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ABSTRACT 
This paper presents an extension of the finite polygenic mixed model of FERNANDO et al. (1994) to 

linkage analysis. The finite polygenic mixed model, extended for linkage analysis, leads to a likelihood 
that can be calculated using efficient algorithms developed for oligogenic models. For comparison, 
linkage analysis of 5 simulated 4021-member pedigrees was performed using the usual mixed model of 
inheritance, approximated by HASSTEDT (1982), and  the finite polygenic mixed model extended  for 
linkage analysis presented here. Maximum likelihood estimates of the finite polygenic mixed model 
could be inferred  to be closer to the simulated values in these pedigrees. 

M OST traits of economic  importance in livestock, 
such as  milk production in dairy cattle and aver- 

age daily gain in beef cattle, are assumed to be con- 
trolled by genes  at  a large number of loci. Such loci 
are  referred to  as quantitative trait loci (QTL). Until 
recently, the effect of individual QTL had  not  been 
studied. However,  with the availability of genetic mark- 
ers,  their study has become feasible. The search for 
QTL has been most successful in plants and laboratory 
species where data  are available for backcross and E2 
populations from inbred lines. With such data  and  the 
assumption that they follow a  mixture of univariate nor- 
mal densities, maximum likelihood techniques have 
been used to estimate the  recombination fraction be- 
tween the  marker  and  the QTL and to investigate the 
mode of inheritance  at  the QTL (e.g., ZENC 1994; ZHU- 
CHENKO et al. 1979; WELLER et al. 1988). 

In most livestock species, inbred lines are  not avail- 
able. Thus backcross or F2 populations from inbred 
lines cannot be formed.  In  the  absence of such data, 
marker-QTL analyses must be based on pedigree  data. 
If a trait is controlled by only one QTL, the likelihood 
for  a  general  pedigree can be efficiently calculated by 
methods based on  the ELSTON-STEWART algorithm (ELS 
TON and STEWART 1971; LANCE and ELSTON 1975; CAN- 
NINGS et aZ. 1976; LANGE and BOEHNKE 1983; JANSS et 
al. 1992; FERNANDO et al. 1993).  The reason for this is 
that if a trait is controlled only by one QTL, the  pheno- 
typic  values of pedigree  members  are conditionally in- 
dependent, given the genotypes of the pedigree mem- 
bers at  that one locus. Also, the genotype of an 
individual is conditionally independent of those of  all 
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ancestors and sibs,  given the genotypes of the  parents. 
Suppose, however, that  the trait is controlled  both by 
a marker-linked QTL (MQTL) and by other residual 
QTL (RQTL) that  are not linked to the  marker  (mixed 
inheritance). Such traits have been analyzed by assum- 
ing  that  the additive effect of the RQTL is normally 
distributed, giving  rise to a multivariate normal  mixture 
distribution for  the trait (ELSTON and STEWART  1971; 
MORTON and MACLEAN 1974; HASSTEDT 1982, 1991). 
This assumption implies an infinite number of RQTL. 
Furthermore, because the phenotype is also influenced 
by the RQTL, the phenotypic values  of pedigree mem- 
bers cannot be assumed to be conditionally indepen- 
dent, given the genotypes at  the MQTL. Thus, under 
this assumption, fast algorithms to calculate the exact 
likelihood for  extended pedigrees do  not exist (ELSTON 
1990; BONNEY 1992).  The problem encountered  here 
is identical to that in computing  the likelihood for pedi- 
gree  data in segregation analysis. Since the likelihood 
of such a marker-QTL model  cannot be  efficiently  cal- 
culated for  a  general  pedigree, most of the marker-QTL 
studies in livestock species have been limited to the 
detection of associations between markers and quantita- 
tive traits using the analysis  of variance and related 
methods (BEEVER et al. 1990; COWAN et al. 1990; 
HOESCHELE and MEINERT 1990).  These  methods, how- 
ever, are  not as desirable as maximum likelihood to 
estimate both  the  recombination fraction between the 
marker and  the QTL and  the  mode of inheritance  at 
the QTL (LANDER and BOTSTEIN 1989). 

For segregation analysis under mixed inheritance, 
FERNANDO et al. (1994) introduced  the “finite polygenic 
mixed model” (FPMM) and showed how to compute 
the  corresponding likelihood using fast algorithms de- 
veloped for oligogenic traits. The objective of this paper 
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is to describe how linkage analysis  between a marker 
and a QTL can be conducted by maximum likelihood 
when an MQTL and several RQTL are segregating for 
the observed trait. The  approach taken is to assume an 
FPMM, i .e.,  a finite number of RQTL, and  hence to 
compute the likelihood using fast algorithms developed 
for oligogenic traits. 

