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ABSTRACT 
An experiment was conducted to investigate the offspring-parent  regression for three quantitative  traits 

(weight, abdominal bristles and wing length) in Drosophila  melanogaster. Linear and polynomial  models 
were fitted for the regressions of a character in  offspring on both parents. It is demonstrated that responses 
by the characters to  selection predicted by the nonlinear regressions may differ  substantially from those 
predicted by the linear regressions. This is true even, and especially, if selection is  weak. The realized 
heritability for a character under selection is  shown to be determined not only by the offspring-parent 
regression but also by the distribution of the character and by the form and strength of selection. 

T HE following  well known formula of quantitative 
genetics is customarily used to  predict  the response 

to selection by a quantitative trait: 

R = h2S, (1) 

where R is the response, S is the selection differential 
and h2 is the narrow sense heritability. Implicit in this 
formula is the assumption that  the offspring-parent re- 
gression is linear.  This assumption is rarely questioned. 
Yet, FRANKHAM (1990) has compiled data illustrating the 
asymmetry  of responses to directional selection on com- 
ponents of reproductive fitness indicating  a possibility  of 
nonlinearity in the offspring-parent regression for such 
traits. It has also been  demonstrated theoretically that 
dominance of  allelic effects (BULMER 1985;  GIMELFARB 
1986a) or skewness in the distribution of the environ- 
mental component (NISHIDA and ABE 1974) can cause a 
nonlinearity in the regression. There  are, undoubtedly, 
other hereditary and developmental mechanisms that 
can render the offspring-parent regression nonlinear. 

The purpose of the  current study was to investigate 
directly the linearity (or nonlinearity) of the offspring- 
parent regression for  a  number of quantitative traits in 
Drosophila  melanogaster, and to see how nonlinearities, 
if found, affect our inferences  about responses by the 
characters to selection. The following three traits were 
involved in the study: 

Weight (in milligrams). For this trait, KF,ARSEY and 
KOJIMA (1967) have presented evidence ofweak epistasis. 

Abdominal  bristles (on segments 4 and 5 in females 
and  on segments 3 and 4 in males). KELLER and MITCHELL 
(1962) found evidence of  weak dominance  and epistasis 
for this trait. CLAWON et al .  (1957) attributed 9% of the 
total phenotypic variance by the  abdominal bristles in a 
laboratory population  to “genetic complexities.” 

Wing  length (in millimeters) measured as the distance 
between the intersections of the  third longitudina1 vein 
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with the wing tip and  the  anterior crossvein. KELLER and 
MITCHELL (1962) found no evidence of either domi- 
nance or epistasis for  the wing length  (they measured 
the distance from the  humeral plate at  the base  of the 
wing to its tip). 

The following notations  for  the traits will be used in 
the  paper: WTD and WTS for weight  of daughters and 
sons, BD and BS for  the  number of  bristles on daughters 
and on sons, WGD and WGS for  the wing length in 
daughters  and in sons. 

MATERIALS AND METHODS 

The data on the weight and abdominal bristles  were  col- 
lected from a base population originated from a stock  pro- 
vided to us by BRIAN CHARLESWORTH. The population was main- 
tained in 10 bottles (approximately 150 flies per bottle) with 
a mixing every two weeks  of adult flies  between the bottles as 
described by ROSE and CHARLESWORTH (1981). A batch of 10 
families was initiated by collecting 20 virgin females and 20 
males (grandparents) from the base population and mating 
them randomly (one pair in a vial). On the 14th day after 
mating, 10 virgin females and 10 males  (only one fly from each 
vial)  were  collected and kept separately. At the age of  two  days 
these twenty  flies (parents) were weighed, their bristles were 
scored, and they  were  randomly  mated (one pair in a vial). On 
the 14th day after mating, two virgin offspring of each sex  were 
collected  from  each vial.  Like their parents, they  were kept 
separately, and their weight and bristle  score were obtained on 
the second day  of their life. The total of 22 batches were  es- 
tablished, out of  which 176 families  with complete data have 
been recovered. The complete data for a family included 
weights and bristle  scores of the mother, the father, two sisters 
and two brothers. No special effort was made  to control for the 
density other than always removing parents from a vial on the 
8th day and collecting  offspring on the 14th day.  All batches 
were maintained at 24( ? l ) O .  Collections  were  made  using 
CO,, whereas for weighing and bristle  scoring the flies  were 
etherized. 

The data on the wing length of parents and their offspring 
(two sisters and two brothers) in 159 families  were  given  to  us 
by JERRY COYNE. They come from the experiment 3 (parents 
and offspring reared in the laboratory) reported by COWE and 
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TABLE 1 

Parameters of parental and offspring distributions 
~~~ 

Weight (mg) Bristles Wing (mm) 

Mean SD Mean SD Mean SD 

Mothers 1.202  0.112 45.18  3.92 1.540  0.058 
Daughters 1.075  0.127 45.21  2.87 1.514  0.056 
Fathers 0.862  0.075 38.06  3.35 1.354 0.046 
Sons 0.813 0.068 37.83 2.74 1.355  0.044 

BEECHAM (1987),  and  these  authors can  be  consulted  for  the 
description of the  data  and  experimental  procedures. 

