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ABSTRACT 
An exact recurrence  equation  for  inbreeding  coefficient is derived  for a partially sibmated  population 

of N individuals  mated  in  N/2  pairs.  From  the  equation, a formula  for  effective size (Ne) taking  second 
order terms  of l/Ninto consideration is derived.  When the family  sizes  are  Poisson  or  equally distributed, 
theformulareducestoN,= [ (4 -3p)N/ (4 -2@)]   + lo rN,=   [ (4 -3P)N/ (2 -2@)]   -8 / (4 -  
3P) , approximately.  For  the  special  case  of sibmating  exclusion  and  Poisson  distribution  of  family  size, 
the  formula  simplifies  to N, = N + 1, which  differs  from  the  previous  results  derived by many authors 
by a value of one. Stochastic  simulations  are  run  to  check our results  where  disagreements  with  others 
are  involved. 

M OST analyses on inbreeding and effective  size  as- 
sume that mating is at random.  Nonrandom mat- 

ing, however, is commonly found in natural popula- 
tions of plants (JAN 1976) and animals ( MOEHLMAN 
1987). In domestic animal or plant  breeding programs, 
nonrandom mating is deliberately utilized by breeders 
as an  important  method to change  the genetic constitu- 
tion of the populations; matings between relatives are 
either purposely carried out  or avoided for specific 
breeding purposes. 

Some  previous  work  has considered the effect of non- 
random mating on effective population size (WRIGHT 
1951; CROW and MORTON 1955; KIMURA and CROW 
196313; ROBINSON and BRAY 1965; CROW and DENNISTON 
1988; POLLAK 1988). Some formulae on effective  size 
derived by the above  studies  have been shown to be  in- 
complete or incorrect by a recent analysis  of CABALLERO 
and  HILL ( 1992) . For  stable  census number, N( half  in 
each sex) , the equation has been expressed as 

where 0 is the  proportion of full sib matings and Si is 
the variance of  family  size. When Si = 2/3 is included 
into (1 ) , the result is Ne = 3N/2, irrespective of p. 
Equation 1 gives estimates of Ne accurate enough  for 
large values  of N, though it is only a first order approxi- 
mation. As will be shown, the  higher  order terms be- 
come important  for small populations with the variance 
of family  sizes far from the value  of ‘ / s  and (or)  a high 
proportion of sib matings. In practical domestic animal 
and captive animal populations, effective  sizes are gen- 
erally  small and (1 ) may result in a large bias. 

Furthermore, most  previous  work  has concentrated 
on the evaluation  of  effective  size. We know,  however, 
in nonrandom mating populations effective  size  is de- 
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fined as the limiting  value (over  time) of the rate of 
increase of inbreeding. In practice, most populations do 
not maintain the same  characteristics for such a long 
time, and in breeding programs interest is more likely 
concentrated on early generations. It has been shown 
(KIMURA and CROW 1963a; COCKERHAM 1970) that 
avoiding  early inbreeding may  have high  final rates of 
inbreeding. For these reasons we concur with WRIGHT 
(1951) and ROBINSON and BRAY (1965) in deriving the 
exact recurrence equations for the probability  of identity 
by descent. We differ from them, however,  in that we 
consider both partial sib mating and progeny distribu- 
tion  simultaneously  in our model. We also correct their 
equations for inbreeding and effective  size  when the 
number of progeny per family  is  Poisson distributed. 

RECURRENCE FORMULAS FOR 
INBREEDING COEFFICIENT 

Throughout  the  paper  the assumptions are discrete 
generations, stable census population size  with equal 
numbers of male and female individuals in each genera- 
tion, and autosomal inheritance involving genes  that 
do  not affect viability or reproductive ability so that 
natural selection is not operating to eliminate them. 