THEORY 

The probability density of the phenotypic values of 
the pedigree members, expressed as a  function of the 
unknown parameters of the density, is the likelihood 
for the pedigree. In order to introduce how to compute 
the likelihood of a MQTL and several RQTL, consider 
first the  computation of the likelihood of a single 
MQTL without RQTL, i.e., an oligogenic model. Under 
oligogenic inheritance, phenotypic values are assumed 
to be conditionally independent, given the genotypes. 
Furthermore, it is assumed that  the marker genotype 
has no effect upon the phenotype. Thus,  the condi- 
tional density of the phenotypic values  given z, the vec- 
tor of joint genotypes at the MQTL and the  marker 
locus, can be written for the n pedigree members as 

,= 1 

where y is the vector of n phenotypic values, g is the 
vector of n genotypes at  the MQTL, and Pr(y,l gi) is the 
penetrance function or the conditional density of the 
phenotypic value  given the genotype at  the MQTL. Un- 
der mendelian inheritance,  the probability of the joint 
genotypes z at the MQTL and  the marker locus can be 
written as 

z= 1 i=nl+l 

where pedigree members 1 through nl are founders 
and the rest are non-founders. Pr(zZ) is the population 
frequency of the joint genotype at the MQTL and the 
marker locus. Pr(zi( G,, zf) is the transition probability 
or  the conditional probability that an offspring will  have 
the  joint genotype z, given the  mother m has the joint 
genotype z,  and  the  father f has the joint genotype z, 
(ELSTON and STEWART 1971). Let T,, Td be alleles at 
the MQTL, Mc,  M,  alleles at  the marker locus, Pr( T,T,J 
the marginal probability of the genotype at  the MQTL 
in the  population, and  Pr( M,MJ be the marginal proba- 
bility  of the marker genotype in the  population.  Then, 
Pr(zJ, the probability of thejoint genotype in the  popu- 
lation, can be  computed as (ch, ELSTON and STEWART 
1971) 

Pr(z2) = Pr - = C*Pr(T,T,i) - Pr(MrMe), [::I 

c= {I> 
if T, = TCl or M, = M, 

x, otherwise. 

To compute  the transition probability Pr(z, I z,, z,), or 
the conditional probability that  an offspring will have 
the joint genotype z,, given its parents have the joint 
genotypes z ,  and z,, respectively, we first define the 
transmission probabilities T, [  ( T a r /  TdMJ + TfMg] fol- 
lowing ELSTON and STEWART (1971): T , [  ( T a r /  T IMp)  -+ 

q M g ]  is the probability that a parent of sex s with 
joint genotype [ T f l J  T,iMf] will transmit the haplotype 
[ TIMg] to  the offspring. These transmission probabili- 
ties are  computed as 

r.[ + TIMg] = 
(1 - 6,) (67j,Yj6M<MK + ~Td7$'Vf$,J 

TdMc 2 

where 0, is the sex-dependent recombination fraction 
between the trait and the marker locus and 6, equals 
1 if x = y, 0 otherwise. Using these transmission proba- 
bilities, the transition probability Pr(z, I z,, z,) can be 
calculated as (ELSTON and STEWART 1971) 

I if Tr = l,, and Mg = Mi, 

I otherwise. 

The likelihood for the pedigree can then be computed 
as 

1 

Pdy) = c c * - - c n Pr(y,IgJ 
21 22 z,, L=l 

7t 1 n 

X PI-GJ n Pr(ziIzm, z,). (3) 
z= 1 t=nl+l 

The summations in (3) are over the joint genotypes. 
For founders,  let f (zJ = Pr(yi I gJPr(z,),  and  for  non- 
founders,  let h(zi, z,,  z,) = Pr(y,IgJ *Pr(z,Iz,, zl). Then, 
the likelihood can be written as 

