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ABSTRACT 
We present  in this paper  models  and  statistical  methods  for  performing  multiple  trait  analysis  on 

mapping  quantitative  trait  loci (QTL) based  on  the  composite  interval  mapping  method. By taking into 
account  the  correlated  structure of multiple  traits,  this joint analysis  has  several  advantages,  compared 
with separate  analyses, for mapping  QTL,  including  the  expected  improvement  on  the  statistical  power 
of the  test  for  QTL  and on the precision of parameter  estimation. Also this joint analysis  provides  formal 
procedures to test a number of  biologically interesting  hypotheses  concerning the nature of genetic 
correlations between different  traits. Among the  testing  procedures  considered  are  those  for joint 
mapping,  pleiotropy,  QTL by environment  interaction,  and  pleiotropy vs. close  linkage.  The test of 
pleiotropy (one pleiotropic  QTL at a genome  position) vs. close  linkage (multiple nearby  nonpleiotropic 
QTL) can  have important  implications  for  our  understanding of the  nature of genetic  correlations 
between different  traits  in  certain  regions of a genome  and  also for practical  applications  in  animal  and 
plant  breeding  because  one of the major  goals  in breeding is  to  break  unfavorable  linkage.  Results of 
extensive  simulation  studies  are  presented to illustrate  various  properties of the analyses. 

M ANY data  for  mapping quantitative trait loci 
(QTL) contain observations on multiple traits 

or  on  one or several traits in multiple environments. 
With such  data, we can ask questions like the following: 
Does a QTL have pleiotropic effects on multiple traits? 
Does a QTL show genotypeenvironment  interaction? 
What is the  nature of genetic  correlation between differ- 
ent traits? Is the  correlation due  to pleiotropy or linkage 
in certain regions of a  genome? Statistically this involves 
multiple trait analysis, because the expression of a trait 
in  different  environments  can  be  regarded as different 
traits or different trait states (FALCONER 1952). 

Currently, the many statistical methods developed for 
mapping QTL ( e.g., LANDER and BOTSTEIN 1989; HALEY 
and KNOTT 1992; JANSEN and STAM 1994; ZENG 1994) 
are  for analysis on  one trait only and have not  been 
extended specifically for multiple trait analysis  yet. With 
that omission, a number of studies on  mapping QTL 
(e.g., PATERSON et al. 1988, 1991; STUBER et al. 1992) 
analyzed different traits separately. This  approach does 
not take advantage of the  correlated  structure of data 
and has a number of disadvantages for  mapping QTL 
and also for  understanding  the  nature of genetic  corre- 
lations. The statistical powers  of hypothesis tests tend 
to be lower and  the sampling variances of parameter 
estimation tend to be  higher  for  separate analyses. Also, 
it would be difficult to test a number of biologically 
interesting  questions involving multiple traits by analyz- 
ing  different traits separately. 
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Different traits are correlated genetically due  to plei- 
otropy and linkage. With observations on a  number 
of polymorphic genetic markers and  on a number of 
quantitative traits, it is  possible to dissect a  portion of 
genetic variation and covariation among traits by lo- 
calizing and estimating responsible QTL. It is also  possi- 
ble to test whether  the  genetic  correlation is due to 
pleiotropy or linkage for  certain regions of a  genome. 
In this paper, we extend  the composite interval map- 
ping  method ( ZENG 1993, 1994) to multiple trait analy- 
sis. We demonstrate how the  joint analysis on multiple 
traits can improve the power and precision of mapping 
QTL;  we show  how to test some biologically interesting 
hypotheses involving multiple traits, such as pleiotropy 
and QTL X environment  interaction, and how to test 
whether significant associations for  different traits in 
certain regions of a  genome  are due  to pleiotropy or 
close linkage. Properties and behavior of the test statis- 
tics are  examined by analyses and also by simulation 
studies. 

STATISTICAL  MODELS AND LIKELIHOOD ANALYSES 

Composite  interval  mapping  model for multiple traits: 
In this  section, we formulate  statistical  models and 
likelihood analyses for  mapping QTL that affect  mul- 
tiple  traits,  using the  composite interval mapping 
method. 

Suppose  that we have a  sample of n individuals 
from  an F2 population crossed  from two inbred lines, 
with observations on m quantitative  traits  and on a 
number of codominant  genetic markers.  Let the 
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TABLE 1 b, and d,  are  partial  regression coefficients of Y ] k  on 

Probability of QTL genotype  given xjl  and zjl; and ejk is the residual effect on trait k for 

It is assumed that the residual effects e,bs (the error 
flanking marker  genotype individual j .  

QTL genotype 
Marker 

genotype (2) 44 ( 1 )  44 ( 0 )  

p = ~ M , Q / ~ M ~ M ~ ,  6 = r & ~ ~ / [ ( l  - rMlM2)’ + r&M2], where 
rhflQ is the  recombination  frequency  between marker MI and 
QTL and rMIM2 is the recombination  frequency  between 
markers MI and M2. Double  recombination is ignored. 

value  of each  marker  be  recorded as 2, 1 and 0 for 
the homozygote in one parental  line,  heterozygote 
and homozygote in the  other  parental  line, respec- 
tively. These  markers  can  be  mapped  in  linkage 
groups or mapped on chromosomes if the locations 
of some of them  are known. 

Further,  let y j k  denote  the value  of the kth trait in the 
j th individual. To test for a QTL on a marker interval ( i, 
i + 1 ) , the statistical model for mapping QTL for one 
trait ( ZENC 1994) can be readily extended for mapping 
QTL for multiple traits as  follows: 

y j l  = bo, + bT.7 + drzT + ( & I  xjl + dllzjl) + ql , 
1 

1 
1 

, I ] Z  = bo2 + b,* x7 + d : ~ ?  + C (biz xjl + dl29l) + ejn, 
1 

I 

y ] m  = born + bEx7 + dEz7 + ( b l m x j l  + &rnzil) + q m ,  
1 

j =  1, . . . ,  n, (1) 

where ylk is the  phenotypic value for  trait k in individ- 
ual j ;  bok is the  mean  effect of the  model  for  trait k ;  
b f  is the additive effect of the putative QTL on trait 
k ;  XT counts  the  number of the allele at  the putative 
QTL from one of the two parental  lines, say parent 
Pl [taking values of 2, 1 and 0 with probabilities de- 
pending  on genotypes of the markers i and i + l 
flanking the putative QTL and  the  recombination  fre- 
quencies between the QTL and  the markers (Table 
1 ) ] ; d f  is the  dominance  effect of the putative QTL 
on  trait k ;  z? is an  indicator variable of the heterozy- 
gosity at  the QTL taking values 1 and 0 for heterozy- 
gote and homozygotes (Table 1 ) ; xjl  and zll are  corre- 
sponding variables for  marker I, assuming t markers 
are selected  for  controlling  residual  genetic  variation; 

terms)  are  correlated  among traits within individuals 
with  covariance Cov( q k ,  e i l )  = = pklakgl but  are 
independent  among individuals. For likelihood analy- 
sis, it will be further assumed that qg are multivariate 
normally distributed among individuals  with means 
zero and covariance matrix 

J .  . 

In matrix notation, model (1 ) can be expressed as 

Y = x* b* + z *  d* + X B + E ,  (3) 
nXm nX1 IXrn  n x l  I X m  n x ( 2 1 + 1 )   ( 2 t + l ) x m   n x m  

where Y is a ( n  X m) matrix of y j k ;  x* is a ( n  X 1) 
column vector of x;” ; z * is a ( n x 1 ) column vector 
of z;”; b* is a (1 X m) row vector of b f ;  d* is a (1 X 
m) rowvectorof d f ; X i s a  [ n x  ( 2 t +  l ) ]  matrixof 
data on t markers, xjls and zj ls ,  fitted in the model as 
background control,  including also the mean effect; B 
is a [ ( 2 t  + 1 ) X m] matrix of b,, d,, and 4 k ;  and E is 
a ( n  X m) matrix of elk. 

The reasons to include multiple markers in the re- 
gression model for testing and estimating the putative 
QTL  effects are mainly  twofold.  First, these markers can 
control  and eliminate much of the background genetic 
variation from the residual variances and covariances 
of the model and thus can increase the statistical  power 
for  mapping QTL. Second, if some linked markers are 
also fitted in the model as background control, these 
markers can block the effects  of other possibly linked 
QTL in the test and thus can reduce  the chance of 
interference of possibly multiple linked QTL on hy- 
pothesis testing and  parameter estimation. These prop- 
erties of multiple regression analysis  have been dis- 
cussed  in detail by ZENG (1993,  1994) in reference to 
QTL mapping for one trait and can be directly applied 
to QTL mapping on multiple traits. 