Table 1 shows the mean and  standard  deviation  for  the  char- 
acters  under  consideration.  There is a significant  difference  in 
the  mean  of  each character between  sexes. A significant  dif- 
ference exists  also  between parents  and  offspring in their 
mean  weight:  the  offspring  weigh  less, on the  average,  than 
parents of the same  sex.  This  can  be attributed to  the  fact  that 
the  parental  parents  (grandparents) were not  exposed to 
ether, whereas the  offspring’s  parents  were  etherized  twice in 
order to  weigh  them and  score  their  bristles. It has  been  dem- 
onstrated by GIMELFAREI and WILLIS (1988)  that  exposing flies 
to ether  reduces  the weight  of their  offspring. Also, the  mean 
wing  length  in  daughters  and  mothers  differ  significantly, but 
an  explanation  for  this is not known. 

The  offspring-parent  regressions  were  fitted  separately  for 
daughters  and  for  sons.  The  characters of the two  sibs  of the 
same  sex  were  averaged so that an  “offspring character”  in a 
regression is in  fact  the  arithmetic  average of the  character 
among  the two  sibs. Also, all  characters (in  parents as well as 
in  offspring)  were  standardized  prior  to  fitting a regression by 
subtracting  the  mean  and  dividing  over  the  standard  deviation. 
Hence,  each  character  in a regression  has  zero  mean  and unit 
variance.  Statistical  analyses  were  performed  using  the  soft- 
ware  SYSTAT (WILKINSON 1990)  on a PC 486 computer. 

RESULTS AND DISCUSSION 

Linear  offspring-parent  regressions 

The coefficient of linear regression of the offspring’s 
character on  the  character of  only one of the  parents or 
on the mid-parental value is often used to estimate the 
narrow sense heritability and, consequently, to  predict 
the response by the  character  to selection based on for- 
mula (1). In reality, though,  the response is determined 
by the regression on the  characters in both  parents. For 
this reason, we fitted  the regression 

f ( x ,  y) = x, yl (2) 

of the  character in offspring, z, on the  character of the 
mother, x, and of the  father, y. Table 2 shows the CO- 

efficients of linear regression, 

f ( x ,  y) = b,x + by, (3) 

fitted to the family data  for all  of the characters. There 
is no constant  term in the regression function since the 
characters in parents and in offspring  are standardized. 
All  of the regression coefficients in the table are signifi- 
cant at P = 0.001 level, except for bfin WTD and WTS 
which are significant at P = 0.01, and b, for WTS which 

is not significant ( P  = 0.3). There is a significant dif- 
ference ( P <  0.05) between the regressions of daughters 
and of sons for all traits. 

As has been  mentioned  earlier,  the coefficient of lin- 
ear regression of offspring on the mid-parental value is 
used as an estimate of the heritability defined as the  ratio 
of the additive component of variance to  the total phe- 
notypic variance. If a  character is standardized, this co- 
efficient is equal to the sum of the coefficients in (3) .  
Hence,  for  the standardized characters discussed in the 
paper  the heritability estimated by the regression on  the 
mid-parental value is 

h2 = b, + b/. (4) 

The estimated heritabilities are shown in Table 2. Also 
shown in the table are  the coefficients of determination, 
R2. This parameter measures the  proportion of the vari- 
ance  among  the offspring explainable by the  corre- 
sponding regression on parents. The higher R2 is, the 
more accurate prediction  about  the  character in off- 
spring can be  made based on the  characters of parents. 

Nonlinear  offspring-parent  regressions 
Before fitting nonlinear regressions we have excluded 

observations that were outliers in  the  linear regressions 
(the coefficients reported in Table 3 are, in fact, with the 
outliers left out). An observation was considered  an out- 
lier if the actual value  of the  character differed by more 
than 2.5 SD from the value predicted by the regression. 
It is usually recommended in text books on linear re- 
gression to check for outliers as a possible indication of 
the nonlinearity in the regression. We have decided, 
however, to be conservative and  to make sure that  a  non- 
linearity, if found, is not  due to just few outliers but is, 
indeed,  a “solid” nonlinearity. Therefore,  the nonlin- 
earities that we have found probably underestimate  the 
nonlinearities in the actual offspring-parent regressions 
for  the  characters under consideration. 

In  the three-dimensional space, the  linear regression 
function f ( x ,  y) in (3) represents  a  plane. There are 
many different biological mechanisms that can make 
the offspring-parent regression nonlinear so that  the 
surface f(x, y) becomes curved rather  than plane. For 
the  characters  in our study we do  not know  what mecha- 
nisms can be  at work making the regressions nonlinear. 