In deriving the formula for F, (ie., the  inbreeding 
coefficient in generation t ) ,  coefficient de  parent6 
( MALECOT 1948) , translated as coancestry or coeffi- 
cient of parentage ( KEMFTHORNE 1957), is utilized. 
This coefficient can be  defined as the probability that 
two genes at a given locus, one taken at random from 
each of  two randomly selected individuals from the p o p  
ulation, are identical by descent. Generations are mea- 
sured from a hypothetically infinite base population 
(generation  zero) in  which inbreeding coefficients and 
coancestry of  all individuals are zero. 

If we assume that, of the N/2 mating pairs formed 
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TABLE 1 

Probability of a full sib or nonisib pair of two individuals from each or both sexes 

Total no. 
Kind  of pairs  of  pairs No. of fullsibs No. of non-sibs Frequency of fullsibs Frequency of nonsibs 

Male  with female: N 
mated 2 

- X N -  2X 
2 

p = -  2 x  
N 

1 - p : -  N -  2X 
N 

Male  with female: N ( N  - 2 )  (1 - p + O)N - 20 N1 - 2(2  - p + 0 ) N  + 40 2(1 - p + O)N - 46 fl - 2 ( 2  - p + O)N + 40 
unmated 4 2 4 N(N - 2 )   N ( N  - 2 )  

Male  with  male N ( N  - 2 )   ( N  - 2)V, ( N  - 2 )   ( N  - 2Vm) 2 VI N -   2 V ,  
8 4 8 N N 

~~ - 

Female with female N ( N  - 2 )   ( N  - 2 ) v /  
" 

( N  - 2 ) ( N  - 2v/) 2 F   N -  2v/ 
8 4 8 N N 

- 

from the N individuals in each generation, X are full 
sib pairs chosen at random from the total possible full 
sib matings, then  the  proportions of full sib mating and 
non-sib mating will be p = 2 X /  N and 1 - p = 1 - 
2 X /   N ,  respectively. 

In the population with N / 2  families and m, male and 
female  progeny per family, the number of  total  possible 

full  sib  mating  pairs is Z 2: m, j , which, for stable  popula- 
tion size  with 1si = f= 1, gives [ ( 1 + 8 )  N - 2 8 ] / 2 ,  where 
8 is the covariance of numbers of male and female  prog- 
eny per family. Of the total  possible  full  sib mating pairs, 
X = p N / 2  are pairs of full  sibs  actually mated, thus [ ( 1 
- p + 8 )  N - 2 8 ] / 2  are full sib  pairs not mated. Anale 
gously, the total number of possible  mating  pairs is N 2 /  
4,  of  which N / 2  are pairs  actually  mated and N (  N - 2 ) /  
4 are not mated. So the probability that a  pair of male 
and female  individuals are full sibs  given that they are not 
matedis [ 2 ( 1  - 0  + 8 ) N -   4 8 ] / [ N ( N -  2)].Similarly, 
the probability that a pair of two male or female  individu- 
als are full  sibs can  also be derived, in which the variances 
of the numbers of male  progeny (V,) and of female  prog- 
eny (5) per family are involved.  All  these  probabilities 
are listed  in  Table 1 .  

Let and GNst be  the coancestry of  full sib and 
non-sib pairs respectively in generation t .  The average 
inbreeding coefficient in generation t is 

Ff = Gf-1 = pGS,f-l + ( 1  - 0 )  G N ! $ t - I .  ( 2 )  

The corresponding pedigrees for full  sib and non-sib 

Mating Type 

Generation A B 

t - 2  T>(i M\/ 

t -1 MI Fi M i  Fl 
FIGURE 1.-Pedigrees for full sib (A) and non-sib (B)  matings. 

matings are diagrammed in  Figure 1. Given  full  sib  mat- 
ing, the coancestry  of M 1  and F1 in generation t - 1 is 

= '/4[2fi-1 + F f - 2  + 1 1 .  ( 3 )  

