
Copyright 8 1995 by the  Genetics  Society of America 

Wolbachia  Infections and the Expression of Cytoplasmic  Incompatibility 
in Drosophila sechellia and D. muritiana 

Rosanna Giordano, * Scott L. O’Neillt and Hugh M. Robertson * 
*Department of Entomology, University of Illinois,  Urbana,  Illinois 61801 and Department of Epidemiology 

and Public  Health, Yale University School of Medicine, New Haven, Connecticut 06510 

Manuscript  received  November 28, 1994 
Accepted for publication May 6, 1995 

ABSTRACT 
Various  stocks of Drosophila mauritiana and D. sechellia were found to  be  infected with  Wolbachia, a 

Rickettsia-like  bacterium  that  is known to cause  cytoplasmic  incompatibility  and  other  reproductive 
abnormalities in arthropods.  Testing for the  expression of cytoplasmic  incompatibility  in  these two 
species  showed  partial  incompatibility  in D. sechellia but no expression of incompatibility  in D. mauritiana. 
To determine  whether  absence of cytoplasmic  incompatibility  in D. mauritiana was due  to  either  the 
bacterial or host genome, we  transferred  bacteria  from D. mauritiana into an uninfected strain of D. 
simulans, a  host  species known to  express  high  levels of incompatibility  with endogenous Wolbachia. 
We also  performed  the  reciprocal  transfer of the  natural D. simuluns Riverside infection into a  tetracycline- 
treated  stock of D. mauritiana. In each  case,  the  ability  to  express  incompatibility was unaltered by  the 
different  host genetic background.  These  experiments  indicate  that  in D. simulans and D. mauritiana 
expression of the  cytoplasmic  incompatibility  phenotype  is  determined by the bacterial  strain and that 
D. mauritiana harbors a  neutral  strain of Wolbachia. 

C YTOPLASMIC incompatibility is  typically  ex- 
pressed when a male insect that is infected with 

Wolbachia mates with a noninfected female. The num- 
ber of  surviving progeny from such a cross is greatly 
reduced, while  any other combinations of matings are 
fully fertile. This phenomenon has been described from 
a number of insect species spanning several orders ( e.g., 
LAWN 1951; GOTTLIEB 1972; YEN and BARR 1974;  NODA 
1984; HSIAO and H S I A ~  1985; WADE and STEVENS 1985; 
CONNER and SAUL  1986;  HOFFMANN et al. 1986).  The 
occurrence of this phenomenon has been  determined 
to  be caused by Rickettsia-like bacteria, first described 
in Culexpipiens, and named Wolbachiapipientis ( HERTIG 
1936). In some species of Hymenoptera, eggs from in- 
compatible crosses result in haploid male progeny due 
to abortive karyogamy (RYAN and SAUL  1968; BREEUWER 
and WERREN 1990; REED and WERREN 1995). In addi- 
tion, Wolbachia have  also been implicated in causing 
parthenogenesis  in  certain parasitic wasps (STOUT- 
HAMER et al. 1990),  and overriding chromosomal sex 
determination in the terrestrial isopods Amadillidium 
vulgare, Chaetophiloscia elongata, and Porcellioniaks pruino- 
sw ( JUCHAULT et al. 1994). Removal  of the bacteria by 
treatment with the antibiotic tetracycline, or in some 
cases, exposure to high  temperatures, restores fertility 
( TRPIS et al. 1981;  WRIGHT and BARR  1981; RICHARDSON 

et al. 1987). In some species it has been shown that  the 
degree of cytoplasmic incompatibility decreases as the 
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male ages ( SINGH et al. 1976; HOFFMANN et al. 1986), 
possibly as a result of  eggs being fertilized with sperm 
developed in spermatocysts that  are devoid of bacteria 
( BRESSAC and ROUSSET 1993). In contrast to the pat- 
tern of unidirectional incompatibility described above, 
in some species, matings between infected males and 
females of different strains of the same species can 
sometimes result in bidirectional incompatibility (YEN 
and BARR  1973; O’NEILL and KARR 1990; MONTCHAMP- 
MOREAU et al. 1991). While the precise mechanism of 
cytoplasmic incompatibility is unkown, it is likely that 
bidirectional incompatibility is due to infection with 
different Wolbachia strains ( ROUSSET et al. 1992a; 
BREEUWER and  WERREN 1993; BRAIG et al. 1994). 

Sequencing  the 16s rRNA gene of this bacterium 
has permitted  the placement of Wolbachia  within the 
alpha-Proteobacteria as  well as allowing a preliminary 
look at  the phylogenetic relationship of  Wolbachia 
strains found in different insect hosts ( O’NEIU et al. 
1992;  ROUSSET et al. 1992a; STOUTHAMER et al. 1993). 
While concordance can be seen in a phylogeny  of aphid 
symbionts (Buchnera aphidicola complex) based on the 
16s rRNA gene and a phylogeny  of the host based on 
morphological characters ( MORAN et al. 1993), a simi- 
lar analysis  with  Wolbachia 16s rRNA sequences and 
their hosts does not show such concordance ( O’NEILL 
et al. 1992; MORAN and BAUMANN 1994). This contrast 
indicates that while this lineage of aphids was possibly 
infected by symbionts only once, events leading to the 
infection of  insects harboring Wolbachia have probably 
been  more  frequent and horizontal in nature. With the 
development of the polymerase chain reaction (PCR) 
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it has been possible to discern rapidly the presence and 
frequency of infection of this bacterium in arthropods. 