Moreover, it is almost certain that different mechanisms 
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TABLE 2 

Linear offspring-parent regressions 

Trait 

WTD WTS BD BS WGD  WGS 

bm 0.29 0.08 
bf 

0.35 0.29 0.23 0.45 
0.18 0.18 0.27 0.42 0.37 0.28 

0.47 0.26 0.62 0.71 0.60 0.73 
0.14 0.04 0.18 0.25 0.24 0.36 

b,, by coefficients of regression on mother and on father, respectively; 2, coefficient of determination of linear regression. All regression 
coefficients are significant at P = 0.001 level, except for bf in WTD and WTS which are significant at P = 0.01, and b, in WTS which  is not 
significant ( P  = 0.3). 

TABLE 3 

Polynomial offspring-parent regressions 
~~ 

Trait Monomials in the regression and their coefficients R X  PNL 

WTD 3 
X4 Y5 XY XY3 2 y 3  0.21 0.019 

0.14 0.02 0.03 0.28 -0.14 -0.04 
WTS Y XY‘ 

0.24 0.21 
BD X 

0.37 
Y 

0.27 
BS X 

0.41 
Y 

0.33 
WGD X 

0.22 
Y 

0.36 
WGS X 

0.43 
Y 

0.28 

XY3 

XY3 

-0.07 

-0.08 
4 

X 

-0.02 
X2 

0.17 

XY 
0.23 

x 2 y 3  0.10 0.015 

X3Y 0.21 0.068 

XY  XY2 X2Y X3Y 0.32 0.010 

x2y2 0.29 0.017 

x*y2 0.39 0.053 

-0.06 

0.04 

0.32  -0.13 0.12 -0.12 

-0.09 

-0.11 

R;N, coefficients of determination of polynomial regression; PNL, significance  level for nonlinearity of regression. 

can  be responsible for  the  nonlinearities  in  different 
traits. Our purpose, however, is not to  model  a specific 
biological  mechanism but only  to  see whether  the ac- 
tual (but unknown  to  us)  regression  surface  for  a  par- 
ticular  trait  can  be  approximated  better by a  curved 
surface than by a  plane. To  do  that we have fitted  for 
each  character a  fifth-order  polynomial  regression 
function 

f ( x ,  y) = x 2 b p y  (0 5 i + j 5 5) (5) 
~j 

in the  standardized variables.  Stepwise “forward” and 
“backward” multivariate regression procedures in SYS 
TAT (WILKINSON 1990) were employed to fit the regres- 
sion model. The model with the highest coefficient of 
determination, R2, and with the significance level  of 
each term in the polynomial lower than P = 0.05 was 
chosen as the “best.” The monomial terms included in 
the polynomial regression functions  for  the traits under 
consideration are shown in Table 3. Also shown are  the 
coefficients of determination  for  the polynomial regres- 
sions, R:N, as well  as the significance levels for the  non- 
linearity of a regression, PNL. These significance levels 
were obtained by comparing R:N for  the “full” polyno- 
mial model to R2 for  the “partial” linear  model  (Table 
2) (SOW and ROHLF 1981).  In cases in which the full 

model  does not contain  a  linear  term (WTD does  not 
have either x or y, and WTS does  not have x), the 
absent  term was added to the  model  for  making  com- 
parisons. Tests based on  the  expanded models  could 
only  underestimate  the  significance of the  nonlinear- 
ity  of the  original  polynomial  models  since  changes in 

due to  such  expansions were negligibly small, 
whereas the  number of degrees of freedom  in  the 
model  increased. 

The polynomial model provides a significantly better 
fit ( PNL I 0.05) for almost all characters, except BD, for 
which the polynomial model is only marginally signifi- 
cant (PNL = 0.068). The improvements in the fit by the 
nonlinear regressions are not very substantial, however. 
The coefficients of determination  for  nonlinear regres- 
sions are  not  much  higher  than those for  linear regres- 
sions. Even for WTS, in  which  case R;N more  than 
doubles R2 for  the  linear regression (0.1 vs. 0.04), its 
value is still quite low (only 10% of the variation in 
weight among sons is explained by the  nonlinear trans- 
mission  of the weights by parents). 

Figures 1, 2 and 3 show the offspring-parent poly- 
nomial regression surfaces in the three-dimensional 
space for  the weight, bristle number  and wing length. 
The regression for  daughters and for sons are  on  the left 
and right side of each  graph, respectively. Also shown 
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FIGURE 1 .-Linear (plane)  and polyno- 
mial (curved surface)  regressions of weight 
of offspring on the weights of mothers and 
fathers  (scales  on all axes are the  distances 
from  the  mean in standard deviation units). 