In  model ( 1 ) , for simplicity it is assumed that t 
markers are  each  fitted with additive and  dominance 
effects for  genetic  background  control.  Since many 
different  markers  can be fitted in the  model,  the ques- 
tion of selecting how many and what markers to be 
fitted in the  model  becomes  a  major issue for map- 
ping QTL. A number of considerations have to  be 
taken into  account  for such  a  selection process, and 
many relevant issues  involved  have been discussed in 
ZENC (1994).  Here, we concentrate our discussion 
on the  extension of the  method  to  multiple  trait  anal- 
ysis and avoid lengthy discussion on this issue. 

Likelihood analysis: Given model (1 ) , which is de- 
fined as a mixture model, and the assumption of multi- 
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variate normal distribution of error terms, the likeli- 
hood  function of the  data is defined as 

n 

~1 n [bjft (yj) + hjJ ( y j )  + pOjfO(yj) I > (4)  
j=l 

where p j ,  plj and poj denote  the  prior probability of 
x? taking values 2, 1 and 0,  respectively, for  the  three 
genotypes of the putative QTL (Table 1 ) , and f2 ( y j )  , 
fi (yj) and fo (yj) represent  the multivariate normal 
density functions of the vector variable y j  (the  jth row 
of Y ) with means uj2 = x,B + 2b*, ujl = xjB + b* + 
d*, and ujo = x,B, respectively, and  the covariance 
matrix ( 2 )  . 

Then, by applying standard maximum  likelihood pro- 
cedures, the maximum  likelihood  estimates of parameters 
can be found as in the following. As in ZENG (1994), 
these  maximum  likelihood  estimates can be computed by 
iteration through an ECM algorithm (MENG and RUBIN 
1993) that is a special  version  of general EM algorithms. 
In the ( v + 1 ) th iteration, the &step ( k . ,  expectation 
step) calculates the posterior probabilities of individual j 
being a particular genotype at the putative  QTL as 

q $ J + l )  = bjf6") ( y j )  / [&jf6") ( y j )  

qi;+l) = P1jf 1") (yj) / [hjfi") (yj) 

& + I )  = Ajf6") ( y j )  / [ b j f 6 " '  (yj) 

+ p1jf I"' (yj) + Ajf6"' (yj) I ,  

+ pljff") (yj) + hjf6") (yj) I 9  

+ hjf 1") (yj) + p o ~ f 6 " '  (yj) I > ( 5 )  

where f 6") ( y j )  , f 1' ") ( y j )  and f 6") ( yj) are  the corre- 
sponding  normal density functions with parameters re- 
placed by estimates in the vth iteration.  In  the CM-step 
( i .e . ,  conditional maximization step), parameters  in 
f2 (yj) , fi (E) and fo (yj) are divided into  three groups, 
(b*, d*)  , B,  V, and estimated consecutively  between 
groups  but simultaneously within each group. These 
estimators can be shown to  be as  follows: 

b*("+l) = q p l ) ' ( Y  - XB(u') / (2q~"+1"1) ,  ( 6 )  

d*("+1) = ( u + l ) f / ( q $ U + l ) f l )  
[ S I  

- q$"+l)'/  (2q$"+"'l) ] (Y - XB'")), ( 7 )  
B("+') = (X'X)"X'[y - (2q4"'1) 

+ q(lu+l))b*(v+l) - (V+l)d*(U+') 
91 I ,  ( 8 )  

v ( u + l )  = [ (y - = ( " + I ) )  ' (y  - = ( " + I )  ) 

- 4(qhU+1)rl)b*(u+l)'b*(U+1) 

- ( q $ u + l ) f l )  (b*(U+l) + d*(U+l) 

x ( b * ( u + l )  + d*(V+1) 
) '  

) I / %  (9)  

where q p ' )  and q$"+l) are ( n  x 1) vectors of q$'+') 

and qiy"), and 1 is a column vector of ones. A prime 
represents  the transpose of a matrix or a vector. 

The calculation begins with q$') = &,, q$:) = plj, 
&) = hj, and some starting values for b* (O) and d* ( O )  

(one possible choice is to set them to zero) . Iterations 
are  then  made between ( 5 ) ,  ( 6 ) ,  (7 ) ,  ( 8 ) ,  and (9)  
and terminated when a predetermined  criterion is  satis- 
fied. The criterion for  termination is set to be that  the 
changes of the  parameter estimates, or the  increment 
of the log-likelihood value, at each iteration become 
less than E ( a  small  positive number, say, lo-'). The 
final estimates are  denoted as b*, d*, B and e, which 
will then  be used for  the calculation of the maximum 
likelihood value for hypothesis testing. 

The log-likelihood of (4)  is calculated, with the pa- 
rameters replaced by the estimates, as 

ln(L1) = K - ( n / 2 )  ln(1VI) 
n 

+ C. M&,exp[-(1/2)  

x (yj - 21;" - XjB)V" 

x (y3 - b* - d *  - XjB)V" 

x (yj - b *  - d *  - XjB) '1 

X ( y j -  x$)'II 

3=1 

X (yj-  21;* - xjB)'I +pl jexp[- (1 /2)  

+ p o , e x p [ - ( 1 / 2 ) ( y , - ~ ~ B ) V - ~  

= K -  ( n / 2 )  ln(lV1) - ( 1 / 2 )  
n 

x (yj - xjB)V-l (yj  - XjB)' 
j= l  
n 

+ ln{p2,exp[21;*V"(y.- I b* - xjB)'] 

+ plj exp[ (b* + d*)V" (yj - b*/2 

j=l 

- d*/2 - XjB)'1 + P o , ) ,  (10) 

where 191 is the  determinant of the covariance matrix, 
and K = -nm ln(27r)/2. 

Numerical  procedures of the ECM algorithm. Here 
we explain how the ECM algorithm involving ( 5 )  - (9)  
can be  implemented efficiently. Computationally, the 
major element of the analysis  involves  least squares anal- 
ysis or,  more specifically, the calculation ofY - XI$("+') 
in each step. Numerically, least squares analysis  is  usu- 
ally performed  through a QR factorization of matrix X. 
Namely, for  an ( n X m) X matrix (assuming n > m) , 
we can decompose X as 

X = ( Q I  QP)  (t) = QIR, (11) 

where Q = (Q1, Q2) is an ( n X n) orthogonal matrix 
(i .e. ,  Q'Q = I )  and is partitioned  into two parts, Q1 
( n  X m) and Q2 ( n  X ( n  - m)), and R is an ( m  x 
m) upper triangular matrix. With this factorization, the 
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usual  least squares estimates B and Y - XB (residuals) 
can be calculated as 

B = (X'X)"X'Y = (R'QiQ,R)"R'Q;Y 

= R - ~ Q I Y ,  ( 1 2 )  

Y - XB = Y - Q,RR-'Q;Y = ( I  - QIQ;)Y.  (13) 

In our numerical implementation, before entering 
the ECM loop, X is first factorized into Q and R by 
Householder transformations using the LINPACK rou- 
tines ( DONGARRA et al. 1979). In each loop, Y - XB is 
obtained by first calculating 

W = [Y - (2qz + q l ) b *  - q1d*] - XB = Y - XB 

= ( I  - Q ~ Q ; ) ~ ?  (14) 

from (13) and then recovering from W 

Y -XB = W + (2q2 + q l ) b *  + qld*. (15) 

This is used for calculation in ( 5 ) ,  ( 6 ) ,  ( 7 ) ,  and ( 9 ) .  
Equation 8 becomes redundant  and is omitted in calcu- 
lation. These numerical procedures  are  the same proce- 
dures used by ZENG ( 1994). 

Since X is unchanged in each loop, Q is unchanged. 
The above calculations become very simple updates in 
each loop. This illustrates the numerical advantage of 
the ECM algorithm, compared with the full EM algo- 
rithm ( e.g.,JANSEN 1992) that groups x* and z *  (repre- 
sented by qs) into X and factorizes or updates factoriza- 
tion of X in each loop to obtain B (which includes b * 
and d* ) and V. The convergence of the ECM algorithm 
to maximum likelihood estimates has been proven by 
MENC and RUBIN ( 1993). 

HYPOTHESIS TESTS OF QTL EFFECTS 

In hypothesis testing, model ( 1 ) is usually called the 
full model. With some parameter values constrained to 
some specific  values, a  number of null hypotheses can 
be constructed and tested. For mapping QTL, we are 
mostly concerned with testing hypotheses about  the ad- 
ditive and dominance effects  of QTL. However, before 
we test other hypotheses, we need first to test for  the 
presence of  QTL. Without losing generality, we restrict 
our discussion to two traits. 