For non-sib mating, using the probabilities listed in 
Table 1 ,  we get 

c~st-1 = %[ GMzM3,t-z + GM2F3,1-2 + GM9F2,f-2 

N - 2V, 
N GNSf-2 1 

2 ( 1  - p + B ) N -  48 +'[ N ( N - 2 )  G I - 2  

+ N 2  - 2 ( 2  - /3 + 8 ) N +  48 
N ( N  - 2 )  G N s . f - 2  1 

N -  2vf 
N G S , f - 2  + - GNsf-2 1 

- N +  V , +   v f + 2 8  - 
2N G S t - 2  

+ 2 N -   V m -  vf- 28 1 
2N G N S t - 2  - - Ft-I. ( 4 )  N -  2 

When ( 3 )  and (4) are substituted into ( 2 ) ,  we there- 
fore  find, after some algebra, that 

Ff= { 4 [ ( 2  + p ) N 2  - ( 6  + S:)N+  2S:]Ff-1  

- 2[ /3N2  - ( 2  + S : ) N +  2 S : I f i - z  

- [2/3N2 - ( 2  + 2 p  + S : ) N +  2SilFt-3 

+ ( 2  - 2 0  + S : ) N -   2 S : } / [ 8 N ( N -   2 ) 1 ,  (5) 

where the variance of family  size  is S: = V,,, + 28 + 5. 



Effective  Population  Size 359 

It is evident that Fo = Fl = 0 and F2 = P / 4 ,  and f i (  t 2 
3 )  can  be calculated using ( 5 ) .  

Equation 5 is a general  form of the exact recurrence 
equation  for  the  inbreeding coefficient of a population 
with partial sib mating. Several simple equations can be 
derived from it. 

Case a: If the  numbers of male and female progeny 
per family are Poisson distributed, V, = V, = 1 and 0 
= 0, thus Si = 2.  Then we get 

f i  = ( 2 [   ( 2  + P ) N 2  - 8 N +  4IFt-l 

- [ P N 2  - 4 N  + 41 Fl-2 

- [ O N 2  - ( 2  + P ) N +  2]Fl-3 

+ ( 2  - P ) N -  2 ] / [ 4 N ( N -   2 ) 3 .  ( 6 )  

For the cases  of random mating (0 = 2 / N )  and non- 
sib mating ( P  = 0 )  , ( 6 )  reduces to 

Ft = f i - 1  - (2Ft-1 - Ft-2 - 1 ) / 2 N  ( 7 )  

and 

X (4 f i -1  - 2f i -2  - 6 - 3  - 1 ) , ( 8 )  

respectively. 
Equation 6 is different from the  recurrence  equation 

derived by WRIGHT ( 1 9 5 1 )  and POLLAK ( 1 9 8 8 )  that 
can be expressed as (in  our notation) 

F t =   [ 2 ( 2 N +  P N -  4)Ft-l - ( P A "  4)Ft-z 

- ( P N -  2)&-3 + 2 ] / 4 N .  (9) 

For the cases  of random mating and non-sib mating, 
( 9 )  reduces  to ( 7)  and 

Ft = Ft-1 - (4Ft- ,  - 2Ft-2 - Ft-3 - 1 ) / 2 N ,  (10) 

respectively. Equations 7 and 10 are also  derived by ROE 
INSON and BRAY ( 1965) separately for the two cases. As 
will be explained, (9) and ( 10) are incorrect because 
of an incorrect probability  used  in their derivation. 

Case b: If one male and  one female progeny are 
selected at  random from each family, V, = V, = 0 = 0. 
Then Si = 0 and 

F t =   { 2 [ ( 2  + P ) N -  6lFt-1 - ( P N -  2 ) f i - 2  

- ( P N -  1 - P)&-, + 1 - P ) / ( 4 N -  8 ) .  (11) 

Equation 11 reduces to 

Ft = f i - 1  - (Ft-3 - 1 ) / 4 N   ( 1 2 )  

and 

Ft = 6-1 - (4Ft-l - 2Ft-2 - Ft-3 - 1 ) / ( 4 N -   8 ) ,  

( 1 3 )  
respectively for  the cases  of random mating and non- 
sib mating. 