In  recent years it has been  demonstrated  that two 
members of the Drosophila  melanogasterspecies complex, 
D.  melanogasterand  D.  simulans, are sometimes infected 
with  Wolbachia and express partial-to-extreme cyto- 
plasmic incompatibility. Different populations of  D.  sim- 
ulans  have been shown to be infected with different 
strains of Wolbachia, for example the Riverside strain 
from Riverside, CA, is bidirectionally incompatible with 
the Hawaiian and Seychelles strains ( O’NEILL and KARR 
1990; MONTCHAMP-MOREAU et al. 1991 ) . Infected popu- 
lations and stocks  of D.  melanogaster have been  found 
that show partial to no cytoplasmic incompatibility 
( HOFFMANN 1988; HOLDEN et al. 1993; BOURTZIS et al. 
1994; HOFFMANN et al. 1994;  SOLICNAC et al. 1994). In 
this paper, we report  that two other members of the 
melanogaster species complex, D.  sechellia and D.  mauri- 
tiana, are also infected with  Wolbachia. Characteriza- 
tion of incompatibility expression in these two species 
shows that D.  sechellia expresses the phenotype while D. 
mauritiana does not.  The relative contributions of host 
and bacterial genome to these phenotypic differences 
have been  explored by utilizing microinjection tech- 
niques to transfer these symbionts  between different 
hosts,  as well as assessing the relative density of bacteria 
found in naturally infected and  trawinfected strains. 

MATERIALS  AND METHODS 

Stocks: Sources and identification of the stocks of D. sechel- 
lia and D. mauritiana used to  determine  the prevalence of 
Wolbachia in these two species are listed in  Table 1. Origins 
of the Drosophila stocks used  in the crosses below are as 
follows. D. mauritiana: synthetic is a  fusion of several isofemale 
lines and was obtained  from J. COYNE. The D. mauritiana G 
and MS series stocks were originally collected on  the island 
of Mauritius by  A. FUKATAMI in 1979 and 1987, respectively. 
Some of the stocks from  the G series were sent to the Bowling 
Green stock center by T. WATANABE. We obtained some of 
the G and  the MS series stocks directly from Dr. WATANABE 
as  well  as the Bowling Green stock center.  The D. sechellia 
stock used in  the crosses was kindly provided by J. DAVID. The 
Riverside and Watsonville strains of D. simulans were supplied 
by  M. TURELLI (abbreviated as  DSR and DSW) . D. simulans 
Hawaii was obtained from T.  LY~TLE (abbreviated as DSH) . 
Flies were cultured  in bottles at room temperature  (-23- 
25”)  on  standard agar molasses diet  and  maintained by mass 
transfer. Tetracycline-treated strains were established by plac- 
ing 0.025% by weight of tetracycline in  melted and cooled 
Drosophila  media just  before solidification. Flies were left to 
lay eggs for 3 days before being removed. Strains were treated 
for two generations  and tested for infection status with  PCR 
utilizing primers 99F and 994R, which are specific for  the  16s 
rRNA  of Wolbachia ( O’NEILL et al. 1992) . 

Testing  for  presence of cytoplasmic  incompatibility: Flies 
used in matings were reared in vials at a density of 20-30 
larvae per vial. Upon  emergence they were isolated as virgin 
males and females, kept at a density of about 20 individuals 
per vial, and crossed when 3-5 days old. Matings to test for  the 
presence of incompatibility were set  up  in bottles upturned  on 
agar/molasses caps, which were replaced daily to  monitor  the 
number of eggs laid. Hatching rates were scored 28 hr after 

egg  collection. All matings were conducted with one female 
and two males with the exception of D. sechellia where, due 
to  the low fecundity of this species, three females and  three 
males were set up for  the first experiment  and two females 
and two males were used in  experiment 2 (Table 2) .   The 
number of replicates done  for each of the crosses is listed in 
their respective tables. 

We also tested whether presence of a Wolbachia infection 
in D. mauritiana affected the fecundity of this species. Flies 
for this experiment were set up as described above and eggs 
were collected for seven consecutive days. 

Truns-infection of isofemale  lines: Injected stocks were de- 
rived by direct egg cytoplasm microinjection from  donor  to 
recipient  strain ( BOYLE et al. 1993) . Donor flies between the 
age of 2-10 days old were set up in an  upturned bottle  fitted 
with an agar/molasses cap  and  dabbed with  yeast paste. Caps 
were changed  during  the day, approximately every hour for 
2 days, to stimulate  egg production. Embryos to be  used as 
donors were collected every hour  and  dechorionated  for 
1 min in  a 50% solution of commercial  hypochlorite.  Decho- 
rionated embryos were glued to coverslips with rubber ce- 
ment  to facilitate microinjection. Only  embryos prior  to  pole 
cell formation (cycle 10) were used as either  donors  or recip- 
ients. Cytoplasm was removed from  the  posterior  end of the 
donor embryos with a needle of borosilicate glass capillary 
tube.  The cytoplasm collected from  donors was injected into 
the  posterior  end of recipient eggs prepared as above but 
partially desiccated to allow volume for  the  injected material. 
Eggs were removed to a agar/molasses  cap  and  the larvae 
that survived transferred  upon  emergence  to vials  of corn- 
meal-molasses medium. Isofemale lines were established with 
the  emergent females as  follows: seven lines of D. simulans 
Watsonville transinfected with bacteria from D. simulans River- 
side,  abbreviated as DSW (DSR) ; three lines of D. simuluns 
Watsonville transinfected with bacteria from D. mauritiana 
[ DSW (Mau) ] ; and  14 lines of D. mauritiana transinfected 
with bacteria from D. simulans Riverside [ Mau(DSR)]. Fe- 
males were mated either with males from injected eggs or to 
males from  the original stock of uninfected recipient flies. 
Two individuals from the F1 progeny were tested by  PCR for 
infection using the  16s rRNA Wolbachia specific primers 
mentioned previously. Presence of infection was also con- 
firmed by staining embryos with the fluorescent DNA-interca- 
lating dye 4,6-diamino-2-phenylindole, (DAPI) ( O’NEILL and 
KARR 1990). Of the seven DSW (DSR) isofemale lines, three 
were infected; of the  three DSW (Mau) lines, one was in- 
fected; and of the 14 Mau (DSR) lines, five were infected. An 
infected  line was chosen  randomly, used to  conduct crosses, 
and rechecked for its infection status prior to crossing. 