Joint mapping €or QTL on two traits: With pheno- 
typic observations on two traits, mapping  for QTL can 
be  performed  for each trait individually or jointly on 
both traits. Under  the  joint  mapping,  the hypotheses 
to be tested are 

* * H,: bl = 0, dl = 0, b,* = 0, d,* = 0, 

HI : At least one of them is not zero. (16) 

The log-likelihood under Ho is then 

l n ( b )  = ln n J ( y j )  
[ j : l  1 

= K -  ( n / 2 )  In( I V , / )  - nm/2, (17) 

where V o  = (Y - X&,)'(Y - X&,)/n and 8, = 
(X'X ) "X'Y. The test is performed with a likelihood 
ratio statistic 

LRl = -2 ln (&/Ll ) .  (18) 

Under H,, the likelihood ratio LRl will be approxi- 
mately chi-square distributed. The  determination of the 
critical value for  the test is,  however,  very complicated. 
The complication is largely due to the fact that  the test 
is usually performed  for  the whole genome,  a situation 
of multiple tests.  With multiple tests, the critical level 
for each test has to be adjusted. It has been shown 
( ZENG 1994) that, for the composite interval mapping, 
tests  in different intervals are close to being indepen- 
dent except for those in adjacent intervals that  are 
slightly correlated.  Thus, if  we choose a' as the genome- 
wise error rate, the  error  rate of the test per interval, 
a,  can be  approximated by using the Bonferroni correc- 
tion as a = 1 - (1  - a ' )  I", or to a good approxima- 
tion as a = a ' /  M ,  where M is the  number of  intervals 
involved  in the test. The maximum of the test statistic 
within an interval can be roughly approximated by a 
chi-square distribution with a  degree of freedom 2m + 
1 (the number of parameters under the test including 
one for the position of the putative QTL) [see  the 
simulation study  of ZENC ( 1994) for m = 1 and  a back- 
cross design]. Thus, in practice, we  may use 
x ~ / ~ ~ ~ ~ + ~  to approximate  the critical  value of the test 
in this situation (for two traits m = 2 )  . However, we 
emphasize that  the  correct  determination of appro- 
priate critical value for this test is a very complicated 
statistical  issue. The above recommendation is sug- 
gested only for a very rough approximation. Recently, 
CHURCHILL and DOERGE ( 1994) proposed to use a per- 
mutation test to empirically estimate the genome-wise 
critical value for a given data set and a given  test. Their 
method can be extended for multiple trait analysis. 

Why do we need to perform joint mapping? First, the 
joint analysis on two traits can provide formal proce- 
dures  for testing a  number of  biologically interesting 
hypotheses, such as pleiotropic effects  of QTL, QTL by 
environment  interaction and pleiotropy us. close  link- 
age, as shown  below. Second, if the putative QTL  has 
pleiotropic effects on  both traits, the joint mapping on 
both traits may perform better  than  mapping on each 
trait separately. 

In APPENDIX A,  the relative advantages of the  joint 
analysis  as compared to separate analyses are discussed. 
It is shown that  the test statistic for  the joint analysis 
is  always higher  than  that for each separate analysis. 
However,  this does not necessarily mean  that  the power 
of the test will be increased by using more traits, because 
more parameters will be included in the model for test- 

2 
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ing. When the residual correlation p = 0,  the test statis- 
tic under  the  joint test is approximately the sum of 
those under separate tests. Otherwise the joint test sta- 
tistic can  be smaller or larger  than  the sum of separate 
test statistics, depending on the sign and magnitude of 
the residual correlation and  the differences between 
QTL effects. The power  of the  joint test can increase 
significantly if the relevant QTL has pleiotropic effects 
on two traits with the  product of the effects in different 
direction  to  the residual correlation. If the  product of 
pleiotropic effects and  the residual correlation are in 
the same direction, however, the test statistic under the 
joint test will be smaller than  the sum of the test statistics 
under the  separate tests. In this case, the increase of 
the test statistic for  the joint test will be less significant 
and the power  of the joint test may be less than  the 
higher one of the separate tests due to the  additional 
parameters fitted in the model. However, it is generally 
found  thatjoint mapping is more informative than s e p  
arate mappings for traits moderately or highly corre- 
lated  (see simulation studies below) . 

Testing  pleiotropic effects: Given a  genome posi- 
tion or region  where  the  presence of a QTL is indi- 
cated by joint mapping, statistical tests can  proceed 
to test whether  the QTL has pleiotropic effects on 
both traits. On  the assumption that  there is only one 
QTL in the relevant  region, which has effects on ei- 
ther  one  or  both of two traits, hypotheses can  be for- 
mulated as  follows: 

Hlo: bl = 0,  dl = 0,  b,* f 0, d,* f 0 * * 

given a position for a QTL, 

Hll: 6: f 0 ,  d? f 0,  b,* f 0, d,* f 0 

at  the position given by Hlo; (19) 

and 

H20: b: f 0, d: f 0,  b2 = 0,  d,* = 0 * 

at the position given by Hlo,  

HZ1: b: f 0,  d? f 0,  b,* f 0,  d,* f 0 

at the position given by Hlo. (20) 

A test for pleiotropic effects is then equivalent to the 
test of both (19)  and (20 ) .  Only rejecting both  the 
null hypotheses ( i.e., Hlo and Hz0) will suggest the pres- 
ence of pleiotropic effects. 

Although each of (19)  and (20)  shows restriction 
only on  one trait, the tests will not  be  the same as for 
each trait separately since two traits are  correlated. As 
shown in APPENDIX A,  when the two traits are  correlated, 
this test will have more power than separate analyses. 
The estimates of model parameters under HI, and Hz0 
can be obtained as in joint mapping of (5) - (9)  except 
that some estimates in ( 6 )  and ( 7 )  are  set to zero. The 
likelihood ratio test statistics for (19)  and (20)  can 

then  be calculated correspondingly from ( 10) in a ratio 
of the likelihoods with and without constraints. Fixing 
a testing position or region by the  joint mapping for 
this test is consistent with the pleiotropic hypothesis. 
Since the testing position is fixed, the likelihood ratio 
test statistics under the null hypotheses of (19)  and 
(20) will each be asymptotically chi-square distributed 
with two degrees of freedom. 

Testing  pleiotropic effects against  close  link- 
age: Although  rejecting  both HI, of (19) and Hz0 of 
(20)  is consistent with the hypothesis of pleiotropic 
effects of a  QTL, the test itself does not distinguish 
whether  the significant effect is due  to  one QTL hav- 
ing pleiotropic effects on  both traits, or possibly  two 
( or more ) closely linked QTL each having a  predomi- 
nant effect on  one trait only. Two  closely linked QTL 
each with an effect on only one trait may behave like 
one pleiotropic QTL in joint mapping. Also one pleio- 
tropic QTL  may be estimated as  two QTL at two nearby 
but  different positions if each  trait is analyzed sepa- 
rately. Thus  in  mapping  for QTL, for  some  regions 
there may exist sufficient interests  to distinguish these 
two possibilities. Undoubtedly,  distinguishing  these 
two cases has important  implications in genetics and 
breeding. 

Clearly, this test of pleiotropy us. close linkage is for 
some specific genome regions only. The regions to be 
tested are first determined  byjoint mapping. Only those 
genome regions that  are significant under  joint m a p  
ping may be suitable for this test.  Relatively  loosely 
linked pleiotropic or nonpleiotropic QTL ( i e . ,  sepa- 
rated by several  relatively large, say 10 cM, marker  inter- 
vals) may be detected by joint mapping and may not 
be necessary to this test to distinguish them,  although 
this test can be applied  to those situations. 

To test the hypotheses of pleiotropy us. close linkage 
at some significant regions, the likelihood analysis  has 
to be reformulated. Let two QTL, each with an effect 
on  one trait only, have positions symbolically specified 
by p ( 1 ) for  the QTL  having an effect on trait 1 and 
p (  2 )  for  the QTL  having an effect on trait 2 (if the 
two positions are in the same marker interval, p ( 1 ) and 
p (  2) are  then  defined as the ratios of the recombina- 
tion frequencies between a  marker  and  the two posi- 
tions, respectively, and between the two flanking mark- 
ers).  The hypotheses can then  be  formulated as 

Ho: P ( 1 )  = P ( 2 ) ,  

H I :  P(1) f P ( 2 ) .  ( 2 1 )  

The HI here is a special case  of  many  possible alterna- 
tives. A more  general alternative may be that  both QTL 
have pleiotropic effects. This alternative is,  however, the 
hypothesis for mapping two closely linked pleiotropic 
QTL. Although this hypothesis can be tested, we con- 
fine  our  attention  here to the alternative of  two non- 
pleiotropic QTL. 
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Model (22)  should be the same as model ( 1 ) for m = 
2, except that ( x l j ,  zlj) and ( x2], z2]) are now defined 
for two QTL at two different positions in one  or some 
nearby marker intervals. Note that when the test and 
search cover  several marker intervals, the markers in- 
side the search region should  not  be used for back- 
ground  control, otherwise the models under the null 
and alternative hypotheses can be inconsistent on the 
markers used for background control. 

