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ABSTRACT 
Inconsistencies between equations  for  the effective population size  of populations with separate sexes 

obtained by two different approaches  are explained. One  approach, which is the most common in the 
literature, is based on  the assumption that  the sex of the progeny cannot be  identified. The second 
approach  incorporates identification of the sexes of both parents and offspring. The  approaches lead 
to identical expressions for effective size under some  situations, such as Poisson distributions of offspring 
numbers. In general, however, the first approach gives incorrect answers, which become particularly 
severe for sex-linked genes, because then only numbers of daughters of males are relevant. Predictions 
of the effective size for sex-linked genes are illustrated for different systems  of mating. 

E FFECTIVE population size (WRIGHT 1931 ) is a key 
parameter  in  population  and quantitative genet- 

ics. Expressions for  the effective population size for au- 
tosomal and X-linked genes in species with separate 
sexes have been derived using inbreeding  or variance of 
drift  approaches  [see CABALLERO ( 1994)  for  a review]. 
Some of these expressions are  general because they 
include variances and covariances of the  number of 
offspring considering  the  four possible  pathways from 
male or female parents to male or female offspring. 
The most common expressions in the  literature, how- 
ever, are derived on  the assumption that  the sex  of the 
progeny cannot be identified and only  specify variances 
of total number of progeny, irrespective of  sex. For 
autosomal genes these equations  agree when there  are 
equal  numbers of males and females and/  or a Poisson 
distribution of offspring numbers  but not in general. 
For X-linked genes the implications are  more severe 
because males can pass genes only to female offspring, 
so there  are inconsistencies in  the  literature ( NAGYLAKI 
1981; POLLAK 1990). In this paper I point  out  the rea- 
sons for these inconsistencies, first aiming to summarize 
and clarify the situations under which different  equa- 
tions apply for autosomal loci before addressing X- 
linked loci. In all the results presented I assume suffi- 
ciently large population sizes ( N )  that  terms of order 
1 / N 2  can be neglected relative to 1 / N. Discrete gener- 
ations with constant  numbers of males and females and 
random  mating are also assumed, so that  inbreeding 
and variance effective  sizes are  the same because both 
inbreeding  and variance of gene  frequencies can be 
used to predict  the increase in homozygosity. Sources of 
variation in family  size are  due  to  noninherited causes. 
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AUTOSOMAL LOCI 

A general  equation  for  the effective  size ( N e )  of popu- 
lations with separate sexes regarding autosomal genes 
is  given by HILL ( 1979), following the methodology of 
LATTER (1959), 

where M ( F )  is the  number of male (female) parents 
in the  population, u : ~  (a:/) is the variance of the  num- 
ber of male (female ) offspring (which will reach  repro- 
ductive age) from parents of  sex s ( m  or f) and usrn,sf 
is the covariance of the  number of male and female 
offspring from  parents of  sex s. Equation 1 was derived 
by using drift variance arguments. An alternative deriva- 
tion following inbreeding  arguments can be straightfor- 
wardly obtained from CABALLERO and HILL (1992), 
where the derivation was simplified to the case  of M 
= F. With another derivation following drift variance 
arguments, CROW and DENNISTON (1988) obtained an 
expression for  the effective  size  with separate sexes 
(Equations 26 and 28  of their paper) that,  for large 
population size and  random mating  (when deviations 
from Hardy-Weinberg proportions  are  negligible), is 
identical to Equation 1. 

When numbers of male and female parents are equal 
( M = F =  N / 2 ) ,  ( I )  reducesto 
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[WRIGHT ( 1938) , assuming large N] , where (T: is the 
variance of family  size (the variance of the  number of 
successful gametes, those that will produce zygotes, 
from each parent). For  Poisson distribution of off- 
spring  numbers, where (T :m ( (T :/) equals the mean num- 
ber of  male (female) offspring from parents of sex s, 
i.e., by,,, = M/S ( pSf = F/ S )  , where S is M or F and 
osm,5/ = 0, ( 1 ) reduces to Ne = 4MF/ ( M  + F) (WRIGHT 
1931 ) , and ( 2 )  gives N, = N, as expected. 