Generations 
FIGURE 2.-The inbreeding  coefficient ( N  = 16). Both 

male and female progeny  are  Poisson  distributed ( S i  = 2 ) ,  
plotting (6)  (-) . One  male  and  one  female  progeny are 
selected  from  each  family ( S :  = 0)  , plotting ( 11) ( -  - - )  . 

The effect of partial sib mating on  the  inbreeding 
coefficient over the first 20 generations for N = 16 is 
shown  in Figure 2. In any  case, the  inbreeding coeffi- 
cients for any generation increase as the value of P 
increases. However, differences among  the two sets of 
lines are evident. With male and female progeny Pois- 
son distributed (case a ) ,  the lines diverge slightly  as 
the  generation  number increases, while,  with one male 
and  one female progeny from each family (case b )  , 
the lines converge slightly and eventually  cross; smaller 
values  of P give  lower inbreeding coefficients in the 
first few generations  than larger values, but in later 
generations  the order is reversed. These results are gen- 
erally in accordance with those of ROBERTSON ( 1 9 6 4 ) .  
For  case b,  the  generation  at which a reversal  takes 
place for different values  of P can  be calculated from 
( 1 1  ) . For example, the line for p = 0.75 will cross the 
lines for P = 0.5, 0.25 and 0 in generations 89,   83 and 
80, respectively. 

Figure 2 also  shows that in the first few generations 
the  inbreeding coefficient for Si = 2 with a smaller 
value  of ,8 is  lower than  that for Si = 0 with a larger 
value  of P, but in later  generations  the order is reversed. 
The generation in which the reversal  takes place is de- 
pendent  on  the values  of P and  the value  of Nand can 
be determined by ( 6 )  and ( 11 ) . For example, the line 
for Si = 2 with P = 0 will cross the lines for Si = 0 
with = 0.25,  0.5 and 0.75 in generations 7, 15 and 
29, respectively. 

Results for other values  of N are similar to those 
shown. When the value  of Si is larger and smaller than 
2/3, the results are similar to those of  cases a and b, 
respectively. 
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EFFECTIVE POPULATION SIZE 

An estimate of  effective  size  may be obtained by a 
consideration of the panmictic index ( P  = 1 - F )  . 
WRIGHT ( 1931 ) has shown that, after some generations 
under a  particular system, the relative rate of change 
of P ( i.e., AP/P)  becomes approximately constant. Let- 
ting x be the asymptotic rate of change of P ,  the value 
of Pin generation twill be Pt = XP,-~ = x'P,+, = xSPtp3 .  
Substituting the relation into (5)  , we get 

8N(N- 2 ) ~ "  - 4[ (2  + p ) N 2  - (6  + S f ) N  

+ ~S:]X '  + 2[PN'- ( 2  + S f ) N +  ~ S : ] X  

+ 2PN'- ( 2  + 20 + S f ) N +  2s: = 0. (14) 

The Equation has three solutions; it is the largest one 
of the solutions lying between zero and  one  that is re- 
quired. By definition, A F  = 1 - x = '/qNe, so the  general 
formula  for effective  size  is obtained, to the second 
order of 1/N, as the following 

" 1 2 - 2 p + s :  2 s: 
- - 

N ,  ( 4 - 3 P ) N   ( 4 - 3 / 3 ) N 2  

( 2  - 3s:) ( 2  - 2p + S f )  + 
(4  - 3P)'N' 

+ (4  - p )  ( 2  - 2p + sf,' 
(4  - 3P)'N' . (15) 

Several simple forms can be derived from ( 15). 

1. When N is large,  ignoring second order terms of 
1/N,  (15) reduces to ( 1 ) .  

2. When N is  small or a  more accurate estimate of 
N, is required,  second  order terms of 1/N should be 
considered. With  family  size  Poisson distributed, ( 15) 
reduces to 

(4  - 3/3)N+ 8 - 5p 
N, = 

4 - 2p ( 2  - 0)' 

It is clear that,  in this case, N, is a  monotone decreasing 
function of 0. 