FIGURE 2.-Linear (plane) and polyno- 
mial (curved surface) regressions of number 
of abdominal bristles in offspring on the 
number of abdominal  bristles in mothers 
and  fathers (scales on  all  axes  are  the dis- 
tances from the  mean in standard  deviation 
units). 

are  the planes corresponding  to  the  linear regressions 
(Table 2). The scales on all axes are in standard devia- 
tion  units. A dot  on  the  bottom of a graph  represents 
a family (the value of the  trait  in  mother  and  in 
father).  The surfaces appear to  be sufficiently smooth, 
without  local  “wobbling” which means that  the 
polynomial  models are  not overfitting. The  general 
shapes of the regression  surfaces  in daughters  and 
sons appear to be similar, even though  differences 
between  regressions  in two sexes are statistically sig- 
nificant for all traits. 

There  are noticeable nonlinearities in the regression 
surfaces for all  of the traits. The nonlinearities  are  more 
pronounced in the  corners of a  graph, i . e . ,  if the traits 
in parents deviate substantially from  the  mean. Since 
parents with such traits are  underrepresented in a 
sample, the  error of the regression is higher for families 
with such parents  than  for families in which parents have 
traits that  are closer to  the  mean. Consequently, not 
much  credence  should  be given to a  prediction based on 

a  nonlinear regression of a trait in offspring of parents 
whose traits deviate substantially from the mean. Let  us 
not  forget, however, that  the same is true  for  linear re- 
gressions as  well. The  error of a  linear regression is also 
greater  for  parents whose traits are  farther away from the 
sample mean and,  hence, predictions for  the offspring 
of such parents based on a  linear regression are also not 
reliable. It is not certain whether  the  error is higher for 
linear  or  for  nonlinear regression. 

Recall that  the coefficient of linear regression on 
mothers was not significant for WTS (Table 2). Thus, 
judging by the  linear offspring-parent regression, moth- 
ers do  not  appear to  contribute significantly to  the 
weight  of their sons. This has been confirmed by the 
univariate linear regression of the weight in sons on the 
weight in mothers which turned  out  to  be also nonsig- 
nificant. Notice, however, that this conclusion is con- 
tradicted by the polynomial regression. Indeed,  the 
value  of R:N is twofold higher if the monomials with 
variable x  are  present in the regression function  (Table 
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I A I 4 A 

FIGURE 3.-Linear (plane) and polyno- 
mial (curved surface)  regressions of wing 
length of offspring  on  the  wing  length of 
mothers  and fathers (scales on all axes are 
the  distances from the  mean in standard  de- 
viation units). 

?. 
’L. 

3) than if they are excluded.  Thus,  mothers do contrib- 
ute to  the weight of their sons, but their  contribution is 
not linear. 

Nonlinear  regression and realized  heritability 

We have established that  there is a statistically  signifi- 
cant ( P  5 0.05) nonlinearity in the offspring-parent re- 
gression for all considered traits, except  the bristles in 
daughters, BD, for which the nonlinearity is significant 
at P = 0.068. Such a  finding is not very interesting in 
itself since no  one expects the regression to  be exactly 
linear  for any real trait. It is important to know,  however, 
whether  the  detected  nonlinearities may affect our in- 
ferences  about  the dynamics of the traits. Do, for ex- 
ample,  linear and nonlinear regressions predict similar 
responses by the traits to selection, and,  hence, as far as 
selection is concerned  the  nonlinearities can be disre- 
garded? 

One of the measures of a response to selection by 
different traits is the realized heritability (FALCONER 
1983) : 

R 
h : = Z ,  (6) 

where S is the selection differential and R is the response 
to selection. It is quite  unfortunate  that  the term heri- 
tability and  the notation h2 are used customarily for  both 
the ratio (6) and  the ratio of the additive component of 
variance to  the total phenotypic variance called the nar- 
row sense heritability. It  should  be  kept in mind, how- 
ever, that  the two heritabilities are  the same only if the 
offspring-parent regression is linear, otherwise they may 
differ. While the narrow sense heritability cannot, ob- 
viously, be  either  greater  than  one or negative, the re- 
alized heritability can. A value  of h: greater  than one 
means only that  the response to selection exceeds the 
selection differential. A negative value means that 
selection produces  a reversed response. GIMELFARB 

(1986b) has demonstrated  that genotype-environment 
interaction,  for example, may cause a reversed response 
under strong selection. For a  linear offspring-parent re- 
gression, the  expected realized heritability is the same 
under any selection as the heritability estimated by the 
regression itself. 

Truncation  selection: Table 4 shows the realized heri- 
tabilities expected under truncation selection for the 
characters  considered in the  paper assuming that  the 
actual offspring-parent regressions are polynomial 
(Table 3). An infinitely large population size and ran- 
dom mating were assumed, and  the distribution of  a 
character  among females and among males before se- 
lection was assumed as a standardized normal (with zero 
mean and unit  variance). 