Following an  inbreeding  approach, KIMURA and 
CROW (1963) and CROW and DENNISTON (1988) de- 
rived an alternative equation to (1) for the effective 
size for populations with separate sexes.  For large cen- 
sus sizes this approximates ( 2)  , with N = M + F and 
0 ;  = g%/pm + o ; / p ~  + (pm - p/)2/Ymp/, where p5 
= N/ S ( S  is Mor F) and (T: = o:m + (T:~ + 2(~,,,,~are 
the mean and variance of the total number of offspring 
from parents of  sex s. This is also identical, on re- 
arrangement, to 

4N' Ne = 9 (3)  
M(g% + P% - pm) + F ( 0 f  + ~f - pf) 

obtained by MALECOT ( 1951 ) , MORAN and WAITERSON 
(1959) and POL- (1977, except for 4N[N - 11 in 
the numerator). 

Equations 2 and 3 assume that  the probability that 
two individuals in generation t have common ancestry 
in generation t - 1 is independent of their sex, which 
might be  a reasonable assumption when the sex of the 
offspring cannot  be identified (CROW and DENNISTON 
1988), perhaps for some practical reason. Thus, Equa- 
tion 3 can be rearranged to read l / Ne = ( l /pf + 
a;/p:)/4M + ( l / p m  + a;/pj)/4F, showing that 
total variances of offspring number for each sex ( 0 : )  

are weighted inversely by their mean squares ( p : ) .  
However, variances in brackets in ( 1 ) can be expressed 
as ( ~ : ~ / p : , , ,  + 2~sm,s//psmps/ + o: / /p :J ,  i.e., variances 
for each of the pathways of genes  are weighted inversely 
by the  corresponding  mean squares. This different 
weighting of the variances implies that ( 1 ) and (2  or 
3) agree when M = F and/or when the distribution of 
offspring numbers is Poisson and  there is no covariance 
between male and female offspring numbers, but  not 
in general. If there  are differences in fertility or viability, 
for example, even if these are  not  inherited,  a covari- 
ance term arises, and (1) and ( 2  or 3) give different 
results. Therefore, if the sex of the offspring can be 
identified, Equation 1 should be used instead of ( 2  or 
3 ) ,  because the variances and covariances of offspring 
numbers are properly weighted. In all  cases Equations 
2 and 3 seem to apply to a peculiar and unrealistic 
situation in  which the sex  of the  parents in a given 
generation can be determined  but  not  that of the par- 
ents in the  next. A possibility  is that progeny numbers 
are available  only at an earlier stage ( e.g., eggs) in  which 
the sex cannot be identified. This is,  however, a differ- 

ent problem that requires conversion of the measure- 
ments at  the earlier stage into those at  the  adult stage, 
involving assumptions about  the model of  survival 
(CROW  and MORTON 1955) . 

X-LINKED LOCI 

The effective  size for X-linked  loci or haplo-diploid 
species is obtained by equating  the variance of change 
in gene frequency or  the rate of inbreeding of an au- 
tosomal gene in an idealized population to the actual 
values  observed for the X-linked gene in the population 
under consideration. Following a variance of drift deri- 
vation  similar to that of HILL ( 1979), POL- ( 1990) 
obtained an expression for Ne for X-linked genes, 

1 = 2- [ 1 + 2 ($)2 .:/I 
N, 9M 

( cf. Equation 1 ) , where the male sex is heterogametic. 
In the case of equal number of  male and female parents 
( M  = F = N / 2 ) ,  (4) reduces to 

9N N, = 
4 + 4 4  + 20;. 

For Poisson-distributed offspring numbers, ( 4) leads to 
Ne = 9MF/  (4M + 2F) (WRIGHT 1933) and (5)  to N, 
= 3N/4. 

Following an inbreeding  approach NAGYLAKI ( 1981 ) 
arrived at an expression that, for large N ,  is approxi- 
mately 

9N2 
N, = ( 6 )  

2 M( 0: + p: - pm) + 4F( 0 7  + p; - p / )  

(cf. Equation 3) (more exactly,  Nagylaki's expression 
has 9N[ N - 11 in the numerator). Expression 6 was 
also obtained by MOW and WATTERSON ( 1959) and 
ETHIER and NAG- (1980). 