For the cases  of random  mating and non-sib mating, 
( 16) reduces to 

N,= N +  % (17) 

and 

N e =   N +  1, (18) 

respectively. 

can be derived (to the second order of 1/N) as 
From WRIGHT-POLLAK'S Equation 9, the effective  size 

N, = (4  - 30) N/4 + 2, (19) 

which reduces to (17) and 

Ne = N +  2, (20) 

respectively for  random  mating  and non-sib mating. 
Equation 20 was also derived by ROBINSON and BRAY 
(1965) and JACQUARD (1971), which always differs 
from ( 18) by a value of approximately one irrespective 
of the census population size. The reason for  the differ- 
ence between the  equations is explained and  our results 
are verified by a simulation study in the  next  part of 
the  paper. 

3. As in 2 but with equal family  sizes for each sex, 
( 15) reduces to 

and Ne is a  monotone increasing function of p. Equa- 
tion 21 can be simplified approximately to 

N ,=2N-  1 (22)  

and 

N, = 2N - 2, (23) 

respectively for  random  mating  and non-sib mating. 
Equation 22 is in agreement with previous work. If 

family  sizes are  equa1,JACQum ( 1971 ) concluded  that 
there was no reduction  in effective  size if full sib matings 
were avoided, whereas ROBINSON and BRAY ( 1965) 
found  the effective  size to be  reduced by one, in 
agreement with our (23 ) .  

SIMULATION 

Stochastic simulations have been  carried out to check 
the  equations of the  present study that  are in discrep- 
ancy with those of the previous studies. Two distinct 
operations  are involved in the simulation. First, the N 
individuals (half of each sex)  that  are to be parents 
must be selected, and second, having been  chosen, they 
must be  mated  in N/2 pairs. Selection schemes are 
random selection for both sexes (family size  of male or 
female progeny following a multinomial distribution 
with an average number of one)  and equal family  sizes 
for  both sexes. Selected individuals are  either  mated  at 
random  (random  mating)  or by crossing a given num- 
ber of full sibs whenever possible, otherwise at  random 
(partial sib mating) . 

N individuals are sampled  from  a hypothetically in- 
finite base population that is referred to as generation 
zero. Thus  inbreeding coefficients of and coancestry 
between sampled individuals are  zero. In each  genera- 
tion,  pedigrees of  all the N individuals are  recorded 
and  inbreeding coefficients and coancestry calculated. 
When the asymptotic rate has been  reached (the gen- 
erations  required  depend  on  the population size,  se- 
lection and mating schemes), observed effective sizes 
are  calculated  from  the  rate of inbreeding. Each simu- 
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TABLE 2 

Observed (Ne) and  predicted (Nm, New, New) effective  size  for  different mating  and selection  schemes when N = 16 

Selection scheme NFS" Ne % SE NecH N,WP Newb 

Random selection for  both 
sexes (SE = 2) 

Equal  family  sizes for  both 
sexes ( 4  = 0) 

0 (0.00) 
1 (1.00) 
2 (1.98) 
3 (2.88) 

0 (0.00) 
2 (2.00) 
4  (4.00) 
6 (6.00) 

16.81 2 0.32 
16.24 2 0.65 
15.89 2 0.53 
15.11 2 0.52 

30.08 2 0.10 
32.45 2 0.38 
37.80 2 1.32 
51.32 t 2.21 

16.00 
15.47 
14.87 
14.24 

32.00 
34.67 
40.00 
56.00 

18.00  17.00 
16.50  16.47 
15.03  15.87 
13.68  15.24 

30.00 
32.21 
36.80 
51.43 

a NFS, intended and actually performed (in parentheses) number of full  sib  matings. When NFS = 1, mating is at random; 
otherwise the mating schemes are partial sib mating. 

