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ABSTRACT 
Evolutionary  models appropriate  for  analyzing  nucleotide  sequences that are subject to constraints 

on  secondary structure are  developed.  The  models  consider  the  evolution of pairs of nucleotides,  and 
they incorporate  the  effects of base-pairing  constraints  on  nucleotide  substitution  rates by introducing 
a new parameter to extensions of standard models of sequence  evolution.  To  illustrate some potential 
uses of the  models, a likelihood-ratio test is constructed  for the null  hypothesis  that two (prespecified) 
regions of DNA evolve independently of each other.  The sampling  properties of the  test  are  explored 
via simulation.  The test is then  incorporated  into a heuristic  method  for  identifjmg  the  location of 
unknown  stems.  The test and  related  procedures are applied to data  from  ribonuclease P RNA sequences 

E 
of bacteria. 

VOLUTIONARY  analyses  of  DNA sequences typi- 
cally  assume, either explicitly or implicitly, that 

neighboring nucleotides have  evolved independently of 
one another. To understand the evolutionary  dynamics 
of a molecular sequence constrained by secondary struc- 
ture, it is  necessary to devise  statistical methods that relax 
the assumption of independence among sites. In this 
work I present evolutionary models of nucleotide substi- 
tution that incorporate the effects  of constraints on sec- 
ondary structure. Among the  appropriate uses  of  these 
models are phylogeny construction and distance estima- 
tion for sequences with known structural features. As 
an example, I demonstrate the utility  of the models by 
constructing a likelihood-ratio test  of the null hypothesis 
that two segments of a DNA sequence evolve indepen- 
dently of one  another us. the alternative hypothesis that 
they are constrained to form a stem structure. 

The issue  of secondary structure has been  studied  for 
a variety  of molecules: ribosomal RNAs (Fox  and 
WOESE 1975), transfer RNAs (SPRINZL et al. 1987), 
group I introns ( CECH et al. 1983) , small nuclear RNAs 
( SILICIANO et al. 1987) and precursor messenger RNAs 
( STEPHAN and KIRBY 1993). Both experimental and an- 
alytical methods have been used. The phylogenetic- 
comparative approach of NORMAN PACE and his  col- 
leagues with ribonuclease P RNA (PACE et al. 1989; 
BROWN and PACE 1991) is especially  persuasive, and 
results have been reinforced with experimental findings 
(HAAS et al. 1991 ) . All  of the phylogenetic analyses 
rest on some fairly ad hoc guidelines. For example, a 
hypothesized stem is considered  “proven” if two or 
more cases  of compensatory changes are observed 
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(BROWN and PACE 1991 ) . Despite its usefulness in de- 
termining secondary structures, the phylogenetic-com- 
parative approach is limited in the  extent  to which it 
can be used in evolutionary analyses such as  phylogeny 
construction and distance estimation, because it  does 
not use an explicitlydefined evolutionary model. 

The fundamental idea used in the phylogenetic-com- 
parative studies serves  as the starting point of this work 
constraints on secondary structure  should leave  evi- 
dence in the form of an  altered  pattern of nucleotide 
substitution in stem regions. Compensatory changes 
should  be  more  frequent  than  expected by chance, and 
substitutions that discourage base pairing should  be less 
frequent  than  expected  under  independence.  One of 
the difficulties  with current methodologies for identi- 
fjmg stems is that  the  degree of sequence divergence 
is ignored. For example, the  rule of two compensatory 
changes mentioned above is applied universally, regard- 
less  of the  amount of change  the  data have undergone. 
STEPHAN and KIRBY (1993) pointed out the  need to 
account  for levels  of sequence divergence when making 
claims about  the  maintenance of secondary structures. 
The challenge is to formulate a framework that allows 
regions with substitution patterns different from the 
surrounding regions to be identified. It is desirable to 
quantify the statistical significance of these deviations, 
accounting for observed  levels  of divergence. Such a 
framework is presented below, and  it is shown that it 
provides useful tools both for confirming the existence 
of hypothesized stems and for identifjmg stems when 
no a pzori knowledge  as to their location is available. 

STATISTICAL FRAMEWORK 

Modified Jukes-Cantor model: As stated above, there 
have been only a few evolutionary models presented 
that  account  for  nonindependence of nucleotide sites. 
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CHURCHILL ( 1989) developed a Hidden Markov Chain 
approach in which adjacent sites  were more likely to 
have the same substitution rates than were  sites located 
far apart. MUSE and GAUT (1994) took into consider- 
ation the  dependencies between nucleotides within  co- 
dons  and  presented a model suitable for phylogenetic 
estimation and testing using coding regions. An a p  
proach similar to the  latter will be used here. 

The procedure begins by extending a simple model 
of nucleotide substitution ( a  4 X 4 transition matrix) 
to a model for independently evolving pairs of nucleo- 
tides (a  16 X 16 transition matrix). By introducing a 
new parameter A, it is possible to describe a new model 
that favors the  maintenance of stem structures between 
two regions of the sequence. I will call this a "stem" 
model. The independent-sites model is a special  case 
of the stem model,  formed when A = 1. The basic steps 
are to derive the  instantaneous  rate matrix for the case 
of independent evolution of pairs of nucleotides and 
to modify this rate matrix using A to account for pairing. 