Model ( 22) is actually a mixture model with nine 
components since recombination can result in nine 
possible  QTL genotypes in an 4 population for two 
QTL.  Let pilad ( i l ,  i2 = 0,  1 and 2 )  be the probability 
of individual j having genotype il for a putative QTL 
affecting trait 1 and i2 for another QTL affecting trait 
2 for given two testing positions for two QTL. The likeli- 
hood  function is given by 

* *   * *  

n 2 2  

G = n C X pqdJlG(yj) 7 (23)  
j =1  i1=0 G = O  

where JIG ( yj) is a bivariate normal density function  for 
yj with a mean vector 

and covariance matrix ( 2 ) ,  where the indicator func- 
tion S ( 2 1 )  = 1 if il = 1 and 0 otherwise. 

The probability plliV can be  inferred from the ob- 
served genotypes of the flanking markers. If the two 
putative QTL are tested in different  marker intervals, 
the probability of QTL genotype can be calculated inde- 
pendently for each QTL from Table 1, i.e., pilU = 
pi&,, assuming that  there is no crossing-over interfer- 
ence. If the two putative QTL are tested in the same 
marker interval, pi,, can be calculated from Table 2. 

The &step in this case  is to calculate the posterior 
probabilities of individual j having genotype il for QTL 
1 affecting trait 1 at position p (  1 ) and i2 for QTL 2 
affecting trait 2 at position p (  2 ) ,  

qb$l) = p 11% ' 'f "9 ") (y]) p k l k j f  i :Jd(x) / k l I O  kI0 

for i l ,  i2 = 0, 1,  2. (24)  

where 

The CM-step  is to calculate 
After the convergence of the ECM algorithm, the log- 

likelihood value of ( 23) will be calculated from 



l n ( L )  = K -  (n/2)  ln(lV1) 
2 2  

+ i In{ c c p,,Qexp[-(1/2) 
j=1  ,,=a &L=o 

X (yj-  fizld)V-'(yj- f i t lw) ' l  . (31) I 
In theory, the search can be made in the  twodimen- 

sional space of  possible locations of the two putative 
nonpleiotropic QTL  in the testing region. The test sta- 
tistic is then gven by the likelihood ratio 

L& = -2 l n ( L o / L ) ,  (32)  

where & is the maximum of the likelihoods in the two- 
dimensional space, and Lo is the maximum of the likeli- 
hoods on  the diagonal of the two-dimensional space 
that  corresponds to the null hypothesis of p ( 1 ) = p ( 2 ) . 
In practice, however, the search in the two-dimensional 
space is unnecessary. It is expected  that  the likelihood 
under the alternative hypothesis is maximized in the 
region near  the peak indicated by the  separate map- 
pings, whereas the maximum likelihood under the null 
hypothesis corresponds to the  joint mapping under  the 
same model. So instead of searching in the two-dimen- 
sional space, the search can be safely concentrated in 
the areas suggested by the joint  and separate mappings. 
As the hypotheses in (21 ) are nested hypotheses, the 
test  statistic under Ho will be asymptotically chi-square 
distributed with 1 degree of freedom. The performance 
of this test will be investigated by simulations below. 

QTL by environment  interaction: Genes expressed 
in different environments can show different effects. 
This differential expression is usually called genotype 
by environment  interaction.  There  are generally two 
types  of experimental designs used in practice to study 
QTL X environment  interaction ( PATERSON et al. 1991; 
STUBER et al. 1992). In one design, the same set of 

genotypes recorded on markers is evaluated phenotypi- 
cally in different environments, which may be called 
paired comparison or design I. In the  other design, 
different random sets  of genotypes (or individuals) 
from a  common  population  are evaluated phenotypi- 
cally in different environments, which may be called 
group comparison or design 11. 

In design I, since the same set of genotypes recorded 
on markers are evaluated phenotypically on multiple 
environments, the same X (marker  data) matrix is 
paired to multiple phenotypic vectors in Y,  and the 
statistical model for analysis  is just the same as model 
( 1 ) . Essentially, we regard different expressions of the 
same trait in different environments as different traits 
or different trait states, a  concept originally introduced 
by FALCONER (1952). However, by testing the QTL X 
environment  interaction, we test the hypotheses 

Ha: bl = b2 = b*, dl = d2 = d*, * *  * *  

H,: b;  f b:, d: # d:. (33) 

This test, of course, is performed only at the chromo- 
some regions where QTL have been suggested by the 
joint mapping [ i e . ,  the null hypothesis Ha of (16) has 
been rejected].  Under Hl of (33) ,  the model is the 
full model of ( 1 ) . 

Under Ha, the Estep will be similar to the full model 
except that b* is substituted for b? and b: and d* for 
dT and d:. In  the CM-step, 

b * ( V + 1 )  = q p + l ) r  (y - XB'"') 

X (v(u)) -111 [2c(u)qiu+1)r 11, (34) 

d*(U+1) = [qIU+l)r/(c(U)qjU+l)' 1) - q p + l )  / 

(2c(74q4u+1)r l ) ]  (Y - XB'"') ( v U ) ) - l l ,  (35) 

with c ( U )  = 1'(V('J))-l1 = ( g ; ( u )  - zp ( u ) g i u ) D i u )  + 
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a ; ' u ' )  / [ a ; ( " ) a ; ( u )  (1 - p2(") ) ] .  Here, b*("+') and 
d* ( u c l )  are just  the weighted averages  of ( 6 )  and ( 7 ) ,  
respectively, weighted by the residual variance-covari- 
ance matrix V"). B("+') and V("+') are given by ( 8 )  
and ( 9 )  with again b* substituted for b: and b: and d* 
for dT and d:. The log-likelihood is calculated from 

l n ( 4 )  = K -  ( n / 2 )  ln(lV1) 
n 

- ( 1 / 2 )  (yi - XjB)V1(Yj - x,B)' 
j =  1 

n 

+ exp[26*1'V" (y, - 1'6* 

- xjB)'] + pljexp[(6* + (z*) lrV-I  
j = 1  

x (yj - 1'6*/2 - l'(z*/2 
- x~B)  '1 + hj}. (36)  

The test is performed by a likelihood ratio 

L& = -2 1n(&/L1) (37)  

that is asymptotically chi-square distributed with 2 de- 
grees of freedom under the null hypothesis. 

In design 11, the statistical model for analysis can be 
specified as 

y l j  = xljbl + zljdl + xljbl + elj j =  1,2, .  . . , nl, * *  * *  
* *  * *  

~ j =  ~ 2 j b 2  + Zqdq + ~2jb2 + +, j =  1 ,2 , .  . . , %. (38)  

This can be expressed in matrix notation as 

yl = x: b: + z:dT + Xlbl + e l ,  

y2 = x2 b2 + z 2  d2 + X2b2 + e2.  (39)  

We  will assume that elj and +j are  independently nor- 
mally distributed with means zero and variances a: and 
ai, respectively. Under HI of (33)  , since elj and +j are 
independent, parameters in each environment can be 
estimated separately, and in each environment  the anal- 
ysis  is on  one trait. The log-likelihood is then  just  the 
sum of the log-likelihoods in each environment and 
can be expressed as 

* *  * *  

= ln(L1)1 + ln(L1)2, (40)  

where In ( Ll ) and In ( Ll ) 2  are  the log-likelihoods of 
(10) (with m = 1 ) in the first and second environ- 
ments, respectively. 