Phylogenetic  relationships of the  Wolbachia: To  determine 
the phylogenetic positions of the bacteria  in D. mauritiana 
and D. sechellia a 1450-bp fragment of the  16s rRNA gene was 
sequenced. PCR products were generated using the  16s rRNA 
primer pairs 21F and 994R, and 99F and 1492R [see  O’NEILL 
et al. ( 1992)  for 21F,  99F and  994R  primer 149213  is 5’GGTT- 
ACCTTGTTACGACIIT, Escherichia coli positions 1510-1492 
reverse, courtesy of C. WOESE] . A  contiguous sequence was 
assembled from two overlapping  clones  for D. sechellia and 
one  clone  for D. mauritiana. The  fragment was sequenced in 
one direction. PCR products were purified  in 0.75% NuSieve 
gels (FMC) , cloned into pcDNAII (InVitrogen) , and Se- 
quenced using the Sanger dideoxy termination method as 
described  in ROBERTSON and MACLEOD (1993).  The  16s 
rRNA sequences for D. sechellia and D. mauritiana have been 
deposited  in  GenBank and can  be retrieved with accession 
numbers U17059 and U17060, respectively. 

The new sequences were manually added to the original 
alignment of O’NEILL et al. (1992) using the  data  editor in 
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TABLE 1 

Results from screening of stocks of Drosophila muuritiana and D. secheUia 

1309 

Stock 
name  or Infection 
number status Source 

D. mauritiana 
0241.0 + A 
w l  B 
vermillion - B 
net, cy, cn, bw B 

B 
white I + A 
L1 A 
RLW 1 B 
Synthetic + C 
72  David + C 
wPeach Hart1 + C 
w B. Green + C 
105 David + C 
Bowling Green + C 
CL236 + D 
Les Galets D 
Petite Riviere D 
Lig 21 - D 
David D 
152 + D 
75 D 
G20 + A 
G23 A 
G29 A 
G35 A 
G72 A 
G76 + A 
G93 + A 
Cambridge - A 

wf A 
A 

zlf A 
zl A 

A 
bw cn A 
curved wing - A 
w j  e - A 
pn  “upt” loz + A 
br.  orange eyes - A 
Robertson + D 

- 

- 

ww, bg - 

- 

- 

- 
- 

- 

- 

- 

- 
- 

- 

- 

W - 
- 

- 

Y Plum - 
- 

w (Cope)  + D 
2252 + E 
2278 + E 
2282 + E 
2308 + E 

Stock 
name  or Infection 
number status Source 

231 7 + E 
2318 E 
2516 + E 
G20 + F 
G23 + F 
G76 F 
G102 F 
G197 + F 
G284 F 
MS2 F 
MS4 F 
MS5 F 
MS8 F 
MS9 F 
MSl 0 + F 
MS12 + F 
MS13 - F 
MS15 F 
MS16 + F 
MS17 - F 
MS18 + F 
MS19 + F 
MS20 + F 
MS30 - F 
MS31 + F 
MS34 - F 
MS38 F 
MS42 + F 
MS48 + F 

- 

- 

- 

- 

- 

- 
- 

- 

- 

- 

- 

D. sechellia 
I ,  A 
I ,  G 

cn E 
22 E 
81 E 
24 E 
4 E 
21 E 
Pur E 

Robertson E 
David H 

+ 
+ 

Code  for  sources of stocks listed above: A, PHYLLIS OSTER,  Mid-American Drosophila Stock Center, Bowling Green, OH; B, 
RICHARD LYMAN, North Carolina State U., Raleigh, NC; C, JERRY COYNE,  University  of Chicago, Chicago, IL; D, CATHY LAURIE, 
Duke University, Durham, NC; E, KATHI”AT~HEWS, Bloomington Stock Center, Bloomington, IN; F, TAKAO WATANABE, National 
Institute of Genetics, Mishima, Japan; G, JOHN ROOTE, Cambridge University, Cambridge, UK  and H, JEAN DAVID,  CNRS,  Gif 
sur Yvette, France. 

PAUP 3.1.1 ( SWOFFORD 1993).  The Wolbachia sequences (L02885), Muscid+rax  uniraptor (L02882) ( STOUTHAMER 
used are listed here followed by their GenBank accession et ~1.1992) ; Nasonia giraulti (M84689), N. vitripennis 
number: Trichogramma  cordubensis (L02883), T. &on ( C A  ( M84686), N. longicornis ( M84691 and M84692 ) , ( BREEUWER 
strain, L02886), T. &on (SD  strain, L02888), T. petiosum et al. 1992) ; D. simulans (Noumea strain, X64267) ( ROUSSET 
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TABLE 2 

Percent egg hatch from D. sechellk 

0 s N Number of  eggs  Egg hatch (%) 

a. Crosses  with  3-5-day-old  virgin  males and females 

D. sechellia T X D. sechellia 20 
D. sechellia T X D. sechellia T 20 

D. sechellia X D. sechellia T 20 
D. sechellia X D. sechllia 19 

1339 
1195 

805 
1053 

b. Crosses  with 19-20day-old males and 4-5day-old virgin  females 

D. sechellia T X D. sechellia 15 
D. sechellia T X D. sechellia T 14 

31 1 
193 

26.8 2 3.2 
96.0 t 0.7 

96.2 2 0.9 
94.5 t 2.1 

D. sechellia X D. sechellia T 11 202 93.5 2 2.3 
D. sechellia X D. sechellia 10  250 87.4 2 5.9 

Crosses are between  individuals that were naturally infected and a tetracycline-treated (T) stock of the same 
strain. Pairs of crosses are compared using the Mann-Whitney U test. There was no significant difference 
between  any  pair of crosses except for the first, which  was P < 0.0001.  Egg-hatch  values are means 2 SE. 
Crosses in b use a subset of males from a. 