For  simplicity, consider the null hypothesis that k 
sequences of n nucleotides have  evolved according to 
the model of JUKES and CANTOR (1969) (the JC 
model) . Other models will be  treated later. The transi- 
tion probabilities for this model may be expressed as 

Pi,j( t )  denotes  the probability that a nucleotide initially 
in state i ( i  = A ,  C, G ,  7') is in state j after t units of 
time have  passed.  Using this parameterization, the rate 
of substitution per nucleotide per  unit time is 3p/4. 
These expressions will  now be used to find the 16 X 
16 transition matrix, Po ( t )  , for pairs of nucleotides 
evolving according to the JC model. (For  the case  of 
stems, the pair of nucleotides are  not  adjacent to each 
other  but  are instead nucleotides constrained  to form 
a complementary pair.) If one assumes that each of the 
two sites in a pair evolves independently according to 
a JC model, ej( t )  is  simply the  product of  two Jukes- 
Cantor probabilities. Note that  in this context i and j 
are each one of the 16 nucleotide pairs. Each  of the 
256 entries of Po ( t )  takes one of three forms: 

I No differences (e.g., i = AC, j = AC) , 

y16 ( 1  + 3e-p") ( 1  - e - @ )  
( 2 )  

1 difference (e.g., i = AC, j = AG) , 

\ 2 differences (e.g., i = AC, j = TG)  . 
An alternate description of this evolutionary model will 

be useful. The matrix Po ( t )  may be  obtained from an 
instantaneous  rate matrix, A', using the relationship 

PO( t )  = 8"". (3)  
The instantaneous matrix that  produces Po ( t )  is simply 
the matrix derivative  of Po ( t )  with respect to t ,  evalu- 
ated  at t = 0 ( KARLIN and TAYLOR 1981 ) . The entries 
of A' are as  follows: 1 - $ No differences, 

A?. = 
tl 1 f 1 difference, 

0 2 differences 

and  the matrix takes the following form: 
AT TA CG GC AA AC ' 

- 3 p / 2  0 0 

TA 0 - 3 p / 2  0 0 p/4 0 "' 

This matrix can now be modified to account  for con- 
straints on secondary structure. There is no obvious 
choice as to what changes should be made. Fortunately, 
there  are some intuitive notions  that suggest certain 
types  of alterations. If a stem structure is favored, the 
relative probability of a change from an  unpaired state 
to a paired state should  be  greater  than  the  correspond- 
ing probability when sites are  independent. Similarly, 
changes from a paired state to an  unpaired state should 
occur with  lower frequencies than those predicted by 
an independent-sites model. To capture these features 
in the model, one can introduce a "pairing parameter", 
A, and modify A' to form a new matrix, A. Instantaneous 
rates for changes from an unpaired state to a paired 
state are multiplied by A (relative to the independent 
model in A') ; those for changes from a paired state  to 
an unpaired state are multiplied by 1 /A.  For the mo- 
ment, only  Watson-Crick ( A T  or CG) pairs are consid- 
ered.  It is  possible to incorporate GT pairings by making 
minor changes in A. This is discussed  in a later section. 
These definitions create an evolutionary model that fa- 
vors the formation of paired states  whenever A > 1: 

A 1  1 A  CG GC M A C  ..' 
AT /-3p/2A 0 0 0 p/4A p/4A ... \ 

0 - 3 p / 2 h  0 0 r/ 4A 0 

0 0 -3p/2A 0 0 
A =  

0 0 0 -3p/2A 0 
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The off-diagonal elements can be summarized as fol- 
lows: 

‘ pA/4 1 difference, pairing gained 

(e.g., i = AC, j = A T ) ,  

p/ 4 1 difference, pairing  unchanged 

(e.g., i = AC, j = A G ) ,  
( 5 )  

p/4A 1 difference, pairing lost 

I (e.g., i = AT, j = AC) , 

0 2 differences 

(e.g., i = AC, j = TG; i = AT,  j = GC) . 

By design this model reduces  to  the independent-sites 
Jukes-Cantor model when A = 1.  An analytical form for 
the  corresponding transition matrix, P ( t )  , could not 
be  found. Transition probabilities must instead be com- 
puted numerically, using the fact that 

P ( t )  = 8’ 

= I +  At + (At)’/2! + (At)3/3! + * * * ( 6 )  

A few important analytical results can be  obtained,  the 
first being the equilibrium distribution of the process. 
It is simple to verify that  the asymptotic frequencies of 
paired states, rP, and of unpaired states, r,,, are 

rTp = A2/(12 + 4A2), r,,= 1/ (12  + 4A‘). ( 7 )  

To verify this fact, notice that TA = 0, where 7r is the 1 
X 16 vector of  asymptotic frequencies. These quantities 
are useful for likelihood calculations where sums are 
evaluated across  all  possible ancestral states, each term 
weighted by the  appropriate equilibrium frequency. 