Ne-,, New and NCw are obtained using ( l) ,  (19) and (16), or (21), respectively. 

lation is run  for 100 generations  and 1000 (for  random 
selection ) or 3000 (for equal family  size selection) 
replicates. 

Table 2 shows the observed values of effective size 
(Ne),  predicted values by CABALLERO and HILL'S 
Equation 1 [denoted as NecH], WRIGHT-POLLAK'S 
Equation 19 (denoted as New) and  our (16) and 
( 21 ) (denoted as New), as well as the  number of full 
sib matings  achieved  for  different  mating and selec- 
tion  schemes  when N = 16. As clearly seen  from  Table 
2, results  from ( 16) and ( 2 1  ) and simulations are in 
very close agreement. CABALLERO and HILL'S  equa- 
tion  underestimates effective size for  the case of large 
values of variance of  family  sizes ( S z  > z/3). When 
the  numbers of both  male and female  progeny  are 
Poisson distributed,  the  underestimation is approxi- 
mately one from  the  exact value irrespective of the 
values of Nand 0. When  the  variance of family size is 
zero, however, ( 1 )  overestimates effective size. The 
overestimation is independent of population size 
but increases  rapidly with the  increment of the value 
of P .  These  results  are  expected by a  comparison 
between (1) , ( 16) and (21 ) .  WRIGHT-POLLAK'S 
equation gives correct  estimations of effective size 
only  when mating is at  random;  it overestimates and 
underestimates effective size when P < 2/N and P 
> 2/N, respectively. By a  comparison  between (19) 
and (16 ) ,  we can  see  that  the  larger  the values of P 

and N, the  more  serious is the  underestimation of 
Ne by (19 ) .  

Another formula for effective  size derived by CABA- 

LLERO and  HILL ( 1992) is 

4N 
Ne = (24) 

2(1  - a )  + S:(l + 3 a )  ' 

where a is the  departure from Hardy-Weinberg propor- 
tions. Though  it is also a first order approximation, it 
generally gives a  more satisfactory estimation of Ne than 
(1). It is  well  known that a = FIs - aR, where aR = 
-'/*N - ' / zT  is the value  of (Y for the  random mating 
case  with multinomial distribution of  family  size and T 
scored individuals (ROBERTSON 1965) ; F,is the correla- 
tion of uniting gametes relative to gametes drawn at 
random from the  population. When N is large, a FIs 
= P / (  4 - 3 P )  ( GHAI 1969). Substituting the relation 
into (24) ,  we therefore  get ( 1 ) . 

The results of a simulation study by CABALLERO and 
HILL ( 1992) are listed  in Table 3, in which N, and N,, 
are  the  predicted values  of Ne from ( 24) and ( 16) , and 
other symbols are explained in Table 2. It can be seen 
that in  any  case our (16) gives a slightly better estima- 
tion than  either (24) or ( 1 ) . For smaller population 
sizes and larger proportions of  sib matings, the differ- 
ence may be more evident. 

Equation 20 derived by WRIGHT ( 1951 ) , ROBINSON 
and BRAY (1965), JACQUARD (1971) and POLLAK 

TABLE 3 

Observed (Ne) and predicted (New, Nm, N,, New) effective  size  for populations 
with size Nand the  number of full  sib  matings NFS 

64 1 .o -0.01 1 64.0 ? 0.07 66.2 64.7 63.5  64.5 
64  15.5 0.159 54.5 2 0.05 43.3 55.2 53.8  54.8 

200 1 .o -0.005 200.4 2 0.22 202.8 200.9 199.5 200.5 
200  47.8 0.182 170.0 -C 0.46 129.4 169.2 168.6 169.6 

Figures  in the first six columns are cited from CABALLERO and HILL (1992). h?FS, number of full  sib  matings achieved; a ,  
observed departure from the Hardy-Weinberg proportions. 
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TABLE 4 

Observed  and  predicted  values of  effective  size and  the  probability that two individuals  from  each sex are full 
sibs given  that  they  are  not  mated  for  the  case of random selection and  full sib matings  excluded 