et al. 1992a) ; Armadillidium uulgare (X65669) ( ROUSSET et al. 
1992b) ; Adalia  bipunctata (U4163), the male-killing  strain 
(WERREN et al. 1994); Rhinocyllus conicus (M85267) (CAMP- 
BELL et al. 1992) ; Tribolium confusum (X62247), Hypera postica 
(X62248), Aedes albopictus (X61 767), D. simulans (Riverside, 
CA, strain, X61770), D. simulans (Hawaii strain, X61769), 
Ephestia cautella (X61771 ) , ( O’NEILL et al. 1992) ; Anaplasma 
marginale (M60313) ( WEISBURG et al. 1991 ) ; Ehrlichia canis 
(M73226), E. phagocytophila (M73220) (ANDERSON et al. 
1991) ; Cowdria  ruminantium (X61659) (DAME et al. 1992) ; 
Rickettsia powazekii (M21789) (WEISBURG et al. 1989).  The 
final alignment consists of 1522  positions.  Positions  1-64 and 
1473-1522  were excluded from the phylogenetic analysis  be- 
cause data for these  positions is  missing for most  taxa.  Phylo- 
genetic analysis  was done using the heuristic algorithm of 
PAUP 3.1.1. Six heuristic  searches were performed with ran- 
dom addition of sequences and tree-bisection-reconnection 
branch swapping. The tree was rooted using R prowazekii as 
outgroup. 

Density of Wolbachia in embryos:  Embryos  were collected 
from 4-5-day-old  flies at 1-hr  intervals, dechorionated in a 
50%  commercial  hypochlorite solution, fixed in 1:l heptane/ 
methanol, and stained for 15 min in 1 pg/ml of DAF’I (Boyle 
et al. 1993). Young  embryos (precycle 10) used  to determine 
bacterial  density were mounted on slides  with a bridged cov- 
erslip, in 70% glycerol and 0.35%  n-propyl  gallate  as mount- 
ing medium and viewed  with epifluorescence microscopy. 
The anterior portion of the eggs  was photographed with a 
40X objective,  focusing in a single plane just beneath the 
vitelline membrane. Numbers of bacteria were counted on 
photographs in an area of 2.3 X 3.4 cm. These relative  bacte- 
rial counts were square root transformed because the group 
variances were proportional to the means, and then analyzed 
by means of an ANOVA  followed  by a multiple  comparison 
with the a posterion’ Tukey  test (ZAR 1984). 

RESULTS 

Wolbachia infections are  present in both D. muurl 
Eiana and D. sechellia stocks: We screened 74 stocks of 
D. mauritiana and 10 stocks  of D. sechellia for  the pres- 
ence of Wolbachia by diagnostic PCR.  Positive  PCR  re- 

actions were obtained from some stocks  of both species 
with 45 and 70% infected, respectively (Table 1 ) . The 
infection status for some of the G series stocks  of D. 
mauritiana obtained from the Bowling Green stock cen- 
ter was not consistent with the results from those stocks 
obtained directly from T. WATANBE,  who sent  them to 
the stock center. Stock  G23 from Bowling Green was 
not infected, but  that from T. WATANABE was, while 
stock  G76 from Bowling Green was infected and the 
corresponding stock from T. WATANABE  was not. It is 
possible that  the infection may have been lost from the 
uninfected strains. The overlapping D. mauritiana stocks 
between the T.  WATANABE collection and that of the 
Bowling Green stock Center were treated as indepen- 
dent stocks as a result of the inconsistency in their infec- 
tion profile and  the length of time they had  been sepa- 
rated. 

A phylogenetic analysis including  the sequences of 
the 16s rRNA from Wolbachia from D. mauritiana and 
D. sechllia resulted in 98 most parsimonious trees 829 
steps long  (Figure 1 ) . In all most parsimonious trees, 
the Wolbachia from D. simulans Hawaii and D. sechellia 
form a clade. The relationships of the Wolbachia from 
D. mauritiana cannot  be unambiguously resolved, but 
all trees indicate that its relationship to  the endosymbi- 
ont in D. sechellia is distant (Figure 1 ) . However,  al- 
though  there  are 359 informative sites when all  taxa 
are  considered, only 81 inform the relationship of the 
22 Wolbachia strains, thus the detailed relationships of 
the Wolbachia cannot be resolved  with confidence. 

Expression  of  cytoplasmic  incompatibfity To test 
whether the infected strains  of D. mauritiana and D. sechel- 
lia were capable of inducing the incompatibility pheno- 
type, we cured representative stocks from each species 
with  tetracycline,  tested them via  PCR and DAPI staining, 
and crossed them with their parental infected strains. 
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FIGURE 1.-One of 36  most  parsimonious  trees 853 steps  long (retention index = 0.837, CI excluding  uniformative  characters 
= 0.726) showing  phylogenetic  relationships  between  Wolbachia from diverse arthropod hosts (hosts  indicated by italics). 
Rickettsia fn-owazekii was used as the  outgroup. *, branches  supported by a strict consensus tree. Names  of  the arthropod hosts 
are in bold. 

Typically,  cytoplasmic  incompatibility is expressed when 
infected males are mated to uninfected females. The 
reciprocal cross is usually  fully compatible. When young 
4-5dayald virgin D. sechellia males and females of dif- 
fering infection status were mated (Table 2 ) , the poten- 
tially incompatible cross of infected males mated with 
uninfected females  showed a significant reduction in  egg 
hatch (26.8 2 3.2%, n = 20; mean 2 SE) when  com- 
pared to the control cross  between uninfected flies (96.0 
2 0.7%, n = 20; Mann-Whitney U test, P < 0.0001). 
When a subset of the infected and uninfected males  were 
allowed to age 19-20 days and  then mated to 4t0-5- 
day-old  virgin  females, the degree of  incompatibility was 
drastically reduced and no significant decline in hatch- 
ing was observed (72.7 ? 5.9%, n = 15; 87.8 f 2.8%, n 
= 14; Table 2, experiment b )  . 