Having found  the asymptotic distribution, it is  now 
straightforward to show that  the process is reversible. A 
sufficient condition  for reversibility is that 

r i A q  = 7rjAji, i f j .  ( 8 )  

Reversibility  is desirable because it reduces the compu- 
tational burden of likelihood calculations. FELSENSTEIN 
( 1981 ) showed that  the “pulley principle” is applicable 
when a reversible model is used. This effectively re- 
moves one branch from an evolutionary tree by limiting 
likelihood evaluations to unrooted trees. 

Finally, the  expected  number of substitutions per site 
may be  obtained using the fact that 

16 

E ( S )  = - r t A i i .  
L i-1 

The factor of ’/‘ is used to put  the expectation on a 
per nucleotide basis rather  than a per nucleotide-pair 
basis. Some algebra reveals that 

E ( S )  = ?*(A + 1 ) p t .  (10) 

This expression can be used for computing distance 
measures between pairs of sequences. Note that when 
A = 1 the expectation for the JC model, E (  S )  = 
’ / 4 ~ t ,  is obtained. (Recall that a somewhat nonstandard 
parameterization of the JC model is being used.) Equa- 
tion 10 is consistent with observations that single- 
stranded regions in sequences with structural con- 
straints evolve more slowly than do stem regions ( Gu- 
TELL et al. 1985; VAWTER and BROWN 1993). It may not 
be necessary to hypothesize additional constraints on 
the single-stranded regions to explain the discrepancy 
in evolutionary rates. [However, VAWTER and BROWN 
( 1993) also noted  heterogeneous rates among different 
classes of single-stranded regions, an observation that 
suggests that  the use of one substitution rate for all 
single-stranded regions may be inappropriate.] 

TESTING FOR CONSTRAINTS ON 
SECONDARY STRUCTURE 

FEUENSTEIN ( 1981 ) provided the  general framework 
for likelihood analyses  of DNA sequences in  an evolu- 
tionary context. A simple three-sequence example is 
sufficient to  demonstrate  the  important concepts. S u p  
pose one has homologous DNA sequences of length I 
from  three species, A ,  B and C .  One of the  three possi- 
ble trees is  shown in Figure 1A. Let nj be  the nucleotide 
present  at site j in sequence i. If sites are assumed to 
have  evolved independently,  the likelihood function  for 
site j is  

Lj=CTny’pmy‘,nF(tc) C p , , ~ ~ , , ~ ( t ~ ) p ~ ~ , n ~ ( ~ A ) p ~ ~ , , ~ ( t B ) ,  

(11)  

where ti is the  branchlength leading to sequence i .  The 
units of measurement  depend on the  properties of 
P ( t )  . Application of the pulley principle allows the  tree 
to be treated as unrooted when the substitution process 
is reversible, in which  case the likelihood becomes 

0 
“ I  

0 ’  “1 

LJ = 7r, ,”p,,”, , : ( tA)pnio,ntB(tB)p,~,nlc(tC),  (12) 
4 

with labeling as in Figure 1B. The likelihood over  all 1 
sites is simply the  product of individual site likelihoods, 

L = n Lj. (13) 
j 

The parameters involved in the transition probabilities, 
Pid( t )  , may be estimated using maximum likelihood. 
Numerical methods  are typically  necessary to maximize 
the likelihood function, and details depend  on the form 

Likelihood-ratio tests can be constructed using this 
framework. Several authors have implemented such 
tests for a variety  of null hypotheses (RITLAND and 
CLEW 1987; NAVIDI et al. 1991; MUSE and WEIR 1992; 

o f P ( t ) .  
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A a 

Frcum 1.-Rooted and unrooted trees for three  se- 
quences. 

LEARN et al. 1993; MUSE and GAUT 1994; GAUT and 
WEIR 1994). If several homologous DNA sequences are 
available, an interesting question to consider is whether 
two regions have been  under selective constraint to 
form a stem structure; in other words, is X = l? A test 
of this hypothesis can  be  performed using the models 
described above. The data must first be divided into 
two subsets. The first set, S,, consists of the sites that 
form the hypothesized stem. If the stem is 1, base pairs 
in length,  there will be 21, sites in S,,. This set will be 
represented as I p  pairs of nucleotides. The second set, 
0,, contains the  remaining lu unpaired nucleotide sites. 
As an example consider  the  sequence 

AGCTT  CAAGC  TTATG  GGTTG CCGM. 

If  we  wish to test the hypothesis that positions 6-10 
pair with positions 20-16, the two sets are 

'Su = (AGC"TATGCCGAA)  and 

5, = { CG,  GG,  AT,  AT, CG). 

Each  of the homologous sequences would contribute 
in this manner to the two sets. 