The left column in Table 4 shows the  strength of  se- 
lection expressed as the  percentage of individuals being 
selected. In  parentheses  are selection differentials (in 
standard deviation units)  produced by truncation selec- 
tion of the  corresponding  strength on a normally dis- 
tributed trait. Positive and negative values  of selection 
differential correspond to positive and negative selec- 
tion. Only individuals with the  character above a speci- 
fied “threshold”  are selected under positive selection, 
whereas only individuals with the  character below the 
threshold  are selected under negative selection. The cal- 
culation of the  threshold value for selection of a par- 
ticular strength is discussed in APPENDIX A. 

It is seen that  for all the traits in Table 4 their realized 
heritability depends on the  strength of selection and 
it  can differ substantially from the heritability estimated 
by linear offspring-parent regression (shown under 
the  corresponding traits in the  table). Also, a  linear 
offspring-parent regression cannot, obviously, predict 
an asymmetry  of responses to positive and negative  se- 
lection which is not uncommon in selection experi- 
ments. On the other  hand,  at least some degree of asym- 
metry in responses to selection (realized heritabilities) 
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TABLE 4 

Realized  heritabilities  predicted by nonlinear  offspring-parent 
regressions  under  truncation  selection 

Percent Trait and its estimated heritability 
selected 

(selection WTD WTS BD BS WGD WGS 
differential) 0.47 0.26 0.62 0.71 0.60 0.73 

15 ( 1.55) 0.31 0.04 0.49 0.29 0.42 0.75 
15 (-1.55) 0.52 0.62 0.79 0.98 0.72 0.78 

30 ( 1.16) 0.39 0.20 0.56 0.56 0.54 0.90 
30 (-1.16) 0.37 0.52 0.73 0.65 0.60 0.63 

50 ( 0.80) 0.39 0.23 0.59 0.68 0.57 0.96 
50  (-0.80)  0.37 0.43 0.69  0.59  0.57 0.58 
70 ( 0.50) 0.41  0.23  0.60 0.74 0.56  0.98 
70 (-0.50) 0.51  0.36  0.68  0.59  0.58  0.55 

90 ( 0.20) 0.62  0.20  0.62  0.91  0.55  1.07 
90 (-0.20) 0.97 0.28 0.66 0.52 0.59  0.47 

95 ( 0.10) 0.83 0.17 0.63 1.10 0.58 1.14 
95 (-0.10) 1.36 0.22 0.66 0.41 0.58 0.39 

is predicted by polynomial regressions for all of the 
characters. 

For most of the  characters  the realized heritability pre- 
dicted under moderate selection (70% selected) ap- 
pears to be closer to  the estimated heritability than  that 
predicted under stronger selection, and  the discrepancy 
between the realized and estimated heritabilities can be- 
come quite large when selection is strong  (15% se- 
lected).  The asymmetry  of responses seems also to in- 
crease with stronger selection, and for most of the 
characters  it becomes quite  pronounced  under  strong 
selection. The values of the realized heritability pre- 
dicted for strong selection should  be taken, however, 
with skepticism. Indeed, traits among  parents selected 
under strong selection deviate substantially (more than 
a  standard deviation) from the  population  mean. At the 
same time, as has been discussed earlier,  a regression 
function is not a very good predictor of a trait in off- 
spring of parents whose traits deviate much from the 
mean. 