In  contrast, when similar crosses  were performed with 
D. mauritiana strains quite  different results  were ob- 
tained. Table 3 shows the  mean  percent egg hatch from 
crossing two different infected strains of D. mauritiana 
with their respective tetracycline-treated stocks. Surpris- 
ingly, no significant difference in mean  percent egg 
hatch was seen when crossing infected and uninfected 
males  of either  the D. mauritiana Synthetic (87.6 ? 
2.7%, n = 36;  94.0 f 1.1%, n = 36)  or D. mauritiana 
MS18 strain (75.7 2 4.8%, n = 23; 84.5 ? 3.9%,  n = 
19; Table 3, a and  b) to tetracycline-cured females of 
the same strains. The lack  of  any discernible incompati- 
bility expression raises questions as to how these bacte- 
ria are able to maintain themselves  within the host p o p  

ulation. To test whether presence of the bacteria affects 
the fecundity of D. mauritiana, a comparison of the 
number of  eggs  laid by treated and  untreated flies  of the 
Synthetic strain was conducted. During a 7-day period, 
infected females produced  a mean of 153.3 2 6.1  eggs 
( n  = 68). Uninfected females produced  a mean of 
164.2 +- 6.9 ( n  = 60).  A one-tailed t-test  showed no 
significant difference between the mean of number of 
eggs  laid by uninfected or infected flies ( t = -1.37, d.f. 
= 126, P = 0.17). 

Relative  contributions of host and bacteria to incom- 
patibility  expression: To examine the relative contribu- 
tions of the host to  the observed differences in incom- 
patibility expression between different species, we used 
microinjection techniques to transfer different Wol- 
bachia strains into  a  common D. simulans genetic back- 
ground.  The naturally uninfected D. simulans  Watson- 
ville (DSW) strain was used to establish two stocks, one 
injected with  cytoplasm from D. simulans  Riverside 
(DSR) , an infected strain which produces strong in- 
compatibility, and  the  other with D. mauritiana Syn- 
thetic (Mau) . The resulting transinfected Drosophila 
strains are  denoted as  DSW (DSR)  and DSW (Mau) . 
Successful transfer of the Wolbachia infection in each 
case was monitored by  PCR and DAPI staining. Once 
tranpinfected lines were established, test  crosses  were 
performed with the  uninfected DSW parental line as 
well  as between the two transinfected lines (Table 4 ) .  
Crosses  between DSW (DSR) males and DSW females 
resulted in greatly reduced egg hatch when compared 