Although neither assumption is necessary, the pres- 
ent discussion will be restricted to the case where the 
location of the hypothesized stem is the same for each 
sequence and where the sequences have a known  phy- 
logeny. A combined likelihood function for 1, unpaired 
sites and a stem region of 4 base pairs can be written 
as 

LT = LULp, (14) 

where L, is based on the JC model and uses the sites 
from 4,, and L,, is based on  the stem model and uses the 
data from 5,. Note that  the summation across ancestral 
nucleotides in Equation 12 is replaced by summation 
over ancestral pairs when computing 4. Three key  as- 
sumptions are  that  the substitution parameter, p, is  as- 
sumed to be the same for both  the paired and unpaired 
regions of the  sequence,  that  the pairing parameter, A, 
is the same for all parts of the  tree, and that base-paired 
sites  within  stems  evolve independently of other pairs. 
The first assumption is consistent with the idea that 
differences in substitution rates and pattern between 
paired and  unpaired regions are due solely to con- 
straints on base pairing, not to other constraints on 
the paired region. The second assumption is one of 
convenience and could be dropped if a large number 
of  sites  were included in the stem region. The set O p  is 
expected  to be small and probably will not provide 
enough information to estimate separate pairing pa- 
rameters for each branch. Finally, the assumption of 
independence is necessary to  compute  the likelihood 
function. This assumption is almost certainly violated, 
because purifymg selection is probably more intense 
once  a single mispairing is introduced  into  a stem. Max- 
imum-likelihood estimates ( MLEs) of a pt (substitution 
rates and time are naturally confounded  parameters) 
for each branch and of a single A are  found by numeri- 
cal maximization of the likelihood function. 

The null hypothesis of no constraints on the potential 
stem region is equivalent to the case X = 1.  A likelihood- 
ratio test of this hypothesis is  easily constructed. The 
numerator of the likelihood ratio is obtained by com- 
puting MLEs  of the pt under the (independent pairs) 
JC model. For this maximization the nucleotide sites 
from both S,, and 5, are  combined  into  a single set of 
unpaired sites, and estimation of the pairing parameter 
is unnecessary. The denominator is found by maximiz- 
ing the likelihood function from Equations 12- 14 using 
the  partitioned data. This step includes finding the 
MLE for A. The standard likelihood-ratio statistic, -2 
In (L/ LA) , has a distribution that is asymptotically chi- 
square with one degree of freedom. Large likelihood 
ratios suggest that  the nucleotides are not evolving  in 
an  independent fashion. It is necessary to check the 
estimate of X to see if pairing is favored (A > 1 ) or 
avoided (A < 1 ) . If the alternative hypothesis of interest 
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is HA: A > 1, it is appropriate to halve the P value 
obtained from the likelihood-ratio test. 

It  should  be clear that  the idealized situation just 
described will rarely arise in practice. As usual, there 
will often be violations of model assumptions. Of more 
concern is the fact that it is most  likely for the two 
regions of interest to be selected by prior analysis to 
find regions of high complementarity. This is implicitly 
a multiple-test situation. Not only are  the two selected 
regions being tested, but all other possible pairs of  re- 
gions are effectively tested during  the screening pro- 
cess. The interpretation of p values becomes problem- 
atic, and this difficulty is not easily circumvented. In 
theory, an  appropriate p value that accounts for multi- 
ple tests could  be calculated using a parametric boot- 
strap  approach. One would simulate a set of sequences 
using the MLEs of substitution rates obtained from the 
null model. All possible pairs of regions of the  length 
used in the test would then be subjected to  the likeli- 
hood-ratio test just described, and  the maximum value 
recorded. The process would then  be  repeated many 
times, providing an estimate of the distribution of the 
supremum of the test statistics. This distribution,  rather 
than  the chi-square distribution, would provide the 
test’s p value. Unfortunately, current  computing tech- 
nology does not make this a practical option. Simula- 
tion of  many replicate sets of data, applying single tests 
(or  perhaps  a  moderate  number of tests) and tabula- 
ting the distribution of the maximum test statistic might 
provide a reasonable approximation to the full-blown 
parametric bootstrap  procedure.  It would be necessary 
to investigate the  number of  tests required to obtain  an 
adequate  approximation before making strong claims 
from such a  method. 

The phylogeneticcomparative method suffers from 
the multiple-test problem to the same degree as does 
the likelihood-ratio test. It is  likely that  the hypotheses 
one might wish to test using the likelihood-ratio test will 
be suggested by prior  exploration using comparative 
sequence analysis. The major advantage offered by the 
likelihood-ratio test is a  more rigorous criterion for 
claiming support for potential stems. The rule of two 
compensatory changes is replaced by a rejection rule 
that considers the observed level  of sequence diver- 
gence. The likelihood-ratio test also  makes more effi- 
cient use of the  data. Compensatory changes are  not 
the only evidence that  should be left by maintained 
stem structures. There is also evidence in the types of 
changes  that do  not occur. It is a curious fact that  the 
comparative method is not able to identify a stem that 
is absolutely conserved. To identify such a  feature, one 
must compare  the probability of not seeing any changes 
under a null model of independence to the correspond- 
ing probability under a model that favors pairing. The 
likelihood methodology incorporates all information 

regarding  the observed pattern of substitution rather 
than using only information  about covariation. 