Under Ho of ( 3 3 ) ,  the parameters have to be esti- 
mated jointly. In each ECM iteration,  the &step consti- 
tutes 

2 
& + I )  = p k i j f t ! " ' ( y k j ) / C   ( p k i j f I " ' ( y k j ) )  ( 4 1 )  

i=O 

for the kth environment,  the  ith genotype and  the j th 
individual. The CMstep constitutes 

b*('J+1) = [ q $ g + l ) ' ( y l  - Xlb$"))/a:(") 

+ q12U+1)r (y2 - Xzb6"') /~22(" )1 /  
[2(qig+l ) ' l /a : ( . )  

+ qi2V+1)rl /ai("))] ,   (42)  

d*("+1) = [q$y+"'(yl - X1bi"')/a:'"' 

+ q6:+')' (yz - X ~ b 6 ~ ) ) / a i ' " ) l /  
[ q j y + l ) ' l / a : ( " )  + q 6 y + 1 ) ' l / a ; ( u ) ]  

- b* ( 7 J +  1 ) 
9 (43)  

b$"+I) = (x;x l ) - lx; [y l  - (2q$$" 

+ q$y+l))b*(V+l) - (U+I)d*("+l) 
q l l  I ,  (44)  

b6"+') = (X;lX,) -lx; [y2 - (2qb;+" 

+ q 6 y + l ) ) b * ( " + 1 )  - (U+')d*(U+') 9 21 I ,  (45)  
a ; ( u + l )  = [ (yl - Xlb$"+l)) (yl - Xlb(lvtl)) 

- 4q(t~+1)'lb*2("+1) 12 

- q $ y f l ) ' l ( b * ( ' J + l )  + d * ( V + 1 )  2 ) I / % ,  (46)  
= [ (y2 - X2b6"+") ' (y2 - X2bi"+") 

- 4q6;+l)r1b*2(7J+l) 

- q 2 1  ( " + l ) ' l ( b * ( " + ' )  + d*("+1))2]]%n2.  (47) 

The log-likelihood, In( L5) , under Ho will be similar to 
(40)  in form with the constraint that 6: = b: = 6" 
and (z = d ,* = d * .  The likelihood ratio test  statistic 
is given by 

L& = -2 In( &,/L4), (48)  

which is asymptotically chi-square distributed with two 
degrees of freedom under the null hypothesis. 

It is interesting to compare  the relative  efficiency of 
the two experimental designs on mapping QTL and 
testing QTL X environment  interaction. When nl = 
= n and n is large, the test statistic under design I1 can 
be  treated approximately as a special  case of design I 
with p = 0. With this assumption, it is shown  in APPENDIX 
B that, with the same sample size for phenotyping in 
the two designs (the sample size  of marker genotyping 
is doubled  in design 11) , design I1 is  likely to have more 
statistical  power for  mapping QTL, whereas design I is 
likely to have more statistical  power for testing QTL X 
environment  interaction. 

In this analysis, we treat  the QTL X environment 
effects as fixed  effects. This may be appropriate  for 
those environments that  are distinctively different,  and 
the  inference is applied  to those environments. For 
many experiment designs, the QTL X environment ef- 
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TABLE 3 

Parameters and estimates of QTL positions and effects in the  simulations 

Additive  effect Dominance effect 
Position 

QTL ( C M )  Trait 1 Trait 2 Trait 3 Trait 1 Trait 2 Trait 3 

1 
2 
? 

I 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

I 

2 

3 

21.0 
84.0 

142.0 

21.0 ? 4.3 
84.9 ? 4.7 

142.4 ? 3.9 

20.9 ? 5.2 
83.7 ? 9.6 

141.3 ? 6.8 

22.4 ? 7.8 
85.6 ? 6.0 

143.1 2 2.8 

21.8 ? 6.5 
84.9 2 4.4 

142.4 ? 4.5 

21.9, 21.6, 25.8 
(7.7, 5.7, 13.6) 
84.9, 84.3, 86.0 
(17.1, 8.7, 6.7) 
141, 136, 143 
(6.2, 11.7, 4.1) 

1 .oo 
-0.30 
- 1 .oo 

1.00 ? 0.44 
-0.24 ? 0.51 
-1.03 ? 0.38 

1.03 f 0.43 
-0.25 ? 0.56 
-1.08 ? 0.36 

1.05 ? 0.48 
-0.26 5 0.52 
-1.00 ? 0.38 

1.08 f 0.42 

-0.29 5 0.69 

-1.13 ? 0.31 

Parameters 

1 .oo 0.30 
- 1 .oo - 1 .oo 

0.30 1 .OO 

Estimates by 5-123 

1.00 ? 0.42 0.35 f 0.36 

0.27 ? 0.27 1.02 ? 0.31 
-1.00 ? 0.38 -1.01 ? 0.40 

Estimates by 5-12 

1.02 5 0.41 

0.26 ? 0.34 
-0.97 ? 0.43 

Estimates of 5-13 

0.30 ? 0.39 

1.03 ? 0.30 
-1.03 ? 0.40 

Estimates by 5-23 

1.05 ? 0.41 0.34 ? 0.40 
-1.01 ? 0.38 -1.04 ? 0.37 

0.28 ? 0.30 1.04 ? 0.35 

0.43 0.43 
-0.09 -0.30 

0.19 0.06 

0.43 ? 0.44 0.42 ? 0.28 

0.17 2 0.38 0.05 t 0.29 
-0.01 f 0.51 -0.27 ? 0.25 

0.44 ? 0.32 0.42 ? 0.29 

0.17 t 0.03 0.02 ? 0.30 
0.03 ? 0.36 -0.24 2 0.30 

0.47 ? 0.32 

0.18 ? 0.29 
-0.01 ? 0.33 

0.41 ? 0.30 

0.03 ? 0.29 
-0.27 ? 0.25 

Estimates by S1 ,   S2  and S3" 

1.12 ? 0.34 0.38 ? 0.49 0.48 ? 0.33 0.41 ? 0.30 

-1.03 ? 0.38 -1.06 2 0.37 0.06 ? 0.42  -0.26 ? 0.29 

0.33 ? 0.45 1.06 ? 0.30  0.17 ? 0.30  -0.01 ? 0.37 

0.13 
-0.30 

0.19 

0.13 t 0.25 

0.07 ? 0.22 
-0.25 ? 0.23 

0.14 ? 0.25 

0.08 ? 0.23 
-0.25 ? 0.24 

0.12 ? 0.26 

0.07 ? 0.23 
-0.25 ? 0.23 

0.11 5 0.33 

-0.24 ? 0.26 

0.08 f 0.24 

Estimates are means 5 SD over 100 replicates, by the joint mapping on three traits (5-123) and on two traits at  a time (5-12, 
5-13 and 5-23) and by the separate mapping on each trait (Sl, $2 and $3). 

Values  in parentheses are respective SD values. 

fects may be modeled as random effects and the on three traits are  determined by the sum of  effects  of 
method of variance components may  have to be used. QTL sampled, plus a  random vector  of environmental 

effects that  are sampled from a trivariate normal distri- 

SIMULATION  STUDIES 

Joint mapping us. separate  mapping: To  further ex- 
plore some properties ofjoint mapping, simulation ex- 
periments were performed. For simplicity, one  chrome 
some with 16 uniformly distributed markers was 
simulated for  an F2 population. Each marker interval is 
10 cM in  length with a total length of 150 cM. Three 
QTL  were simulated to affect three traits with effects 
and positions listed in Table 3 (with no epistasis) . Heri- 
tabilities of the  three traits are all assumed to be 0.3. 
The sample size  is 150. The trait values of an individual 

bution with means zero, and variances and covariances 
given  in Table 4. Simulation and analyses  were per- 
formed on 100 replicates. 

Given the positions and effects  of QTL, the genetic 
correlations between traits are  expected  to be 0.54, 
-0.22, 0.68 between traits 1 and 2, 1 and 3, 2 and 3, 
respectively. [See, for example, Appendix C of ZENG 
( 1992)  for  the calculation of the  expected genetic vari- 
ance in an F2 population. The genetic covariance can be 
calculated similarly.]  However, despite the substantial 
genetic correlations among traits, phenotypic correla- 
tions are low after adding environmental effects (Table 
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TABLE 4 

S u m m a r y  parameters  and  mean  statistics of traits for the  simulation  example  in  Table 3 

Genetic Phenotypic  Environmental 

Genetic  Phenotypic  Environmental 
correlation  correlation correlation 

Trait  variance  variance  variance  Trait 2 Trait 3 Trait 2 Trait 3 Trait 2 Trait 3 

Parameters 

1 1.02  3.40  2.38  0.54 -0.22 0.30 -0.07 0.20 0.00 
2 0.76 2.53 1.77 0.68 0.06 -0.20 
3 0.71 2.35 1.64 

Residual 
Sample  correlation  correlation 

Sample  Residual 
Trait  variance  variance  Trait 2 Trait 3 Trait 2 Trait 3 

Mean estimates 
1  3.47  2.25  0.30 -0.07 0.21  -0.01 
2 2.51 1.67 0.07 -0.14 
3  2.28 1.51 

4). Sample means, variances and correlation coeffi- 
cients averaged over 100 replicates are also listed in 
Table 4. It is interesting to observe that  the observed 
(averaged) residual variances and correlations are very 
close to the  expected  environmental variances and cor- 
relations, as in the analysis most of the  genetic variation 
is absorbed by markers fitted in  the  model. 