With equal  number of  male and female parents (M 
= F = N / 2 ) , p , = p f = 2 a n d a : = ~ / 2 = ~ : , ( 6 ) l e a d s  
to 

3N 
Ne = ___ 

2 + 0 : '  

For Poisson-distributed offspring numbers, ( 6  and 7 )  
are in agreement with (4  and 5 ) .  However,  they do 
not agree under some circumstances even for equal 
numbers of male and female parents. The difference 
can be illustrated under this latter situation when M = 
F.  Results  given by Equations 5 and 7 differ most  in the 
extreme case  of o i f  = a; = (T: = 0 (equal numbers of 
successful gametes produced  per parent), for which 
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(5)  gives N, = 9N/4, whereas ( 7 )  gives Ne = 3N/2. 
The reason for this discrepancy is, again,  that ( 6 )  is 
based on  the assumption that  the sex  of the progeny 
cannot be identified. Thus, Equation 6 specifies  vari- 
ances of total offspring from males, whereas only num- 
bers of daughters  are relevant for X-linked  loci. In what 
follows, a derivation of Ne following an inbreeding ap- 
proach similar to that of CABALLERO and HILL ( 1992) 
for autosomal loci is made, which leads to the same 
result obtained by the variance of drift approach  (Equa- 
tion 4 ) .  

Let x, ( z , )  be the probability that two genes from two 
different males (females) in generation t are identical 
by descent and let y,  be the same probability for two 
genes, one each from a male and  a female in generation 
t .  With random mating the  inbreeding coefficient in 
females is Ff = y r - l .  In  generation t + 1 the coefficients 
are  obtained by adding up the probabilities that  the 
pair of genes  are sampled from the same male, from 
different males, from the same female, from different 
females and from a male and  a female where appro- 
priate. For instance, 

where kjm, is the  number of  male offspring from the  ith 
female parent. Noting that kfmz ( kfm, - 1 ) / [ M(  M 
- l ) ]  = [ (F /M)cjm + (M/F) - l ] / ( M  - l ) ,  it 
follows that 

X,+l = (" 1)  [($7&+I" M 1)  

Assume, for simplicity, that Mand  Fare large enough 
that M = M - 1 and F = F - 1. Denote by J = (x, 
+ 42, + 4yt) / 9  the average probability of identity in 
generation t ,  because 1/3 of the X-linked genes are ex- 
pected to come from males and 2/3 from females. Note 
also that  the vector ( l/g, 4/9, %) is the eigenvector 
corresponding to the  unit eigenvalue (other eigenval- 
ues being smaller than one) of the matrix that gives 
the values of x,+l, Y , + ~  and z,+~ as a function of x,, y, and 
z, in Equations 8-10, i.e., when the terms in 1 / M and 
1 / F  in the  right  hand sides  of the  equations  are ne- 
glected. 

Denoting 

c, = [ 1 + 2 (;)2 4 (11) 
9M 

and 

and substituting (8-10) into we obtain 

L 

By manipulating Equations 8-10 it can be seen that 
absolute differences among x,, y,  = F,+, , z, and  are of 
order 1 / M or 1 / F  (say 1 / N) in the long run. As C, 
and C, are also of order 1 / N ,  terms Cm(J - x,) and 
C/( F, - 22, + &) in ( 13) are of order 1 /fl and can be 
neglected for large population sizes. Hence,  noting  that 
1/2Ne = ( $ + I  - - & ) / ( I  - A ) ,  from (13) we get 1/N, 
M C, + Cf, which using ( 11-12) gives Equation 4. 

x ($ + $ - 4 1  + z,. 
DISCUSSION 

(8)  
Two different approaches have been used in the liter- 

ature to predict effective population sizes for popula- 
tions with separate sexes. The most common is based 
on the assumption that  the sex  of the progeny cannot 
be identified. A more  general  approach  incorporates 
identification of the sexes of both  parents and off- 
spring. These approaches lead to the same results un- 

second gives correct answers.  For  sex-linked genes this 
effect is more severe because only numbers of daugh- 

and ters of  males are relevant. NAGYLAKI ( 1981 ) derived an 
equation  for  the effective population size for X-linked 

ties that two distinct, homologous, randomly chosen 
paternal ( P m )  or maternal ( P f )  genes in generation t 
came from the same individual in generation t - 1 and 