EXTENSIONS 

Modified  Hasegawa, Kishino and Yano model: There 
is no reason to limit these procedures  to  the JC model 
of evolution. Empirical results are known for a  number 
of models of nucleotide evolution (KIMURA 1980; 
FELSENSTEIN  1981; TAMURA 1992; TAMURA and NEI 
1993). A quite  general model (the HKY model) was 
presented by HASEGAWA et al. ( 1985). It allows for both 
unequal base frequencies and separate transition and 
transversion rates. In  a sense, it is a combination of the 
models of KIMURA (1980)  and FEUENSTEIN (1981). 
The formulation proceeds as before, and  the resulting 
instantaneous matrix has the following form: 

AT  TA CG  GC AA AC ... 

AT 

TA 

CG 

Gc 

AA 

AC 

A =  

The diagonal elements are  defined to make the ele- 
ments of each row sum to 0, and they are omitted for 
readability. Once this model is formed, likelihood-ratio 
tests  may be  conducted as in the JC  case.  Each branch 
now  has two substitution parameters to maximize, 
rather  than  one.  The asymptotic frequencies are also 
different: 

x,, = ~ r ~ r ~  rITp = K T , I T ~ A ~ ,  (15) 

where ri and rj are  the base frequencies associated  with 
the two nucleotides in the pair and 

K =  1/ [1  2 ( r A r T +  ? T ~ ~ T G ) ( A ~ -  I ) ] .  (16) 

For completeness it can also be shown that  the expected 
number of substitutions per  (nucleotide) site  over t 
units of time is 

E ( S )  = ~ ~ K { A P ( ~ A ~ T  r c r c )  + P ( ~ A ~ c  T G ~ T )  

+ ~ ( ~ A ~ G [ T A  + r c l  + r c ~ ~ [ r c  + ~ 7 - 1 )  
+ Aa(rATT[rC + r C 1  + n C T G [ T A  + r T 1 ) ) .  

Allowing GT pairings: When large numbers of spe- 
cies are  examined, GT (GU in RNA) pairings are fre- 
quently observed in some species at sites where compen- 
satory changes seem to have occurred ( ROUSSET et al. 
1991).  It has often been suggested that GT acts as a 
(slightly deleterious)  intermediate state between  differ- 
ent canonical pairings and  that most, if not all, compen- 
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satory changes occur via this pathway ( ROUSSET et al. 
1991 ) . A simple modification of the A matrix defined 
in the previous section accommodates much of the na- 
ture of the GT-intermediate hypothesis: 

‘a7r1 A transition difference, 

pairing grained (e.g., i = AC, j = A T ) ,  

PIT, A transversion difference, 

pairing gained (e.g., i = CT, j = A T ) ,  

anl transition difference, 

pairing unchanged (e.g., i = AT, j = G T )  , 

Prt transversion difference, 
A.. = 
9 pairing unchanged (e.&, i = AC, j = AG) , 

art/  A transition difference, 

pairing lost (e.g. ,  i = AT, j = AC) , 

P r l /  A transversion difference, 

pairing lost (e.g., i = AT, j = A A ) ,  

0 2 differences 

, (e.g., i = AC, j = GG; i = AT, j = G C ) .  

(17) 
In  the above definitions, 7rl  refers to  the frequency 

of the  “target” nucleotide. For instance, when consid- 
ering a change from AT to AC, the target nucleotide is 
C. The model described by this matrix lacks some fea- 
tures of the GT-intermediate model. Most noticeably, 
GT pairings are given the same fitness as are canonical 
pairings. Nonetheless, this adjustment should incorpo- 
rate most  of the desired behaviors. (A worthwhile exer- 
cise  would be to  formulate a similar model that allows 
a test of the GT-intermediate hypothesis. Such a model 
would treat GT  as a slightly deleterious state and would 
presumably require  the  introduction of at least one new 
parameter.) As has been shown, it is useful to have 
expressions for the asymptotic frequencies to facilitate 
likelihood calculations. Equilibrium frequencies for the 
model of Equation 17 retain the same form as the previ- 
ous models. The frequencies of paired and unpaired 
states are still  given by Equation 15, with a new  value 
Of  K :  

K = 1 / [1 + 2 ( T A ~ T  f rc7rc; + r ( ; r ~ )  

X ( A 2  - I ) ] .  (18) 

SAMPLING  PROPERTIES OF THE TEST STATISTICS 

Given that stem regions are typically quite  short,  the 
adequacy of the asymptotic chi-squared distribution for 
the likelihood-ratio statistic is questionable. If the small- 
sample distribution under the null hypothesis is not 

0.05 ’ 

/ 
0.10 

\ 

/ 0.10 \ 0.20 
0.05 0.10 

( n e e  B) 

FIGURE 2.-Model trees for simulation  studies. 