Seven methods of QTL mapping were performed on 
each simulated data  set  at every 1 cM on  the chromo- 
some. These  include the following: joint mapping  for 
three traits (5-123 ) ,joint  mapping  for each pair of traits 
(5-12,J-13 and 5-23) , and separate  mapping  for each 
trait ( S1, $2 and $3) .  Simply for  the convenience of 
discussion, in  mapping  except  for the flanking markers, 
all other markers are fitted in the  model to control the 
genetic  background because markers are evenly distrib- 
uted  and widely separated. We used x:.05/15,7 = 21.4, 
x0,05/15,5 = 17.7, and xi.os/15,3 = 13.6 as the critical 
values  of the test for  the  three levels  of mapping. 

Summary estimates of QTL positions and effects by 
the seven mapping  methods are given in Table 3, and 
the observed power of detection of QTL are given in 
Table 5. The statistics  given in Tables 3 and 5 are sum- 
marized from 100 replicates for  three QTL regions sep- 
arately. Although three QTL are assumed to be located 
on the same chromosome, they are widely separated. 

TABLE 5 

Observed  statistical  power  (proportion  of  significant 
replicates  over all replicates)  of  seven  methods  of QTL 

mapping  from 100 replicates  of  simulations 

2 

QTL 5-123  5-12  5-13  5-23 $1 $2 S 3  S-123 

1 0.80 0.78 0.51 0.64 0.46 0.64 0.04 0.78 
2 0.79 0.37 0.36 0.84 0.00 0.39 0.41 0.64 
3 0.89 0.51 0.84 0.64 0.42 0.00 0.64 0.79 

Also because of the composite interval mapping used 
in analysis,  tests in  different regions are statistically inde- 
pendent ( ZENG 1993), so that  the statistical  power and 
sampling variance of estimates can be calculated sepa- 
rately for  three QTL at  and  around the intervals sur- 
rounding  the QTL. In  Table 5 ,  $123 denotes  the overall 
performance of the  three  separate mappings, and its 
power was calculated as the frequency of the  detection 
of the QTL by at least one of the  three  separate m a p  
pings. It is seen that  the power  of 5-123 in this  case is 
higher  than  that of S-123 for all three QTL. This shows 
that some QTL with  relatively  small  effects may be 
missed by separate mappings on  different traits but de- 
tected by joint mapping  that  combined information 
from  different traits. The power of 5-12 is  very close to 
that of 5-123 on QTL 1. This is because QTL 1 has 
effects  mainly on traits 1 and 2, and  just a small effect 
on trait 3. The exclusion of trait 3 in 5-12 only  slightly 
affects the power of detection of the QTL. This also 
shows that small pleiotropic effects on  additional traits 
included in the  joint mapping may be large enough to 
compensate  the lose of power due to the increase of 
the critical value. The powers  of QTL detection by J -  
12,J-13 and 5-23 are generally comparable to the sizes 
of pleiotropic QTL effects  involved. 5-23, however, tends 
to have  relatively higher power. This is because the 
pleiotropic effects of three QTL on traits 2 and 3 are 
all in the same direction and the  environment correla- 
tion is negative (see APPENDIX A )  . 

Means and SDs of estimates (over all replicates)  of 
QTL positions and effects by different  methods  are also 
given in Table 3. All estimates seem to be relatively 
unbiased. In  general,  the precision of estimation of 
QTL positions and effects by 5-123, as indicated by SDs, 
is better  than  other  methods. Particularly, the  joint anal- 
ysis has a significant effect on improving the sampling 
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TABLE 6 

Parameters of QTL positions and effects and their  estimates  in  a  single  replicate of simulation by the joint 
mapping on two traits (J-12) and the  separate  mapping on each  trait ($1 and S2) 

Additive effect Dominance effect 
Position Likelihood 

QTL ( C M )  Trait 1 Trait 2 Trait 1 Trait 2 ratio 

Parameters 

1 54 - 1.36 - 1.44 1.28 1.35 
2 114 -1.16  0.75 
3 128 1.30  0.49 

Estimates  by 5-12 

1 57 - 1.03 - 1.34  1.36  1.42 66.73 
2/ 3 125 -0.82 1.31 -0.35  0.52 37.49 

Estimates  by S1 

1 55 -1.05  1.42 28.07 
2 110 -0.75  1.16 15.01 

Estimates by $2 

1 61 -1.22 1.24 51.95 
3 127 1.34 0.45 24.24 

variance of estimates of  QTL positions. Sampling vari- 
ances of estimates of QTL positions by 5-123 are consis- 
tently smaller than those by other analyses, except of 
that  for QTL 3 by 5-13 and for QTL 2 by 5-23 in which 
cases two trait analyses  have some particular advantages 
as noticed above. 

Pleiotropy us. close linkage with one replicate: We 
also performed  a simulation to test  close linkage of  two 
nonpleiotropic QTL against pleiotropy of a common 
QTL. In this example, one chromosome with 11 mark- 
ers in 10 marker intervals, each with 15 cM, was simu- 
lated. Three QTL, one pleiotropic and two nonpleiotro- 
pic, were assumed to affect two traits with parameters 
given  in Table 6. The heritability for each trait is 0.4. 
(The effects  of QTL are  undoubtedly very large.) The 
sample genetic,  environmental and phenotypic correla- 
tions are 0.42,  0.2 and 0.29, respectively. The sample 
size  is 300. 

The results  of joint mapping (5-12) and separate 
mappings ( S-1 and $2) in one replicate are  presented 
in Table 6 and Figure 1.  At least two major QTL are 
indicated by the analyses. There is some evidence from 
separate mappings that  there might be two nonpleiotro- 
pic QTL in the region between 105 and 135 cM with 
each showing a significant effect on  one trait only. To 
test this hypothesis, the test of pleiotropy 11s. close  link- 
age was performed in the two major regions that show 
significant effects on the traits for comparison: one be- 
tween 45 and 75 cM and  one between 105 and 135 cM. 
The results are plotted in Figure 2. 

In Figure 2, the two-dimensional log-likelihood sur- 
face (as deviations from the maximum of the log-likeli- 
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FIGURE 1. -A simulation example of QTL mapping on two 

traits from  an F2 population. Likelihood ratio  test  statistics  are 
calculated and plotted at  every 1 cM position of a chromosome 
for three mapping methods. 5-12 is the joint mapping on two 
traits. S1 is the separate mapping on trait 1 and $2 is the 
separate mapping on trait 2. The genetic length of the chro- 
mosome is 150 cM  with  markers  at  every 15 cM. Three QTL, 
one pleiotropic and two nonpleiotropic, were simulated with 
positions and effects given in Table 6 and indicated by the 
triangles. A, QTL effects on trait 1; A, QTL effects on trait 2. 
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hoods on the  diagonal) is presented.  In this  analysis, 
unlike joint mapping and  the separate mappings that 
used  all but flanking markers for background control, 
only markers 1-3 and 7-11 are used in the model for 
background control in Figure 2A, and only markers 1 - 
7 and 11 are used for background control  in Figure 2B. 
On this two-dimensional surface, the diagonal elements 
represents null hypotheses of one pleiotropic QTL, and 
the offdiagonal elements represent alternative hypoth- 
eses  of two nonpleiotropic QTL. The likelihood ratio 

FIGURE 2.-Two-dimensional 
log-likelihood  surfaces (ex- 
pressed as deviations from the 
maximum of the log-likeli- 
hoods on the diagonal) for  the 
test of pleiotropy us. close link- 
age are presented  for two re- 
gions: the region between 45 
and 75 cM of Figure 1 ( A )  and 
the region between 105 and 
135 cM ( B ) .  X is the testing 
position for  a QTL affecting 
trait 1 and Yis the testing posi- 
tion  for  a QTL affecting trait 
2. On the diagonal of  X-Y 
plane, two QTL are located in 
the same position and statisti- 
cally are treated as one pleio- 
tropic QTL. Z is the likelihood 
ratio test statistic scaled to  zero 
at  the maximum point of the 
diagonal. 

test is performed  at  the maximum of the surface against 
the maximum of the diagonals. This likelihood ratio is 
0.53 for Figure 2A at  the position 56 cM for trait 1 and 
57 cM for trait 2 (the maximum diagonal is at 57 cM) , 
which is clearly not significant, and 7.26 for Figure 2B 
at  the position 111 cM for trait 1 and 126 cM for trait 
2 (the maximum diagonal is at 125 cM) , which is  sig- 
nificant at 0.01 level (for chi-square distribution with 
one degree of freedom).  There is clear evidence to 
support  the presence of  two QTL  with one located 
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TABLE 7 

Parameters of Q l T  positions  and effects and  their  estimates  over 100 replicates of simulation 
under  the  close  linkage  model 