nl 11 

Pr(y) = * * n f ( z 2 )  n ~ z , ,  z,, z,). (4) 
21 9 L,, * = I  , = n l + l  

If the summations are over mjoint genotypes, the num- where 
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ber of calculations required  to  compute  the likelihood 
as indicated by (4) is proportional to m". However, be- 
cause the  function f c ~ )  involves the joint genotype of 
only a  founder  and the  function h ( ~ ,  G, z,) involves 
the joint genotypes of  only a  non-founder and parents 
m and j the order of adding and multiplying in (4) can 
be rearranged such that  the  number of calculations 
required to compute  the likelihood is proportional to 
n (ELSTON and STEWART  1971; LANCE and ELSTON 1975; 
CANNINCS et al. 1976, 1978; LALOUEL 1980; LANCE and 
BOEHNKE 1983; GORADIA et al. 1992; FERNANDO et al. 
1993). If  two alleles at each of the MQTL and  the 
marker locus are assumed, 10 joint genotypes at the 
MQTL and the  marker locus have to be considered, 
because the doubly heterozygous genotype exists  in two 
phases. Thus, each summation in (4) is over these 10 
joint genotypes. LANGE and BOEHNKE (1983) showed 
how the  amount of  necessary summations may be re- 
duced using genotype and phase elimination. If the 
marker genotypes can be observed for all n pedigree 
members, then  the likelihood can be written as 

"1 n 

Pr(y) = c c - ' * c nfl4 n h(7w G? z.), (5) 
g l g l  g, :=1 t=n,+1 

i e . ,  only the summations over the genotypes g at  the 
MQTL have to be  carried  out, provided we distinguish 
between the  maternal and paternal alleles of  all marker 
heterozygotes. 

Now consider the segregation of a MQTL and several 
RQTL  in a  pedigree, i.e., a mixed model of inheritance 
(ELSTON and STEWART  1971; MORTON and MACLEAN 
1974).  The  conditional density of the phenotypic value 
given z, the vector of the joint genotypes at  the MQTL 
and the  marker locus, cannot  be written as (1) because 
of the  remaining segregating RQTL.  Several ap- 
proaches have been taken to compute  the likelihood 
of such a model (HASSTEDT  1982,  1991; BONNEY 1984, 
1992; FERNANDO et al. 1994). Following the theory of 
FERNANDO et al. (1994), consider a mixed model where 
the genotypic value is determined by a MQTL and by 
a finite number k of unlinked polygenic loci, rather 
than  an infinite number of  polygenic loci as implied by 
the assumption of normality for the polygenic compo- 
nent in the usual mixed model. Further, assume that 
the polygenic component of the genotypic value is addi- 
tive and that  the aggregate genotypic value is the sum of 
the genotypic values  of the MQTL and of the polygenic 
component. With this formulation of the mixed model, 
the  conditional distribution of the phenotypic values 
given the genotypes determined by the MQTL and the 
polygenic loci, can be written as (l),  ie., 

plained in FERNANDO et al. (1994).  Thus, algorithms 
applicable to oligogenic traits can be used to calculate 
the likelihood. A problem with this approach, however, 
is that  the  number of genotypes, and hence also the 
computing time, increases exponentially with the  num- 
ber of  loci. For example, suppose there  are two alleles 
at  the MQTL, at  the marker locus and at each of k 
polygenic  loci. Then,  the  number of genotypes that 
have to be summed over is 10 * 3k. To  reduce  the compu- 
tations in calculating the likelihood, the same assump 
tions and definitions are made as  in FERNANDO et al. 
(1994), allowing  us to write the likelihood as 

i= 1 ,=nl+l  

which can be rearranged as 

2=n1+I 

Further, by the assumptions 1 and  2 in FERNANDO et al. 
(1994),  the summation over each u is over  only 2k + 1 
polygenic numbers. (In contrast, there  are 3k possible 
genotypes for the polygenic loci). Suppose, for exam- 
ple, there  are two alleles at each of the MQTL and 
the  marker locus. Then,  the  number of calculations to 
compute (6) is equivalent to that for computing the 
likelihood of a monogenic model with 10. (2k + 1) 
possible genotypes. 