Probability Effective  size 

N Observed Y = 2/N Y = 2 / ( N -  2) Ne +- SE N,= N +  2 Ne= N +  1 

8 0.3210 0.2500 0.3333 8.93 -C 0.09 10 9 
16  0.1407 0.1250 0.1429 16.81 ? 0.32 18  17 
32  0.0696 0.0625 0.0667 33.04 2 0.18 34  33 

( 1988)  for  the case  of random selection and full sib 
mating exclusion has been widely cited (HILL 1972; 
FALCONER 1981, p. 64; ROCHAMBEAU and CHEVALET 
1990). The  equation is, however, incorrect.  In  the  der- 
ivation  of ( 9)   or  ( 10) , they assumed that  the probabil- 
ity that two individuals, one from each sex, are full 
sibs,  given that they are  not  mated, was 2/N, a result 
that is true  for  random  mating  but  not for nonrandom 
mating. As shown  in Table 1, the  correct  correspond- 
ing probability is Y = [ 2 (1 - P + 0 )  N - 48]/[N( N 
- 2 )  ] ,which  reduces  to Y = 2/ (  N -  2)  when selection 
is at  random ( 0  = 0 )  and full sib matings are  excluded 
( P  = 0 ) .  In Table  4 values for Y and effective  sizes 
calculated as stated above from (18) and  (19)  or  (20) 
are  compared with their simulated results for various 
values of N. It is clear that, because of the  incorrect 
probability used, (19)  or  (20) always overestimate ef- 
fective  size by approximately one, regardless of the 
value of N.  

DISCUSSION 

We have  given a  general  and exact recurrence  equa- 
tion for  the  inbreeding coefficient in populations with 
partial sib mating. The  equation is particularly im- 
portant for cases where inbreeding coefficients in early 
generations  are  more relevant. A  uniform  rate of in- 
breeding of ‘/*Ne per  generation is attained only in 
the  later stages of the early phase of an  erratic increase 
of inbreeding in partially sib-mated populations. The 
higher the  proportion of full sib matings, the  more 
generations  are  required  before  the asymptotic rate of 
inbreeding is attained. Assuming a  uniform  rate of 
inbreeding  from  the  outset may result in a large bias, 
especially  with large values of P. When the variance of 
family  sizes is small enough, avoiding sib matings re- 
sults in a  higher final rate of inbreeding  and vice  versa. 
ROBERTSON (1964) explained why with S: = 0, the 
smaller the  proportion of inbred matings, the  higher 
the final rate of inbreeding.  Thus  the  ranking of popu- 
lations on  the basis  of  effective  size  may be  opposite 
to the  ranking based on  inbreeding coefficients over 
early generations. 

If the  long-term  behavior of inbred  populations is 
required,  then effective size may be  convenient  and 
also sufficient. Most previous work centers  on this 

simple parameter. However, the  equations  for effec- 
tive  size  of partial inbreeding  populations  derived  in 
various studies ( e.g., CROW and DENNISTON 1988; POL- 
LAK 1988) have been shown to  be  incomplete or in- 
correct by a recent study of CABALLERO and HILL 
(1992).  It is shown that,  regardless of population 
census number  and  the value of /3, CABALLERO and 
HILL’S equation always underestimates effective size 
by a value of about  one when family  sizes are Poisson 
distributed. On the  contrary, when the  variance of 
family  sizes  is zero,  their  equation gives an overestima- 
tion.  In  this case the absolute value of bias from  the 
exact value is also independent of population  census 
number  but is sensitive to  the  changes of the value 
of P. It is clear  from the  present study that, when 
breeding schemes are  run  for  short  periods,  recur- 
rence  equations  should  be utilized for  predicting  in- 
breeding coefficients; when population sizes are 
small, accurate  formulae  for Ne taking  second order 
terms of l/Ninto consideration  should  be  used,  espe- 
cially when S: is small and P is large. 
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