The least squares method of fitting a regression func- 
tion to sample data  ensures  that in the absence of  se- 
lection linear and polynomial regressions predict  the 
same mean value  of a  character  among offspring (zero 
if the  character is standardized).  It would seem, there- 
fore,  that if the  mean is not changed  much by selection, 
i. e . ,  selection is sufficiently  weak, linear and polynomial 
regressions should  predict similar responses. Yet data in 
Table  4 for selection that is relatively  weak (between 90 
and 95% selected) do  not  support this conclusion. It is 
seen that not only the realized heritability predicted  un- 
der weak selection by nonlinear regressions may differ 
substantially from  the heritability estimated by linear re- 
gression, but  the discrepancy between the two herita- 
bilities actually increases with decreasing strength of  se- 
lection for most of the characters. The asymmetry of 

responses is also present even if selection is  weak, and  for 
some traits it is more  pronounced  under weaker  selec- 
tion. These results may appear so bizarre as to suggest 
a  computational  error. Yet, there is no error.  Indeed, it 
follows from expressions (A14) and (A15) in APPENDIX A 

that if a  character is distributed with density p (  x) over 
an interval -B 5 x 5 B, and the offspring-parent re- 
gression for the  character is f (  x, y ) ,  

l B  
= x LE [ f h  -B) + f ( -B ,  x)lp(x) dx 

(7a) 
(positive selection), 

l B  
h:, = - I_, [f(x, B) + f(& X)lP(X) dx 

(7b) 
(negative selection), 

where hi denotes  the limit of the realized heritability 
under truncation selection when the  strength of selec- 
tion approaches zero. The first thing to notice is that  the 
absolute values  of the integrals in (7a)  and in (7b)  are 
not necessarily the same. This means that  there can be 
asymmetry in responses to very  weak  positive and nega- 
tive truncation selection. Notice also that if the regres- 
sion f (x, y )  is a polynomial in x and y, the integrals in 
(7a)  and in (7b)  are polynomials  in B. Consequently, 
hi is also a polynomial in B with coefficients that depend 
on p (  x). Thus,  the limit of the realized heritability of a 
character under truncation selection is determined  not 
only by the offspring-parent regression, but also by the 
width of the interval over  which the  character is distrib- 
uted  and by the  shape of its distribution. The last two 
rows in Table  5 show the limits  of the realized heritability 
predicted by the polynomial regressions under trunca- 
tion selection assuming P( x) as truncated  normal in the 
interval -3 5 x 5 3. Since hi is a polynomial in B, the 
limits  of the realized heritability under truncation se- 
lection will be  higher  than those shown  in Table 5 if the 
characters  are distributed in an interval wider than -3 5 
x 5 -3. No limit exists if the distribution interval is 
infinite. 

It  should  be  noted  that  the fact that  the realized heri- 
tability may become higher under weaker selection does 
not  mean, of course,  that weaker selection yields a stron- 
ger response in such instances. In fact, the response to 
truncation selection approaches zero when the  strength 
of selection goes to zero, but so does also the selection 
differential. 

Exponential and Gaussian selection: Truncation fit- 
ness function which is common in artificial selection 
may not be adequate for describing selection in nature. 
Such selection may be  better  approximated  either by an 
exponential fitness function, 

w(x, Q, = exp(Q4, ( 8 )  
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TABLE 5 

Limit values of realized heritability when strength of selection approaches zero 

Traits and their estimated heritabilities 

Form of WTD WTS BD BS WGD  WGS 
selection 0.47 0.26 0.62 0.71 0.60 0.73 

Exponential 0.52  0.27 0.64  0.69 0.57  0.72 

Gaussian ( 0  = 3) 0.68 0.27 0.64 0.76 0.58 0.79 
Gaussian (0  = -3) 0.76  0.27 0.64 0.62 0.57  0.65 

Gaussian ( 0  = 1)  0.60  0.27 0.64  0.86 0.58 0.93 
Gaussian ( 0  = -1) 0.84  0.27 0.64 0.61 0.56 0.51 

Gaussian ( 0  = 0.5) 0.48  0.27 0.64  0.99 0.59  1.14 
Gaussian ( 0  = -0.5) 0.96 0.27 0.64  0.49 0.55  0.30 

Gaussian (0  = 0.25) 0.24  0.27 0.64 1.24 0.62 1.56 
Gaussian (6  = -0.25) 1.20 0.27 0.64  0.23 0.53 -0.12 

Truncation (positive) 2.66 -0.07 0.64 1 .a7 0.59 1.31 
Truncation (negative) 3.69 -0.07 0.64 0.11 0.55  0.22 

0, "optimum" phenotype in standard deviation units. 

or by a Gaussian fitness function, 

4 x 9  €J = exp[- Q(. - e)'] (Q  2 01, (9) 

with the  optimum, 8, away from  the mean of the  char- 
acter. The direction of exponential selection is indi- 
cated by the sign  of Q, whereas the  direction of  Gaussian 
selection is indicated by the sign  of 8. The strength of 
selection is determined  in  both cases by the absolute 
value  of Q. 

Regarding the limit of the realized heritability under 
exponential and Gaussian selection when the  strength 
of selection approaches  zero,  let 

a = [ 1; y)P(x)P(r) dx dY, (104 

b = [ Y f ( X ,  y)P(x)P(r)  dx dY. (lob) 

It follows from equations  (A16), (A17) and (A18)  (A19) 
in APPENDIX A that, given the distribution of the  character 
is standardized  normal, 

h; = a + b, (11) 

if selection is exponential, and 

h 2 = a + b "  [ (2 + r')f(m Y>Pcap(y) dx dy, 

(12) 
if selection is Gaussian. Table 5 shows the limits  of the 
realized heritability predicted by the polynomial 
offspring-parent regressions under exponential and 
Gaussian selection assuming that  the  parental distribu- 
tions are  standardized  normal. The optima  for Gaussian 
selection are in standard deviation units. If selection is 
exponential,  the limits  of the realized heritability are 
exactly equal  to  the heritabilities expected  from  the least 
squares linear  approximations of the polynomial regre+ 

sions  assuming  infinite  population size and parental 
distributions as standardized  normal  (see APPENDIX B ) .  