Analogously, 

" 1  4 ( F -  1 )  [ ( + + - - I  ( 1 - x , )  

+ e;/ (: + :- + x, + 2 y ,  + z, (9)  der some restrictive situations, but, in general, only the 

yt+1 = 2 1 (,M U / m , / f  + ;) (; + 2 F, - 2,) genes under the first approach. He used the probabili- 

Zf+l  = M 

1 
+ 2 ( 2 ,  + y,).  

( ) obtained 
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9 
Ne = 

2P, + 4Pf 

(his Equation 5 )  . He treated these probabilities simi- 
larly, such that P, and P,are  given approximately by P, 

S( a: + p: - ps)  / N2 (from his Equation 8) , where 
S is M or F and s is m or f. However, although female 
parents can pass gametes carrying X-linked genes to 
males, females or  one of each, male parents can pass 
them only to females. If these differences in contribu- 
tions from males and females are considered, we can 
write 

and 

Proceeding as before, 

and 

+ (;y a;m - ;I . 

Substituting (17-18) into (14) ,  we obtain again ( 4 ) .  
Note  also that Equations 8- 10 are  a  corrected version 

of Equations lb-ld of NAGW (1981), where k ,  g, 1 
and f, in his notation,  correspond to x, y ,  z and F,, 
respectively. The difference between these two  systems 
of equations is that  there should not be  a single P2 that 
appears in ( lb- Id)  , but  three different probabilities: 
P2,11 in ( I C ) ,  P2,12 in ( l b )  and P2,22 in ( I d ) ,  which 
correspond to the  three terms in parenthesis in (16),  
respectively.  Finally, PI in ( I d )  corresponds to Pm 
from (15) .  

There  are two interesting points  about  control  popu- 
lations with minimal inbreeding.  In  the case where each 
male parent has one male and F/ M female offspring, 
and each female parent has one female and zero or 
one male offspring ( M/F,  on average) , a?, = ( M /  
F) (1 - M / F )  , aif = ojr = afqff = 0 and ( 4 )  yields 
N, = 9 M/ 2, i.e., independent of the  number of  females. 
For species where females are  the heterogametic sex, 

as  in poultry, the same mating procedure gives  Ne = 
9MF/ ( 3 F  - M) . This indicates that, for minimal in- 
breeding, as  few females as possible for each male 
should be used. In fact, the largest effective size  would 
be  obtained by mating one female to each male ( N ,  = 
9N/4) . An analogous conclusion, perhaps more im- 
portant from a practical point of  view, can be made for 
haplo-diploid species, such as bees, in  which females 
can mate each to many  males [see CROW and ROBERTS 
(1950) for an analysis  of the  inbreeding  produced by 
various  systems of mating in honey bees] . If the mini- 
mal inbreeding  procedure is followed, as  few males as 
possible should be mated to each female. 

A few examples illustrate these results, which  were 
also checked by stochastic simulation. Using a popula- 
tion of constant size N = 80 (half of each sex) with 
equal family  sizes (monogamous matings with one male 
and  one female offspring per  couple ) run for 15 gener- 
ations with 10,000 replicates, the effective  size,  evalu- 
ated from the average rate of decrease in heterozygosity 
between generations 5 and  15 of a  neutral X-linked 
gene, was 177.0 k 2.4,  while expectations from Equa- 
tions 5  and 7 are 180 and 120, respectively.  With M 
males mated to F/  M females each and minimal in- 
breeding as explained above, effective  sizes  were  45.3 
? 0.4 and 44.7 5 1.7 for M = 10 and F = 20 and F = 
160, respectively. The expectation with Equation 4 is 
45 for both cases.  Similar simulations when females are 
heterogametic gave  values of 34.9 5 0.7 and 29.9 2 0.1, 
whereas expectations with Equation 4  are 36 and 30.6, 
respectively. 
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