1312 R. Giordano, S. L. O'Neill and  H. M. Robertson 

TABLE 3 

Percent egg hatch from two different strains of D. mauritiaM 

0 8 N Number of eggs 
~~~~ ~~ 

Egg hatch (%) 

a. D. mauritiana Synthetic 

D. mauritiana T X D. muuritiana 36  3261 
D. mauritiana T X D. mauritiana T 39  3902 

D. mauritiana X D. muuritiana T 35 2679 
D. mauritiana X D. mauritiana 35  3062 

b. D. muuritiana MS18 

D. mauritiana MS18 T X D. mauritiana MS18 23  1755 
D. mauritiana MS18 T X D. mauritiana MS18 T 19  1098 

87.6 If: 2.7 
94.0 t 1.1 

85.8 t 3.1 
78.2 t 4.6 

75.7 2 4.8 
84.5 t 3.9 

D. mauritiana MS18 X D. mauritiana MS18 T 22  1512 85.1 2 2.6 
D. mauritiana MS18 X D. muuritiana MS18 19  1512 79.0 t 4.0 

Comparison of each  pair of crosses using the Mann-Whitney U test. None of the pairs  showed  any  significant 
difference. Egg-hatch values are  means 2 SE. 

with  DSW control crosses (comparison c vs. d, Table 
4). The degree of  incompatibility  expression was equiv- 
alent to what is typically seen  in standard DSR incompat- 
ible  crosses ( HOFFMANN et al. 1986). However, the 
equivalent  cross  using the trans-infected DSW (Mau) 
flies  showed no significant reduction in  egg hatch 
(comparison e vs. d, Table 4). In addition, when  males 
of the stock DSW (Mau) were  crossed  with  DSR and 
DSH females (comparisons 1 vs. o and m vs. n in  Table 
4 ) ,  no incompatibility was seen. However, reciprocal 
crosses  of DSW (DSR) , DSR, and DSH  males  crossed 
with DSW (Mau) females (comparisons h vs. g, i vs. g, 
and j vs. g in  Table 4) all  showed strong incompatibility. 
This unidirectional pattern is characteristic of  what is 

observed  when  infected and uninfected  strains are 
crossed, and in  this  case the DSW ( Mau) strain behaved 
like an uninfected  strain. 

To determine if D. maun'tiana is capable of express- 
ing  cytoplasmic  incompatibility a tetracycline-treated 
stock  of D. mauntiana, whose infection  status was veri- 
fied  using PCR and DAF'I staining, was transinfected 
with  Wolbachia  from the strong incompatibility line of 
DSR. Cured D. muritiana Synthetic  flies  were  injected 
with  cytoplasm  from  DSR,  crossed  with  females  of the 
original  tetracycline-treated  stock, and when  compared 
with the cured strain, showed strong cytoplasmic  incom- 
patibility  expression (comparison f us. g,  Table 5 ) .  In 
addition, when  transinfected  males  were  crossed  with 

TABLE 4 

Percent egg hatch from  crosses using DSW injected with  the cytoplasm of DSR and Mau 

0 8 Cross N Number of eggs Egg hatch (%) Comparison Significance 

DSW(DSR) X DSW(DSR) a 21 4243 88.3 t 3.4 
DSW(DSR) X DSW b 23 4516 88.3 -+ 2.7 b us. a NS 

DSW X DSW(DSR) C 18 3596 8.6 t 1.3 c us. d P < 0.0001 
DSW X DSW d 22 5187 94.8 2 1.4 
DSW X DSW(Mau) e 19 4039 94.1 t 0.8 e us. d NS 

DSW(Mau) X DSW f 22 4467 88.1 t 2.3 f us. g NS 
DSW(Mau) X DSW(Mau) g 21 4155 85.3 t 2.1 
DSW(Mau) X DSW(DSR) h 23 4399 12.7 t 1.5 h us. g P < 0.0001 
DSW(Mau) X DSR 1 21 3804 11.8 2 1.5 i us. g P < 0.0001 
DSW(Mau) X DSH j 23 4819 11.4 2 2.6 j us. g P < 0.0001 
DSW(DSR) X DSW(Mau) k 22 4463 88.1 t 2.3 k us. a NS 

DSR X DSW(Mau) 1 21 3469 93.2 2 2.1 1 us. 0 NS 
DSH X DSW(Mau) m 22 3195 89.96 t 3.0 m us. n  NS 
DSH X DSH n 19 2935 92.70 2 3.5 
DSR X DSR 0 20 3010 91.79 +- 3.1 0 us. 1 NS 
DSH X DSR P 18 2796 7.39 5 1.1 
DSR X DSH q 19 2650 4.36 t 0.7 

The  nomenclature is as follows: e.g., DSW(DSR) indicates a strain of DSW injected with the  bacteria from DSR.  DSW, D. 
simulans Watsonville; DSR, D. Simulans Riverside; Mau, D. mauritiana. Comparison  of each  pair of crosses using the Mann-Whitney 
U test. Egg-hatch values are  means t SE. 
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TABLE 5 

Percent  egg  hatch  from D. mauritium Synthetic  injected with DSR 

1313 

0 8 Cross N Number of eggs  Egg  hatch (%) Comparison  Significance 

D. mauritiana X D. mauritiana a 18 3044  67.5 2 5.9 a us. b P < 0.0001 
D. mauritiana X D. mauritiana T(DSR) b 21 3726  1.9 ? 0.6 

D. mauritiana T (DSR) X D. mauritiana c 22 3721  61.4 2 5.6 
D. mauritiana T (DSR) X D. mauritiana T (DSR) d 22 405 1 79.9 2 3.3 d us. c NS 
D. mauritiana T (DSR) X D. mauritiana T e 21 4123  72.4 5 4.2 e us. d NS 

D. mauritiana T X D. mauritiana T (DSR) f 20  3371 2.5 t 0.9 f us. g P < 0.0001 
D. mauritiana T X D. mauritiana T g 17 2933  78.9 ? 4.2 

~ ~ ~~ ~~ ~~~~~ ~ 

D. mauritiana T (DSR) indicates a strain that was treated with  tetracycline  and  injected  with  cytoplasm  from DSR. Crosses  were 
done two generations  after  injection.  Comparison of each pair of crosses using  the  Mann-Whitney U test.  Egg-hatch  values  are 
means t SE. 

naturally infected D. mauritiana females, strong incom- 
patibility expression was also seen (comparison a us. 
b )  , but  not in the reciprocal cross (comparison a vs. 
c, Table 5 ) .  Whether males from D. mauritiana Tet 
(DSR) strain were crossed with female D. mauritiana 
that were naturally infected or uninfected, a similar 
decreased egg hatch resulted. Therefore, it again a p  
peared  that  the naturally infected D. mauritiana flies 
behaved phenotypically as if uninfected. Furthermore, 
the trans-infected D. mauritiana Tet (DSR) isofemale 
line used in the  experiments  reported in Table 5 was 
kept in the laboratory for -1 1 generations and when 
crossed again yielded similar results (Table 6)  . 

Bacterial densities: BOYLE et al. ( 1993) , BREEUWER 
and WERREN ( 1993),  and ROUSSET and DE STORDEUR 
( 1994) have suggested that bacterial density affects the 
expression of  cytoplasmic incompatibility. Therefore we 
examined  the bacterial density of some of the strains 
used in the crosses  above to determine if lack  of expres- 
sion of  cytoplasmic incompatibility in D. mauritiana cor- 
relates with  low  levels of bacteria. Table 7 shows that 
the highest densities of bacteria are in embryos of DSR, 
DSW (DSR) , Mau (DSR) , and DSW (Mau) in descend- 
ing  order.  The lowest densities of bacteria were found 
in DSH, D. sechellia, and D. mauritiana MS18. Tukey’s 
multiple comparison test (ZAR 1984) indicates that 
there is no significant difference in the following  com- 
parisons: DSR and DSW (DSR),  Mau(DSR)  and 
DSW (Mau) , and DSW (Mau) compared with  Mau 
MS18, D. sechellia, and DSH,  as  well as DSH and D. 

sechellia, DSH and Mau  MS18, and D. sechellia and D. 
mauritiana MS18. All other comparisons were  highly 
significant, with the exception of the Mau (DSR) and 
DSH comparison, which had a probability value of 0.05 
(Table 7 ) .  

DISCUSSION 

We have determined  that infections of  Wolbachia are 