1123 

QTL 1 QTL 2 QTL 3 QTL 4 QTL 5 

Position (cM) 
Effect 

b$ 
d: 
@ 
d,* 

Position (cM) 

Effect 
b? 
dT 
@ 
& 

JMP 
Power 

TLK 

Parameters 

23  36  81  89 

1 .oo -1.00 
0.40  0.40 

-1.00 1 .oo 
-0.30 -0.30 

Estimates" 

23.4 2 4.03  36.2 2 4.60  81.1 ? 1.90  89.0 t 2.20 

1.00 ? 0.19 -1.00 ? 0.17 
0.46 2 0.15  0.49 2 0.16 

-0.96 2 0.16 1.02 % 0.18 
-0.32 2 0.15 -0.27 2 0.14 

1 .oo 1 .oo 
0.81  0.89 

127 

1 .oo 
0.35 

-1.00 
0.35 

127.2 2 3.20b 
127.4 t 2.40b 

1.05 2 0.19 
0.38 t 0.16 

0.25 2 0.14 

1 .oo 
0.10 

-1.04 % 0.17 

"Values are means 2 SD. 
Here  the estimates of position of QTL 5 are ~ v e n  for each trait separately (under the  nonpleiotropic 

model) to  indicate  the  closeness of the  kstimates. 

around 111 cM showing a significant effect on trait 1 
and  one located around 126 cM showing a significant 
effect on trait 2. 

The maximum positions of diagonals in Figure 2  are 
the same maximum positions under the joint mapping 
in Figure 1 and Table 6. The maximum positions of 
offdiagonals in Figure 2  are also very close to  the maxi- 
mum positions indicated by the separate mappings (Ta- 
ble 6 ) .  As discussed above, in practice this twodimen- 
sional search for the best fit of  two nonpleiotropic QTL 
is unnecessary, although  the two-dimensional surface is 
more illuminating. The test can be  constructed at the 
peak suggested by joint mapping  for  the null hypothesis 
and  at  or  around the peak suggested by separate map- 
pings for  the alternative hypothesis. This is clearly  sup- 
ported by the results of Figure 2. These  are, however, 
the results of simulation in one replicate. 

Pleiotropy us. close linkage with multiple repli- 
cates: To show the behavior of the test statistic, we also 
performed simulations and tests  with multiple repli- 
cates. The  parameters of this simulation are, however, 
different  from  the above example and  are shown in 
Table 7. In this simulation, one chromosome with 16 
uniformly distributed markers in  15 10-cM marker in- 
tervals was simulated. Five QTL, one pleiotropic and 
four  nonpleiotropic,  are assumed to affect two traits 
with effects and positions listed in the table. The mag- 
nitudes of QTL effects are assumed to  be the same 
for additive effects and slightly different  for dominant 

effects. In this way, the statistical power  of the test is 
comparable  for  different QTL. Heritabilities of the two 
traits are all assumed to  be 0.6 and  the environmental 
correlation coefficient between the traits is  0.2. Sample 
size is 150 and  the  number of replicates of simulation 
is 100. 

For each replicate, the joint mapping is first per- 
formed using the  procedure stated above. In  the joint 
mapping, QTL 1 and 2 can be  detected only as one 
QTL and so are QTL 3 and 4. Therefore, only three 
QTL are indicated by the  joint analysis, and they are 
significant in all the replicates (with the estimated 
power  of 1 in Table 7 ) .  Again, by using the result of 
ZENG ( 1994), the critical value  of the joint mapping is 
set to be 17.7, which corresponds to the chi-square value 
with 5 degrees of freedom at  the significance level  of 
(0.05 / 15= ) 0.0033. The separate mappings, however, 
failed to detect some QTL in a few replicates (results 
not  shown) . The corresponding critical  value used in 
the separate mappings is 13.6. 

Statistical  tests for  the hypotheses of pleiotropy us. 
close linkage are  then  performed in the  three regions 
indicated by the joint mapping. The observed powers 
of the test are given in Table 7. The power of the test 
for QTL 1 and 2 is 0.81,  which is slightly  lower than 
that  for QTL 3 and 4. This may be because QTL 1 and 
2 are relatively more distant from nearby markers than 
QTL 3 and 4  that  are only 1 cM  away from the respective 
closest markers. Similar  results  were  also observed in 
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other simulations. This implies that  dense marker cov- 
erage can  help  the test and separation of multiple QTL, 
as expected. QTL 5 is a pleiotropic locus. In  the simula- 
tion, however, it can still be mapped  to different posi- 
tions (and even to different intervals in some repli- 
cates),  due to sampling effects, by separate mapping 
on different traits. The observed  power  of the test in 
this  case is 0.1, which is slightly higher  than,  but  not 
significantly different from,  the nominal level 0.05 (the 
difference is below the SE of the estimated power.) The 
critical value of the test used is 3.84 here. 

Estimates of QTL positions and effects  averaged  over 
100 replicates under the hypothesis of  close linkage are 
also  listed  in Table 7. It is seen that, under the  correct 
model, estimates tend to be asymptotically unbiased. Al- 
though it is seen that  the  mean estimates of dT for QTL 
1 and 3 (0.46  and 0.49, respectively) are statistically 
significantly different from the  expected value of 0.40, 
these slightly  biases in estimation are due to finite sam- 
ple size ( n = 150) . It is known that  the convergence 
of maximum likelihood estimates of dominance effects 
to their  expected values is slower than those of  additive 
effects. On the other  hand,  the estimates under the 
pleiotropic model are biased for QTL 1, 2, 3 and 4 
(results  not  shown) as expected. For  QTL 5, both mod- 
els  give  very  similar mean estimates, but  the estimates 
under  the pleiotropic model have  less sampling varia- 
tion (results  not shown). 

Complications can occur when two or more pleiotro- 
pic  QTL are closely linked. In this case,  use  of incorrect 
(nonpleiotropic  linkage) model can bias the test and 
estimation. The  extent of the bias depends  on  the rela- 
tive magnitudes of pleiotropic QTL  effects on different 
traits and  the  extent of linkage. When each QTL has a 
predominant effect on  one  (and  different) trait only, 
the bias can be small and  the test for linked nonpleio- 
tropic QTL  may still be  appropriate. 

We have  also performed  the simulation studies on 
the performance of the statistical  tests  of  QTL X envi- 
ronment  interaction, particularly on comparing the 
powers of designs I and I1 in detecting QTL and testing 
QTL X environment  interaction.  The results agree with 
the analyses  of APPENDIX B .  To save the space, these 
simulation results are not presented. 

DISCUSSION 

Many data in QTL studies contain multiple traits. 
These traits are often correlated genetically and nonge- 
netically (or environmentally). One way to analyze 
these data is to map QTL on each trait separately. Alter- 
natively and preferably, different traits are analyzed  to- 
gether to map QTL affecting one  or more traits by 
taking the  correlated  structure of data  into  account. 
There  are generally three advantages for this joint anal- 
ysis. First, the joint analysis may increase statistical 
power of detecting QTL. Second, the joint analysis can 

improve the precision of parameter estimation. Third 
and probably most importantly, the joint analysis pro- 
vides appropriate  procedures to test a  number of bio- 
logically interesting hypotheses involving multiple 
traits. We examined, in detail, various advantages and 
disadvantages of the joint analysis  as compared  to sepa- 
rate analyses for mapping QTL and also for testing a 
number of hypotheses involving genetic correlations 
among multiple traits. Among the test procedures con- 
sidered  are those for joint mapping, pleiotropy, QTL 
X environment  interaction, and pleiotropy us. close 
linkage. 

As the  number of traits in an analysis increases, the 
number of relevant significant QTL  involved may in- 
crease. So it is  very important to have procedures  to test 
whether  the significant association on different traits in 
certain genome regions is due to possibly a pleiotropic 
QTL or multiple (more  or less) nonpleiotropic QTL. 
Separation of these two hypotheses undoubtedly has 
important implications to our understanding of the na- 
ture of genetic correlations between the traits involved 
and also to practical breeding of genetic materials be- 
cause one of the main purposes in animal and plant 
breeding is to break unfavorable linkage of some genes 
involved. 

We also  analyzed two commonly used experimental 
designs for studying QTL by environment  interaction. 
As expected, design I tends to has  relatively more power 
to  detect QTL by environment  interaction, whereas de- 
sign 11, which  would require more genotyping on mark- 
ers, tends to have  relatively more power to detect QTL. 