approximated satisfactorily by a chi-square distribution, 
it may be necessary to resort to a procedure devised by 
COX ( 1961,1962 ) and applied to problems in sequence 
evolution by GOLDMAN (1993). Of course, if P values 
are estimated using the parametric bootstrap, devia- 
tions from the asymptotic distribution are of no conse- 
quence. At any rate, this question was studied using 
Monte Carlo simulations of the test procedure. Two 
different trees for four sequences were  used (see Figure 
2) . Tree A displays  clocklike evolution, whereas Tree 
B does  not. Data  were generated according to the (in- 
dependent sites) HKY model. Parameter values for 
each branch  are shown in the figure. Transition rates 
(a) are above, and transversion rates (/I) are below. 
These values are similar to those found in the RNase 
P RNA data examined later in  this paper. Nucleotide 
frequencies for each case  were nA = rc = 0.15, 7rf; = 
rT = 0.35. Five hundred replicate data sets  were gener- 
ated for each tree. The random sequences were each 
of length 520. The likelihood-ratio tests  based on both 
the JC and HKY models were computed for each simu- 
lated set of data.  The alternative hypothesis was that a 
stem of length 10 was formed between  sites 1-10 and 
20- 11. The results are shown in Table 1.  In  both cases 
the tests appear  to reject the null hypothesis with the 
frequency predicted by the chi-squared distribution. 
Therefore, it should be safe to apply either of the tests 
to real data with  phylogeny and  branchlengths similar 
to the model trees, in the sense that excessive numbers 
of  false  positive results are  not expected. The results 
listed are for the upper-tailed test, which rejects only 
when A > 1. The rejection levels for the lower-tailed 
test (and consequently for the two-tailed  test  as well) 



Evolutionary  Model  for  Stem  Regions 1435 

TABLE 1 

Null distribution of the  likelihood-ratio  test statistic 

n Tree 0.025  0.005  0.025 0.005 

10 A 0.008 0.000 0.022 0.002 
10 B 0.012 0.002 0.026 0.006 
50 A 0.002 0.000 0.034 0.008 
50 B 0.002 0.000 0.026 0.008 

Results of simulation  study  investigating  the  rejection  prob- 
abilities of the  likelihood-ratio  test  when the null hypothesis 
that A = 1 is true. If the  asymptotic  chi-square  distribution is 
applicable,  the  test  statistic  should  reject at the 0.025 and 
0.005 levels at the  nominal  frequencies.  The  length of region 
tested  for  base  pairing is n. Tree  indicates  which  model  tree 
(see  Figure 2) is being  used.  The  table  entries  indicate  the 
proportion of 500 replicates  that  reject Ho at  the level  indi- 
cated by the column heading (0.025 or 0.005). 

are significantly higher  than  the levels predicted by the 
chi-squared distribution  (results not  shown) . Signifi- 
cant test results for < 1 should not be trusted. 

A second  feature  to study is the power of the testing 
procedures.  A series of simulations was performed using 
the HKY stem model to generate  random  data sets. For 
each of the  trees in Figure 2, 100 replicate data sets 
were generated using values  of A ranging from 1.0  to 
2.5. The rejection probabilities appear in Table 2. No- 
tice that power increases rapidly as A increases beyond 
1.5. As was the case under  the null hypothesis, the JC 
stem test applied to data  generated  under  the HKY 
model has somewhat reduced power. The values of A 
expected  in  nature are unknown, so it is premature  to 
make judgments as to the power of the tests for real 
data. In  the  next section the tests are  applied to actual 
sequence  data, resulting in estimates of A -5. The tests 
should have excellent power in such cases. There seems 
to be little difference between the two model trees. 
Power seems to  be  higher  for Tree B for small  values 
of A, but Tree A appears to provide more power for 
larger values  of A. This is likely due to the overall length 
of the trees. 

APPLICATION  TO RNME P RNA 

The enzyme ribonuclease P (RNase P )  functions in 
vivo as an RNA-protein complex, but it is unique in the 
fact that its  catalytic center is composed of  RNA rather 
than  protein (PACE and SMITH 1990). A  great  deal of 
effort has been  spent trying to determine  the  structure 
of the RNase P RNA  with hopes  that such knowledge 
will enhance  the  understanding of  its function (JAMES 
et al. 1988; PACE et al. 1989; BROWN and PACE 1991 ) . 
This work has provided a  model of  RNase P secondary 
structure  along with persuasive evidence that  the  model 
is  mostly correct. However, the analyses  follow a some- 
what ad hoc route. One particularly interesting  rule of 

TABLE 2 

Power of the  likelihood-ratio  test 

JC HKY 
Tree A 0.025 0.005 0.025  0.005 

A 1.1 0.01 0.00 0.03 0.00 
1.2  0.03 0.02 0.04 0.02 
1.3 0.08 0.02 0.15 0.05 
1.4 0.08 0.02 0.16 0.06 
1.5 0.05 0.02 0.21 0.05 
1.6 0.34 0.14 0.51 0.28 
1.7 0.23 0.12  0.38 0.18 
1.8 0.60  0.36 0.67 0.54 
1.9 0.59  0.39 0.73 0.50 
2.0  0.59  0.33  0.75 0.56 
2.1 0.70 0.50  0.82  0.67 
2.2 0.81 0.63 0.91  0.77 
2.3  0.68 0.36 0.81  0.53 
2.4 0.82 0.58 0.93 0.73 
2.5  0.95  0.86  0.98  0.92 
3.0 0.94 0.87  0.99  0.94 