The expected  heritabilities  differ slightly from  those 
estimated  in our samples (shown in Tables 4 and 5 
under  the  corresponding  traits).  The  difference is 
not  surprising given that  the sample size is not  infinite 
and  the  actual  parental  distributions  are  not exactly 
normal. 

No general conclusion regarding  the limit of the re- 
alized heritability can be drawn from Table 5 .  While for 
one trait (BD) it is similar to the estimated heritability 
under any form of selection, for  another trait (WTS) it 
is similar to  the estimated heritability under any  Gaus- 
sian selection but is quite  different from it under trun- 
cation selection. For the majority of the traits, the limit 
of the realized heritability depends very much on the 
form of selection and may differ remarkably from the 
estimated heritability. 

The only general conclusion that can be drawn from 
Tables 4 and 5 is that predictions of the response by the 
mean of a  character to selection, and to weak selection 
in particular, based on the estimated heritability of the 
character may be quite unreliable. The reason for this 
is simple. If the offspring-parent regression is linear,  the 
mean of a  character in offspring population  depends 
only on the  mean  among  parents. Consequently, a re- 
sponse by the mean to selection is completely deter- 
mined in such a case by the change in the mean among 
parents (selection differential),  and  formula (1) is a 
succinct  formulation of this. If, however, the 
offspring-parent  regression is not linear,  the  mean 
among offspring depends  not only on  the  parental 
means  but also on  higher  moments of parental dis- 
tributions.  Consequently,  a  response by the mean  to 
selection is determined in such  a case not only by 
the selection  differential,  but also by changes  caused 
by selection in higher  moments of the  parental 



350 A. Gimelfarb  and J. H. Willis 

distributions. Hence,  the realized  heritability for a 
character with nonlinear offspring-parent  regression 
depends  on  the  parental  distribution  and  on  the  form 
and  strength of selection. 

The effect of the form and strength of selection on the 
realized heritability can be seen in Tables 4 and 5. Also, 
the assumption of normality of parental distributions 
made in computing these tables implies that all odd mo- 
ments of the distributions are zero and any even mo- 
ment is expressed in a particular way through  the second 
moment. This, however, may not be  true for distribu- 
tions other  than  normal. Consequently, the realized 
heritabilities for the same traits under the same form 
and strength of selection may differ from those shown 
in Tables 4 and 5, if parental distributions are  not 
normal. 

The effect on  the  mean  among offspring of changes 
in higher moments of parental distributions caused by 
selection may become particularly noticeable if the se- 
lection differential is small, i . e . ,  selection on  the mean 
among  parents is  weak. There can even be  a  “response” 
by the mean in offspring to selection that  does  not affect 
the  parental  mean at all. For example, Gaussian  selec- 
tion with 8 = 0 does not change  the mean in  a  parental 
population with normally distributed  character, but 
does  change  the variance. Given the polynomial 
offspring-parent regressions (Table 3), it  is not difflcult 
to see that  the mean among  the offspring for WTD, BS, 
WGD and WGS  will be affected by a  change  in  the pa- 
rental variance, and,  hence,  the  mean for these traits will 
“respond”  to selection even though  the selection differ- 
ential is zero. It is clear that  the realized heritability will 
be infinity in such a case. 

CONCLUSIONS 

The offspring-parent regression is significantly non- 
linear for all of the  characters  considered  in  the  paper, 
except  the bristles in daughters  for which the  nonlin- 
earity is marginally significant ( P  = 0.068). 

Nonlinear  contributions by parents to a  character  in 
their offspring may not  be revealed by a  linear offspring- 
parent regression, as the weight in sons (WTS) demon- 
strates. 

The response by a character to  selection  predicted 
by a nonlinear  offspring-parent  regression  fitted  to 
family data  can be  quite  different  from  the  response 
predicted by the  linear  regression  fitted  to  the  same 
family data. 

The response by a trait to selection is a result of an 
intricate interplay between the offspring-parent regres- 
sion function,  the distribution of the  character, and the 
form and  strength of selection. 

The nonlinearity of the offspring-parent regression 
can be responsible for the asymmetry  of responses 
to positive and negative selection observed in many 
experiments. 

The discrepancy between the responses by a  character 
to selection predicted by nonlinear  and  linear offspring- 
parent regressions can be substantial not only if selec- 
tion is strong, but also, and even more so, if selection is 
weak. 

Predicting responses by a quantitative character to 
weak selection can be  a very uncertain exercise. 
