, I w) 

X 
n{=, prob(LR,I ai-,) nf=i+2 prob(QI flj-,) 

2 A g p  I I 5 = 2  prob(aiI Qi-1) 

with 

j I1 prob(aiI ai-,) = 1 when j = 1 
i=2 

and 

I 

fl prob(QIfl-,) = 1 when j =  I -  1.  
i= j+2  

rp being the whole set of consistent vectors 
considering the observations P and markers j 
(1 5 j 5 I - 1) and j+  1 bound  the interval containing 
the putative QTL. 

This is equivalent to: 

prob(w I P) 

That is, the  required probability  can be written  in 
terms  requiring  only  the  recombination  rate be- 
tween adjacent  markers  (prob(Qilfl,,) as given in 
Table 2) and between the putative QTL and its flank- 
ing markers. 

Proof: 

prob(w I P) = prob(w I aP)prob(a I P). 
n 

We  will  now consider the two components separately. 
First, 

prob(w I aP) = prob (w I 0). 

In  the absence of interference in recombination, we 
have 

prob(wl a) = prob(wl sZj,  aj+,) (1)  

where j and j + 1 are  the markers flanking the consid- 
ered position. Second, 

prob(fl I P) 

Rewriting in terms that  are  conditional on only parental 
and grandparental phenotypes gives: 

prob(fl I P,, Pp)prob(PoI a, PBp, Pp> 
prob(f2 I P) = 

prob(a1 P,, P,,)prob(P,I a, P,, PPI ' 

The two component probabilities will  now be consid- 
ered separately. First, 

prob(fl I p,, PP) 

= prob(a) 

= prob(a,)prob(fl, I Ol)prob(a, I a,, a,) . . . . 
In the absence of interference, we have prob(QiI fl,, 
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R2 . . . = prob(RiI a,,). Thus 

prob(Rl P,,P,)=prob(Rl)n~=,prob(Ril ai-,). (2) 

The first term, prob(R,), is  simply i. Second, 

prWP, I ~,P,,P,> 

Rewriting  this  probability  to  be conditional on the pa- 
rental genotypes gives: 

probP, I a, P,, PPI 

= E prob(P,I R, P,, Pp, G,)prob(G,I a, P,, PPI. 
Gp 

Again, we  will consider the two components separately. 
First, 

prob(Po I R, P,,  P,,  G,) = prob(P, I 52, G,) 
I (3) 

= n prob(P,I ai, G,,). 
i= 1 

Due  to the onetwne correspondence  between (R, Gpi) 
and G,, we  have  prob(P,I R, GJ = prob(P,I G,) which 
is 1 if phenotype and genotype are consistent and 0 
otherwise.  Second, 

prob(G,I 0, p,, PPI 

= prob(G, I P,,  P,) 

= prob(Gs I P, 9 PDs 9 Ps)prob(GD I PSD 9 P D D  3 PD 1. 
Consider the sire probability. Assuming linkage 
equilibrium in  the  grandparents  and with a single 
progeny ( S ) ,  the events at each locus are  indepen- 
dent, hence 

I 

prob(GsIPss, PDs, = II prob(GSi1 Pssi, PDsi, Psi). 
i= 1 

(4) 

Considering the zth locus, three situations are pos- 
sible, viz: 

(Sl)  GSi and Psi are not consistent, giving 

(S2) G,, and Psi are consistent;  Pssi,  PDsi, Psi are 
not all  heterozygous for the same  alleles. The proba- 
bility  is 1. 

(S3) GSi and Psi are consistent; Pssi = PDsi = Psi are 
all  heterozygous  (say A B ) .  

prob( G, = A B 1  Psi = PDSi = Psi = AB) 

prob( GSi I ps,'ji, 'DSi? psi) = 0. 

= prob( Gs = BA I Pssi = PDsi = Psi = AB) = . 

Hence, combining the results  from (3) and (4), we have 

prOb(P0 I P,, Pp) 

= 2 n (prob(P,I ai, G,,)prob(G,,I PWi, Ppi)) 
G, i 

= n prob(P,I a i ,  G,,)prob(G,,I P,,, P,,) . 

For  any consistent R, and Gpi, the  product 
(prob(P,I ai, G@)prob(G,,I P,,, P,,)) is a constant 
with a value  of :, $ or 1, depending on the number 
of grandparent and parent trios that are heterozygous 
for the same  genotype (z.e., 2, 1 or 0). 

Additionally, there is only one possible G,, in the 
summation. This is obvious in situations S1 and S2, 
above. In the situation S3, two G,, are consistent with 
P,,  P,, and P,, but  one only belongs to r,. If, for ex- 
ample, Ri = 11 and GDi = XU, the genotype G, = AB 
gives an offspring phenotype AXand the genotype Gsi 
= BA gives an offspring genotype BX. If the observed 
phenotype P, was A A ,  Gsi = BA cannot be consistent; 
if it is AB, allele Xmust be A or B and only one of the 
G, (depending  on  the GDi) is possible. 

Hence prob(P, I R, P,, P,) is constant over  all line 
origin  combinations (0) consistent with P and it is equal 
to ($", h being the number of grandparental and pa- 
rental trios that are heterozygous for the same  genotype 
over  all  loci, and for all other combinations is 0. 

Combining  this  result with (2) we have the following 
expression  for any  possible R, 

i ( +  ( 1 

nb, prob(R,I Ri-l)$h 
prob(R I P) = 

EaErp HLz p r o b ( ~ i ~  ~ i - l ) ( $ ~  

and, incorporating the result  from (l) ,  the probability 
we require can  be  written  as  follows: 

prob(o I P) 

This  proof  holds  for  all  situations  where  the  alleles  in  the 
parents and grandparents  are known. So marker phene 
types  may  be  missing in the  offspring or dominant loci  can 
be used if the  parental  and  grandparental  alleles  are 
known. The assumption of linkage  equilibrium is required 
only if there  are loci at which  both grandparents  and a 
parent  are heterozygous for  the  same  alleles ( i .e . ,  uninfor- 
mative  heterozygous parents). Note also that if grandpar- 
ents or parents have more  than  one  offspring  these  could 
be  used  to  infer  phase  in  uninformative  heterozygous  par- 
ents  and the formula we  give  is then  an  approximation  (in 
the sense that  it  does not use  all  available information). 