B 1.1 0.03 0.00  0.06  0.02 
1.2  0.07  0.03 0.19 0.05 
1.3 0.12  0.04 0.21 0.10 
1.4 0.08 0.03 0.17 0.06 
1.6 0.10 0.01 0.20  0.06 
1.7 0.34 0.13 0.51  0.28 
1.8  0.69 0.45 0.80 0.65 
1.9 0.39  0.24  0.54 0.31 
2.1 0.67  0.41  0.77 0.60 
2.2  0.69 0.48 0.81  0.64 
2.3  0.86  0.72  0.94  0.83 
2.4  0.69  0.49 0.80 0.63 

Results of simulation  study  investigating  the  power of the 
likelihood-ratio  test for various  values  of A. Table  entries  indi- 
cate  the  proportion of 100 replicates  that  reject Ho at the 
level  indicated by the column heading (0.025 or 0.005). The 
column  labeled A indicates  the  value of A used  to generate 
the  replicate  data  sets  summarized  on  that row. 

thumb is that  a stem structure is considered  “proven” 
if at least two examples of compensatory changes (co- 
variations of base pairings that  maintain stem structure) 
are  found in the species being studied.  This  criterion 
was originated by  FOX and WOESE ( 1975) , who  were 
studying the secondary structure of ribosomal RNAs. 
The RNase P sequence  data provide an excellent oppor- 
tunity to explore  the utility of the test proposed above 
and to provide additional  support  for  the secondary 
structure  model of  RNase P RNA. 

The data  and sequence  alignment were taken from 
PACE et al. ( 1989)  and consist of sequences  from the 
four Gram-positive bacteria Bacillus subtilis (Bsu) , B. 
stearothm@hilus ( Bst) , B. megatm’um (Bme ) and B. 
brais ( Bbr ) . The analysis used 433 aligned sites along 
with the  core secondary structure  model given in 
BROWN and PACE (1991 ) . This  model is shown in Fig- 
ure 3. The phylogeny of the species was assumed to be 
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TABLE 3 

Tests of RNaseP core structure 

Stem  Location I LRT 

1 4-14, 385-375 4.09 32.03 
2 15-21, 328-322 6.62  29.25 
3 23-29,43-37 3.85  20.59 
4 52-56, 379-375 w 47.47" 
5 58-90, 243-235 4.31 15.55 
6 93-96, 110-107 5.57 15.07 
7 114-116, 129-127 co 16.05" 
8 197-204, 209-202 6.87 36.53 
9  248-250,  264-262 m 15.94" 

10 268-274, 297-291 4.78  24.71 
Model 5.29  224.30 

Each  of the  features  labeled in Figure 3 was tested using 
the likelihood-ratio  test.  Columns 1 and 2 provide the  label 
numbers  from  Figure 3 and the  actual  location of the  features 
in the  RNaseP  sequence.  The final two columns  show  the 
maximum-likelihood  estimate of A and  the value of the likeli- 
hood-ratio test statistic. 

If the two regions  being  tested  show  only  paired  states  at 
all  sites in all sequences, the MLE of A is m. The value of the 
test  statistic  shown in the  table is a lower bound for the true 
likelihood-ratio statistic. Numbering of sites follows BROWN 
and PACE 1991. 

that given in BROWN and PACE (1991 ) : {Bbr, [ Bme, 
(Bst, Bsu) ] ). GT pairings were not considered in the 
analysis. 

The first question posed was whether or  not  the first 
stem structure hypothesized by the Brown and Pace 
model (sites 4-14 paired with  sites 385-375) has been 
maintained by selective constraint. The likelihood-ratio 
test described above was applied, using the exact 
boundaries of the proposed structure.  The value of the 
chi-square test  statistic was 32.0 ( P  4 0.001 ) , and  the 
estimate of A was 4.1. Therefore,  the conclusion is that 
the nucleotides in these two regions have not evolved 
independently  but have instead evolved in tandem to 
maintain a stem structure. Each  of the  other stems from 
the  core  structure were  also tested, and these results 
are shown  in Table 3. A test of the  entire  core model was 
also performed. As mentioned  earlier,  there is clearly a 
difficulty  with proper  interpretation of these P values, 
because previous  analysis of the  data suggested the ap- 
propriate tests. Some help is provided by the simula- 
tions from the previous section. The largest chi-square 
statistic from any  of those tests when the null hypothesis 
was correct was 9.24. The smallest  value from the 
RNaseP data was 15.07. When data were simulated with 
A > 1, an individual chi-square statistic  above 15 was 
not observed until A was 1.6, and the average  value of 
the chi-square statistic did not exceed 15  until A was 
2.5. This gives some measure of credibility to the claim 
that  there is statistically significant support for the stems 
listed  in Table 3.  Even  with the problems interpreting 

W 
FIGURE 3.-Core secondary  structure  model  for  RNase P. 