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APPENDIX A 

Consider a quantitative character having zero mean 
and  unit variance distributed in an interval - B  5 x I B 
( B  5 w) with a density function p (  x) for both sexes. Let 
the  character  be under selection with the phenotypic 
fitness function w (  x, (3). Besides the individual’s phe- 
notype, the fitness function also includes  a  parameter (3 
characterizing the  strength of selection: smaller Q im- 
plies weaker selection. There is no selection if Q = 0,  
i .e . ,  w (  x, 0 )  = 1. The mean fitness of a  population is, by 
definition, 
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In  the case  of truncation selection, the fitness function 
can be expressed as 

4 x 9  @ = 
1 if x r - B + Q  
0 otherwise 

(positive selection), 

w(x, Q, = 
1 if x l B -  Q 
0 otherwise 

(negative selection). 

Substituting these expressions into (Al) yields for  the 
mean fitness 

E 

W= 1 p(x)dx, T =  B -  Q (Ma) 

(positive selection), 

W =  [ l p ( ~ ) d ~ ,  T =  - B +  Q (Mb) 

(negative selection). 

The  mean fitness under  truncation selection is equiva- 
lent  to  the  proportion of individuals that  are  selected. 
Consequently,  the  threshold  corresponding  to  a  par- 
ticular proportion of selected  individuals  can be ob- 
tained by solving with respect  to T equations (A3a) 
and  (A3b). 

Given that  the mean of the  character before selection 
is zero, selection differential, S, and response, R, are 
obtained as 

where f (x, y) = E [ z  I x, y] is the offspring-parent regres- 
sion function.  It is  easy to see that if f ( x ,  y) = ax + by, 
ie., the offspring-parent regression is linear, R = U S  + 
bS, and,  hence, 

h : = a + b  

for any form of selection and character  distribution. The 
realized heritabilities under truncation selection in 
Table  4 were obtained by first  evaluating the  integrals 
(A5) for  the regression function  corresponding to  a 
particular  trait and  for  the fitness function  either 
(A2a) or (A2b), and  then dividing the  result by (A4) 
also computed  for  the fitness function  either (A2a) 
or (A2b).  A  package of mathematical  programs 
MATHCAD was used  for computing  the  integrals  on 
a 486 PC computer. 

The following conditions  are straightforward when 
the  strength of selection approaches zero: 

lim S = 0, 
Q.0 

lim R = 0,  
e-0 

lim W =  1. 
Q.0 

Given  (A7) and (AB), the limit of h: = R / S  when Q 
approaches  zero is  of the  indeterminate type O / O .  It  can, 
however, be evaluated by applying L’H8pital’s rule: 

It can be shown, taking into account (A7), (A8) and 
(A9), that 

where 

For the fitness  function of truncation  selection, 
+(x) = 6(  x + B )  if selection is positive (A2a),  and 
+(x) = -6( x - B )  if it is negative (A2b), where ti(.) 
denotes  delta  function.  Substituting such +(x) into 
(All)  and (A12) we obtain 

d S  
lim - = Bp( -B) ,  
Q . 0  aQ 

aR 
lim - 
Q . 0  a Q  

(A1 4a) 

(A15a) 

under positive selection, and 

1‘ 
dR 

Ea 

(A14b) 

(A15b) 
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under negative selection. Dividing  (A15a) by (A14a) 
and (A15b) by (A14b) yields expressions (7a)  and  (7b) 
for hi in the text. 

If selection is exponential (8), the derivative  (A13) 
is Ql( x) = x. Given that p ( x )  is standardized  normal, 
the substitution of such +(x) into (All)  and (A12) 
results in 

as 

If selection is Gaussian (9), +(x) = - (x  - 0)', and  the 
substitution of such +(x)  into (All)  and (A12)  yields 

as 
Q.0 aQ 
lim - = - (x - 0)'xp(x) dx = 20,  (A18) 

aR 
lim - 
e o  aQ 

Dividing  (A17) by (A16) and (A19) by (A18) results in 
expressions (1 1)  and  (12)  in  the text. 

APPENDIX B 

The least squares linear  approximation of a  nonlinear 
offspring-parent regression is a  function a x  + Py that 
delivers the minimum of the integral 

1. l [ f ( x ,  y) - ( a x  + P y ) ] * p ( x ) p ( y )  dxdy, (B l )  

where p ( x )  and p (  y )  are  the distributions of the char- 
acter among  mothers and fathers, respectively. The 
minimum of (Bl) is delivered by 

a! = 1.1 X f b ,  y > P ( x ) P ( y )  dx dy, (B24 

P = J$!f(x. r )P(x )P(y )  dx  dr. (B2b) 

Given that  the  characters in parents  are standardized, 
the heritability expected  from such linear approxima- 
tion is Q + P (see (4)).  It is seen that (B2a) is the same 
as (1 la) and (B2b) is the same as (1 1 b) . Hence, h: under 
exponential selection is equal to the heritability ex- 
pected  from  the  linear  approximation of the offspring- 
parent regression. 