In this paper, we formulate our analysis  in terms of 
some specific experimental designs for mapping QTL, 
namely F2 populations (and backcross populations as 
well  with some modifications) . When Fl [ F2 or F3, e.g., 
STUBER et al. ( 1992) ] individuals are backcrossed to 
both  parental lines, two backcrosses can be analyzed 
together by taking respective maker and QTL genotypes 
into  account.  There  are, however,  several other specifi- 
cations for this design that  need also to be taken into 
account in  analysis and  are  not discussed here. Many 
experiments for mapping QTL are subdivided into  a 
number of groups or blocks. These groups or blocks 
sometimes have significant effects on phenotypes ob- 
served. Eliminating these experimental effects when 
mapping QTL can further increase the precision and 
efficiency of mapping. Some of these effects may be 
random and others may be fixed. So it is  very desirable 
to combine  the composite interval mapping with a 
mixed model. Epistatic  effects of QTL are also ignored 
here  and should also be taken into  account  for  a  mature 
package of methods and programs for mapping QTL. 
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APPENDIX A COMPARING THE  JOINT AND 
SEPARATE ANAL.SES FOR MAPPING QTL 

Here we discuss the relationship between the  joint 
(for multiple traits) and separate (for  one  trait) analy- 
ses for  mapping QTL. To simplify the  argument, we 
will consider the situation where the testing position 
for a putative QTL is right on a  marker, say marker 
k ,  so that  the comparison can be  made based on the 
regression analysis. Then, by induction,  the general 
conclusion on the comparison can be extended  to m a p  
ping  for  a QTL within a  marker interval. 

Multiple Traits 1125 

We first consider the case  of testing only the marker 
additive effects in a simple bivariate regression setting. 
Let the array of the regression coefficients of yl and 
on x k  be  denoted as bk = ( bkl , bk2) . For the joint analysis, 
the hypotheses to be tested are 

H,: bk = 0 and HI: bk f 0 .  ( A I )  

Under HI of (A1 ) , the expected maximum likelihood 
is 

L1 E I v I - n / 2 ,  

= [do;( 1 - p 2 ) ]  (A2) 

where (T: and (T; are residual variances and p is the 
residual correlation coefficient. Under Ho, 

r, E IV, I -n'2, 

= Iv + b;a:kbk/-n/2, 

= [ (0: + ( T : ~ ~ L )  (0; + 

- (pula2 + a%bk1bk2)21-n/2, ('43) 

where (T :k is the variance of x k  that is 1 /2  for  an F2 popula- 
tion. The likelihood ratio test statistic for thejoint analy- 
sis  is then  expected  to  be 

LRJ = -2 l n ( L / L ] ) ,  

P: + Pf - 2PP1P2] , (A4) 
1 - p2 

Similarly, it can be shown that  for  the separate analyses 

LRs1 = nP:, (A6) 

LRs2 N nPz. (A7) 

Several observations can be made from (A5) , (A6) 
and (A7):  

1. 

2. 

If p = 0, L R J  5 LRsl + LR,,. That is, the joint test 
statistic is approximately the sum of separate test 
statistics for  independent traits. 
If 0 2  = 0, L R J  N LRs1/ (1 - p 2 )  2 LRs1. This shows 
that even if a QTL has an effect only on  one trait, 
say trait 1, using the  joint analysis on two traits to test 
bkl = 0 can still  have some advantage as compared  to 
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the separate analysis on trait 1 only, if the two traits 
are  correlated. 

3. LRJ 2 maximum [ LRsl,  LRs2] always. This can be 
shown, for example, for two extreme cases.  Case 1: 
P2 = 0 and PI # 0,  LRJ L R s l / ( l  - p 2 )  2 LRsl,  
the observation 2.  Case 2: P1 = P2 = P, LRJ = [ 2 /  
(1 + p ) ]  ,f?‘ 2 LRSl or LR,,. 

4. If pPlP2 < 0,  i.e., p and PIP2 are in different signs, 
LRJ > LR,, + L&. In this case, the power  of the 
joint analysis  would be higher  than  that of  any sepa- 
rate analysis for  mapping QTL. This is the most fa- 
vorable situation for  the joint analysis. 

The same argument  and comparisons can also  apply 
to the multiple regression analysis. Ifwe test the additive 
effects  of marker k conditional on fitting other markers, 
bk of (A3) become the partial regression coefficients 
of y, and p on xk conditional on  other markers, and 
CJ :k of (A3 ) now becomes the variance of xk conditional 
on other markers, which can be denoted as o:k.sk (see 
below).  Then by simply redefining PI = b k l o x k . s k / o l  
and P2 = bk2axk. q/ oz in (A4) - (A7) , the above  com- 
parisons still  apply. 

When we take dominance effects into  account in 
mapping,  the analysis becomes a little complicated. 
Now let the array of the partial regression coefficients 
of yl and p on xk and zk be denoted as 

B k = ( ; ;  2 ) .  
When we test the hypotheses H,: Bk = 0 and HI: Bk # 

0 ,  the  expected maximum likelihood under Hl can still 
be expressed as ( A 2  ) , and  under Ho it becomes 

where Ak is the covariance matrix of xk and zk condi- 
tional on other markers fitted in the model. Using the 
same notation of ZENG ( 1993), this is denoted as 

where sk denotes  a  set of selected markers that  does  not 
contain marker k .  For F2, these conditional variances 
and covariance are 

where r denotes the corresponding recombination fre- 
quency between  markers. The conditional and uncondi- 
tional  covariances  between x and z within and between 
markers are all  zero. This shows that asymptotically the 

additive and dominance effects can be estimated and 
tested independently in an 4 population, because  they 
are orthogonal. 

With cxkik.4 = 0, 

L [(a: + d k . , b i l  + d k Y k d L )  

x ( 4  + d k . , b i 2  + dk. .d:2)  

- (Pfflffe + ff:k.skhlbkz + azk.skdkldkz) 1 . 

Thus  the likelihood ratio under the joint analysis can 
be expressed as 

2 - n / 2  

- 2PYlY2 + ( P I %  - P2Y1)2 
1 - p2 

P:  + P ;  - 2PPlP2 + r: + 7; 
- 2PYlY2 + (Ply2 - P2Y1) 

“n 
1 - p2 

under the similar conditions of (A5) where P1 = 

- dk2g4.sk /c2 .  Similarly, for the separate analyses 
b k ~ ~ ~ ~ . ~ ~ / o ~ ,  P 2  = bk20xk.sJu2, y1 = dkluzk.sk/ol and Y Z  
- 

J x Y l  = n(P :  + r:), 
m Y 2  = n(P :  + 7:). 

The comparison of the joint analysis vs. separate analy- 
ses is basically the same as above.  However, since ( P 1  y2 
- P2y1 ) 2 0,  the joint analysis  in this case  has some 
extra advantage. 

APPENDIX B: COMPARING TWO EXPERIMENTAL 
DESIGNS  FOR  MAPPING  QTL AND FOR TESTING 

QTL X ENVIRONMENT  INTERACTION 

On testing QTL In this paper, we regard a trait ex- 
pressed in multiple environments as multiple traits in 
analysis. Then, the likelihood ratio test statistic under 
design I for testing a QTL is just ( A 5  ) under the same 
assumptions and approximations. Under design 11, 
since different individuals are  independent,  the likeli- 
hood ratio test  statistic for  the joint analysis  is just the 
sum of those for separate analyses, a special situation 
of design I with p = 0 (observation 1 in APPENDIX A ) .  
Thus under the same conditions (e.g., sample size), 
the expected difference on  the test  between the two 
designs in the analysis  is reflected on the value of p in 
(A5) .  Depending on p,  P1 and P2,  the test  statistic for 
design I may be smaller or larger than  that for design 
11. However,  in a special  case in which PI = P2,  the 
ratio of the test  statistics for  the two designs is expected 
to  be 

LRM.1 1 
- E -  

LRM.II 1 + P 

Thus, unless p 5 0,  the test under design I1 is  likely to 
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be more powerful for  mapping QTL than  that  under likelihood estimate of bko can be shown to  be  the 
design I in this case. Of course,  the  number of individu- weighted mean of the estimates of bkl and bk2 under Hl 
als for marker genotyping in design I1 is doubled. with  weights 

QTL X environment  interaction, we test hypotheses c1 = 

assumptions of APPENDIX A.  Under H , ,  the maximum Then the maximum  likelihood under I& is expected  to  be 

On  testing QTL X environment  interaction: To test 
0: - pa102 a: - pula2 

a: + 0: - 2 p a p 2  a: + a: - 2pa,a, * 
t c2= 

Ho: bkl  = bk2 = bko and b k l  f b k 2  under  the Same 

The expected maximum likelihood under Hl is the 
same as (A2). The likelihood ratio under design I is 
then  expected  to  be 

The likelihood ratio under design I1 is expected to be 

L R p E . 1 1  N 2nA2, 

and  then 

Thus, unless p 5 0, the power  of design I for testing 
QTL X environment interaction will be  higher  than 
that of design 11. 