From BROWN and PACE ( 1991). 

Pvalues,  the level  of rigor is considerably higher  than 
inferences drawn from the phylogenetic-comparative 
approach. 

Perhaps a  more interesting problem than testing for 
the significance of a stem proposed by other analyses 
of the same data is the search for stems when their 
locations are unknown. The likelihood-ratio test was 
incorporated  into  a  procedure designed to perform this 
task.  Ideally, one would  want to perform the test on all 
possible  stem structures, allowing for arbitrary loop 
sizes and stem lengths. However, it takes  only a  moment 
to realize that  there  are far too many  possibilities to 
perform such an analysis,  even  with  relatively  small data 
sets.  Some restrictions must be placed on the search. 
To obtain the results shown in Figure 4, the search was 
restricted to stems of length 10 bp  and a maximum 
loop size  of  20 nucleotides. It is important to note  that 
such a restriction does not  prohibit  the  procedure from 
finding stems of other lengths. A signal is expected 
whenever the  correct nucleotides are paired together, 
even if some nonpairing sites are  included in the hy- 
pothesized stem region. The explored region consists 
of  200 nucleotides at  the beginning of the RNaseP  se- 
quence. Features 3, 6  and '7 from Figure 3 are included 
in this region. In Figure 4  the vertical and horizontal 
axes represent the starting positions of two 10-base re- 
gions that  are tested for pairing constraint. A point is 
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plotted if the likelihood-ratio test  statistic is greater  than 
a given cutoff value.  For example, in Figure 4A a  point 
would be plotted at ( 41,55 ) if the test pairing sites  41 - 
50 with  sites  64-55 resulted in a chi-square value  above 
4. Not surprisingly, Figure 4A contains many points be- 
cause of the large number  (3591 ) of tests performed. 
As the significance  level is lowered, though,  the  number 
of significant test results quickly  falls. In Figure 4D virtu- 
ally  all the significant tests are  for previously identified 
paired regions. Features 3 and  6 each provide strong 
signals, as do several features that  are  present in  Bacillus 
RNaseP  RNA but  not in the  core  structure (BROWN and 
PACE 1991 ) . Feature 7 is supported only  with chi-square 
values  above  6. Deletions in that region reduce  the 
power  of the testing procedure. The low number of 
false  positives is encouraging. Only two regions (63- 
72, 85-76 and 64-73, 94-83) indicate unsupported 
pairings with chi-square values  above 10. Curiously, the 
5’ regions of these pairs include one  domain (62-66) 
of the  pseudoknot (feature 4 ) .  These results serve  as 
confirmation for both  the  core model and the search 
procedure. 

DISCUSSION 

New evolutionary models appropriate for regions 
that form stem structures have been developed. Using 
these models, a test for detecting constraints on second- 
ary structure has been formulated. In  turn, this test 
has been included in a  procedure for identifjmg  the 
locations of unknown stem structures. The procedures 
were applied to ribonuclease P RNA sequence data 
from bacteria with  positive results: “known” stems  were 
found to be under selective constraint,  and evidence 
for correctness of the  core  structure was provided. 

The evolutionary models are also appropriate for 
computing evolutionary distances and performing phy- 
logenetic analyses for sequences with pairing con- 
straints. In fact, it might be the case that  the most  useful 
applications of these models are in the  area of phylog- 
eny reconstruction. Although violations of the  indepen- 
dently and identically distributed assumption have long 
been acknowledged when using molecules such as ribo- 
somal RNAs for phylogenetic inference, little has been 
done to account for the violations. The models pre- 
sented  here  are immediately useful for maximum-likeli- 
hood estimation of evolutionary trees with the caveat 
that  at least some parts of the secondary structure are 
known. The models allow maximum-likelihood estima- 
tion of evolutionary distances that  account for corre- 
lated changes at paired sites and also provide correct 
variance estimates via the curvature of the likelihood 
surface near  the maximum. Estimates  of evolutionary 
distances can be  found by replacing the parameters in 
Equation 10 or 15 with their MLEs.  By the invariance 
property of maximum-likelihood estimators, this  esti- 
mate is also a MLE. 

With the  tremendous increase in computing power 
over the last few years, it is  now time to move from 
models of  DNA sequence evolution that assume that 
sites  evolve independently to more complex and realis- 
tic ones. The models presented in this work are  a step 
in that  direction, as  were the models in CHURCHILL 
(1989)  and MUSE and GAUT (1994). Such models 
should provide more reliable evolutionary analyses,  be- 
cause  they can account for aspects of  DNA sequence 
evolution that  are known to occur but are not accom- 
modated by older simpler models. More complex mod- 
els  also offer, for the first time, rigorous tests  of some 
biological hypotheses. One of the  fundamental goals  of 
the study of molecular evolution is to obtain an under- 
standing of the  mode in  which molecular sequences 
evolve. The evolutionary process may be very compli- 
cated,  and it is only by developing more realistic mathe- 
matical models that we can develop methods for testing 
the adequacy of simpler models. 
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