widespread in stocks  of D. mauritiana and D. sechellia. 
Phylogenetic analysis  of 16s rRNA sequences shows that 
these bacteria cluster with the  other known Wolbachia. 
The  data from the 16s rRNA gene lack resolution be- 
cause of the small number of informative characters 
and  cannot  be used to establish a definite relationship 
between Wolbachia found in different species of in- 
sects,  however preliminary indications are  that  the Wol- 
bachia from the two sister species D. muuritiana and D. 
sechellia are  more closely related to Wolbachia strains 
in distantly related species of  insects than they are  to 
each other. Taken together with their differences in 
expression of  cytoplasmic incompatibility we conclude 
that  the Wolbachia infecting these two sibling species 
are distinct strains of the  nominal species Wolbachia pi- 
pientis. 

Test crosses between infected and tetracyclinecured 
strains of D. sechellia show that  the Wolbachia  in this 
species is capable of inducing partial cytoplasmic in- 
compatibility. The  number of unhatched eggs in incom- 
patible crosses in D. sechellia appears  intermediate be- 

TABLE 6 

Percent  egg  hatch  from D. muritium T  Synthetic  injected with DSR 

0 8 N Number of egg  Egg  hatch (%) 

D. mauritiana T X D. mauritiana T 18 1210 96.0 2 0.7 
D. mauritiana T X D. mauritiana T (DSR) 19 1435 0.6 2 0.6 P < 0.0001 

D. mauritiana T (DSR) X D. mauritiana T (DSR) 20  1619 91.4 2 3.5 
D. mauritiana T (DSR) X D. mauritiana T 19  1339 92.1 ? 3.0 NS 

Crosses with the same stock used in  Table 5. Comparison of each pair of crosses using the Mann-Whitney U test.  Egg  hatch 
values, taken -11 generations  after injection, are means 2 SE. 
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TABLE 7 
Means of relative bacterial densities in embryos of naturally infected and traminfected Lhvsophila strains, 

followed by an ANOVA of square root transformed  means and the a poshimi Tukey test 

N Mean 

DSR 21 121.0 ? 8.1 
DSW(DSR) 24 117.2 +- 6.6 
Mau( DSR) 16 74.9 t 6.0 
DSW(Mau) 12 67.7 2 7.1 
DSH 20 49.6 2 4.1 
Seche 35 45.4 ? 3.3 
Mau Ms 1 8 14 42.2 +- 5.5 

DF Sum of Squares  Mean  Square F P 

Strains 6 473.880 79.980 35.360  <0.0001 
Residual 135 301.532 2.234 

Observed Q 
Strain A Strain B ~-~ Span 7 P 

DSR Mau MS18 4.4 12.3 <0.001 
DSR Seche 4.2 14.5 <0.001 
DSR DSH 3.9 11.9 <0.001 
DSR DSW (Mau) 2.7 7.2 <0.001 
DSR Mau (DSR) 2.3 6.6 <0.001 
DSR DSW (DSR) 0.1 0.5 NS 
DSW(DSR) Mau MS18 4.3 12.1 <0.001 
DSW (DSR) Seche 4.0 14.5 <0.001 
DSW(DSR) DSH 3.7 11.8 <0.001 
DSW(DSR) DSW (Mau) 2.5 6.9 <0.001 
DSW(DSR) Mau (DSR) 2.1 6.3 <0.001 
Mau (DSR) Mau MS18 2.1 5.5 <0.005 
Mau (DSR) Seche 1.9  5.9 <0.001 
Mau (DSR) DSH 1.6 4.5 <0.05 
Mau (DSR) DSW (Mau) 0.4 1.0 NS 
DSW(Mau) Mau MS18 1.7 4.1 NS 
DSW( Mau) Seche 1.4 4.2 NS 
DSW (Mau) DSH 1.1 3.0 NS 
DSH Mau MS18 0.5 1.4 NS 
DSH Seche 0.3 1 .o NS 
Seche Mau MS18 0.2 0.7 NS 

tween the  strong expression of incompatibility typical 
of naturally infected D. simuluns strains ( HOFFMANN et 
al. 1986; O’NEILL and KARR 1990; MONTCHAMP-MOREAU 
et al. 1991)  and  the relatively  weak incompatibility de- 
scribed in D. melanogaster ( HOFFMANN 1988; HOLDEN et 
al. 1993; HOFFMANN et al. 1994; SOLICNAC et al. 1994). 
As in other Wolbachia-mediated incompatibility sys- 
tems, penetrance of  this phenotype in D. sechellia is 
greatly attenuated in aged males. This aging effect is 
consistent with  what has been previously described in 
D. simuluns (HOFFMANN et al. 1986, 1990) and seems 
likely to be due to sperm that  mature in spermatocysts 
devoid  of bacteria ( BRESSAC and ROUSSET 1993). 

We did  not find expression of  cytoplasmic incompati- 
bility in two different strains of naturally infected D. 
mauritiana (Table 3) despite the presence of  Wolbachia 
in embryos at density levels not significantly different 
from those observed in D. sechllia and DSH. To investi- 
gate the  degree of influence of the host and bacterial 

genome on  the expression of  cytoplasmic incompatibil- 
ity in D. simuluns and D. mauritiana, we first transferred 
bacteria from DSR into DSW where they induced cyto- 
plasmic incompatibility in this naturally uninfected 
strain. In previous experiments of this kind, Wolbachia 
were transferred back into tetracycline-cured stocks  of 
the originating infected strains ( BOYLE et al. 1993) . We 
therefore  conclude  that DSW  is not resistant to infec- 
tion with Wolbachia and is permissive for the expression 
of  cytoplasmic incompatibility. When DSW  was then 
infected with  Wolbachia from D. mauritiana, however, 
we  saw no expression of incompatibility, indicating that 
these bacteria are  not capable of inducing cytoplasmic 
incompatibility either in their  natural or in this particu- 
lar transinfected host. In a reciprocal experiment, intro- 
duction of DSR bacteria into tetracycline-cured D. mau- 
ritiana resulted in strains that were capable of inducing 
strong incompatibility. Together these results indicate 
that  the genetic and cytoplasmic environments of D. 
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simulans and D. mauritiana are similar and permissive 
with respect to  the expression of  cytoplasmic incompati- 
bility but that  the D. mauritiana bacteria cannot cause 
cytoplasmic incompatibility in either species of D r e  
sophila. In addition,  the strain of Wolbachia from D. 
mauritianais unable to rescue the  phenotype in females, 
as demonstrated  in  the incompatible cross  of DSW fe- 
males transinfected with D. mauritiana bacteria mated 
to DSW males transinfected with DSR bacteria (Table 
4 ) .  As such,  the D. mauritiana infection appears to be 
neutral with regard to expression of  cytoplasmic incom- 
patibility, suggesting the presence of bacterial genes 
responsible for  the expression of incompatibility. The 
existence of a  neutral variant will facilitate the isolation 
of such genes. 

BOYLE et al. ( 1993) suggested that in D. melanogaster, 
a  threshold infection density is needed  for expression 
of incompatibility, and BREEUWER and WERREN (1993) 
have  also  shown that low bacterial densities can reduce 
the expression of incompatibility in wasps.  We therefore 
examined  the strains used herein  for density of  Wol- 
bachia. Our data  (Table 7)  indicate that  although  den- 
sity  levels do differ between some of the strains, the 
absence of  cytoplasmic incompatibility and rescue in 
strains with the D. mauritiana Wolbachia cannot entirely 
be explained by  low density. The density of bacteria in 
the original D. mauritiana strain is  relatively  low, and 
the density of these Wolbachia in DSW  is about half that 
of the DSR Wolbachia in DSW. While these differences 
might contribute  to lowered expression of  cytoplasmic 
incompatibility by the bacteria native to D. mauritiana, 
other comparisons indicate that it is unlikely that such 
a simple relationship to density is the cause of the a b  
sence of  cytoplasmic incompatibility in this strain of 
Wolbachia. For example, the Wolbachia strain in DSH 
shows strong incompatibilitywith levels  of bacterial den- 
sity comparable to those found in D. mauritiana and 
DSR ( Mau ) . Conversely, when the DSR Wolbachia were 
introduced  into D. mauritiana, their density was consid- 
erably lower than in DSR, yet they caused strong cyto- 
plasmic incompatibility. Furthermore,  there is no sig- 
nificant difference in bacterial density between 
Mau (DSR) , which  shows high levels  of incompatibility, 
and DSW (Mau), which does  not. An alternative 
method  for  examining densities that is unfortunately 
not quantitative, but would be more directly relevant 
to levels  of  cytoplasmic incompatibility, is staining of 
spermatocysts ( BRESSAC and ROUSSET 1993). When ex- 
amined this way, D. mauritiana MS18, D. sechellia, and 
D. simulans  Hawaii again show  low  levels  of infection, 
while  Mau (DSR) and DSR are highly infected and are 
indistinguishable (R. GIORDANO, unpublished  results). 
Thus again the D. mauritiana infection has densities 
comparable  to  the DSH infection, yet does  not cause 
cytoplasmic incompatibility. While these comparisons 
inevitably  involve different strains of bacteria in differ- 
ent host species and strains, it seems clear that low 

density of infection by the Wolbachia strain in D. mauri- 
tiana cannot  alone explain our results. We therefore 
conclude  that  the Wolbachia from D. mauritiana are 
genetically distinct from those that can cause  cyto- 
plasmic incompatibility, perhaps in having  lost  whatever 
genetic factors are responsible for  the expression and 
rescue of  cytoplasmic incompatibility. 

The absence of incompatibility in D. mauritiana was 
consistently seen in Synthetic and MS18 strains, and has 
been observed independently (F. ROUSSET, personal 
communication). Infections that do not cause cyto- 
plasmic incompatibility have  also been reported from 
D. melanogaster lab stocks (HOLDEN et al. 1993), while 
recently wildcaught strains of  this  species  usually  show 
weak incompatibility ( HOFFMANN  1988; HOLDEN et al. 
1993; BOURTZIS et al. 1994;  HOFFMANN et al. 1994; but 
see SOLIGNAC et al. 1994 for a strain showing consider- 
able cytoplasmic incompatibility). Absence  of incom- 
patibility in infected flies has also recently been ob- 
served  with  field populations of D. simulans in Australia, 
USA, and Ecuador (A. A. HOFFMANN and M. TURELLI, 
personal communication) . The lack of an incompati- 
bility phenotype raises the question of  how these infec- 
tions initially spread and how  they are  retained within 
populations. This observation is particularly puzzling 
because Wolbachia infections in D. simulans are known 
to confer a slight fitness  cost to the host as  well  as being 
imperfectly transovarially transmitted ( HOFFMANN et al. 
1990;  STEVENS and WADE 1990). Therefore, without 
the action of  cytoplasmic incompatibility and from our 
current  understanding of  how this agent interacts with 
its host, it would be expected  that these infections 
would be unable  either to invade a host population 
or to maintain themselves. One possibility that might 
explain how the infections initially spread  into  the spe- 
cies  is that  the presently neutral bacteria “hitchhiked” 
into  the  population  during  a cytoplasmic  sweep in- 
duced by an  additional superinfecting Wolbachia strain, 
which  has subsequently been lost. These neutral infec- 
tions could maintain themselves  in a population if they 
are actually beneficial to the host that carries them. 
We performed  experiments  that  examined total egg 
production from infected and uninfected individuals 
of D. mauritiana but could not  detect any significant 
difference in the  number of  eggs produced, indicating 
that  the bacteria seem to have no detectable effect on 
fecundity in this species. Another possibility is that Wol- 
bachia are  retained as a result of their close  association 
with the  spindle  apparatus of nuclei during division 
( CALWNI et al. 1994). This association would ensure 
their  partitioning to all  cells and most importantly the 
germline. We know that  the infection has been present 
in wild populations of D. mauritiana at least from 1979 
to 1987 because collections made by A. FUKATAMI in 
both of those years  show the presence of infected lines. 
The lack of detectable deleterious fitness  effects  to- 
gether with  possible high rates of transovarial  transmis- 
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sion may mean  that  the infection is being lost quite 
slowly or  not  at all. Another possibility is that selection 
pressures on the symbiont have favored an attenuated 
form of the bacteria (PROUT 1994; TURELLI 1995). 
Clearly additional data relating to rates of horizontal 
and vertical  transmission are  needed  to  understand bet- 
ter the dynamics  of these infections. 

Our finding that expression of incompatibility  in D. 
simulans or lack thereof in D. mauritiana is a consequence 
of the bacterial strain that infects them does not  concur 
with the findings of BOYLE et al. ( 1993), who concluded 
that in D. melanogaster host factors mediate the expres- 
sion of cytoplasmic  incompatibility. It is  possible that  due 
to their closer  phylogenetic relationship (e.g., SCHLOT- 
TERER et al. 1994), the effect of a given  Wolbachia strain 
would be similar in D. simulans and D. mauritiana which 
together with D. sechellia form a sister group and  are 
distinct from the more distantly related D. mlanogaster. 
TURELLI ( 1995) has  suggested that levels  of incompati- 
bility could vary from one species to another as a result 
of differences in fidelity  of  bacterial  trasmission and in 
costs  associated  with infection, while HOFFMANN et al. 
( 1994) conclude that  the present relationship between 
D. melunogaster and its  symbiont is a result of  selection 
on the nuclear genome of the host. Thus it seems that 
differences exist  in the  manner in  which strains of D. 
melunogaster, D. simulans and D. mauritiana interact with 
Wolbachia,  which may in part reflect the length of  time 
they  have been associated. 
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