If the  marker genotypes can be observed on all n 
pedigree members, then, analogous to (5) the likeli- 
hood can be written as 

DATA ANALYSIS 

Linkage analysis by maximum likelihood under  an 
FPMM, using the  computer package SALP  (STFUCKER et 
al. 1995) will be compared with that  under  the usual 
mixed model (UMM), where the likelihood under the 
UMM is approximated as described by HASSTEDT 
(1982) and implemented in the  subroutine PAPENP  of 

n the  computer package PAP  Rev. 3.0 (HASSTEDT 1989). 
pr(y I z, V) = pr(yI g, V) = n Pr(yi I 6 7  vi) An attempt was also made to apply to the same dataset 

i= 1 
the  approach of HASSTEDT (1991),  implemented in the 

where g is the vector of genotypes at the MQTL and v computer package PAP Rev. 4.0 (WSTEDT 1994), to 
is the vector of genotypes at  the polygenic loci, as  ex- compute  the likelihood of the UMM. Whereas HAS 
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TABLE 1 

Maximum likelihood  estimates  under  the UMM 
_ _ ~  ~- _ _ ~  _ _ ~  ~~ ~~~ 

~ ~~ 

Allele frequency 
Difference 

Variance 

between Major Marker  Recombination Major 
Pedigree homozygotes locus locus fraction locus Polygenic Residual 

A 
B 
C 
D 
E 

2.74 0.38 0.51 0.07 0.9 5.02 7.66 
1.76 0.43 0.49 0.0* 0.4 6.92 6.76 
4.11 0.44 0.51 0.23 2.1  5.54 6.32 
0.77 0.52 0.51 o.o* 0.1 6.34 7.07 
2.05 0.58 0.50 o.o* 0.5  6.41 6.57 

True  parameter values 1.00 0.50 0.50  0.10  2.0 5 .00 7.00 

* Likelihood maximized at lower boundary. 

STEDT (1982) (and PAP  Rev. 3.0) computes  the likeli- 
hood of the UMM by numerical  integration,  the ap- 
proach of  HASSTEDT (1991) (and PAP  Rev. 4.0) inverts 
the variance-covariance matrix that is determined by 
the relationships between individuals. In  the  context of 
large pedigrees, the  latter  approach becomes prohibi- 
tively time consuming, as indicated below. 

Material and  methods: Five three-generational pedi- 
grees of the same structure comprising 4021 individuals 
each were simulated. The structure of each pedigree was 
generated by the following  matings: 1 grandfather was 
mated to  10 unrelated  grandmothers to produce 1 son 
each. These 10  halfsibs  were mated each to 10 unrelated 
female individuals to produce 3 daughters  each. The 
genotypic value for the simulated trait was additively de- 
termined by a major locus and 40 polygenic loci, with 
two alleles of equal frequencies at the major locus and 
at each of the polygenic  loci. The difference between 
homozygotes was 4 at  the major locus and 1 at each of 
the polygenic  loci. This gives a variance of 2 for the 
major  locus and of 5 for the polygenic component. The 
phenotype was simulated by adding  a normally distrib- 
uted residual with mean 0 and variance 7 to the geno- 
typic  value. A marker locus  with two alleles of equal 
frequencies was simulated to be unlinked to the poly- 
genic loci and linked to the major  locus  with a recombi- 
nation fraction of 0.1. Whereas all  individuals  were geno- 

typed  with respect to the marker locus,  all  male 
individuals  were  assigned a missing trait phenotype. 

The same number of parameters were estimated from 
each pedigree under both  the FPMM and  the UMM. It 
should  be  noted  that SALP uses the Downhill Simplex 
method (NELDER and MEAD 1965) to maximize the like- 
lihood, whereas PAP maximizes the likelihood function 
using the variable metric method (GEMINI; LALOUEL. 

1979). As mentioned above, the program package PAP 
Rev.  4.0 (HASSTEDT 1994) was not  considered  further, 
due to high requirements  in terms of computer time 
for  the size  of pedigrees  generated  here (around 5 CPU- 
hours for the  computation of a single likelihood on a 
DEC  AXP 4000/710 Alpha-Workstation). 

Results and discussion: The maximum likelihood es- 
timates for each of the five pedigrees  are listed in Table 
1 for the UMM and in Table  2 for the FPMM, assuming 
5 polygenic loci. The calculation, and thus also the max- 
imization, of the exact likelihood (of the  model  that 
was used to simulate the  pedigree  data) was not compu- 
tationally feasible. Thus it was not possible to obtain 
maximum likelihood estimates for  the  parameters  un- 
der  the  true model used to simulate the pedigrees. How- 
ever, because we simulated five large pedigrees, the 
differences between the  parameter estimates under  the 
true  model and  the  true  parameter values used to gen- 
erate  the  pedigrees could be  expected to be small. 

TABLE 2 

Maximum likelihood  estimates  under  the FPMM 

Allele frequency Variance 
Difference 
between Major Marker Recombination Major 

Pedigree homozygotes locus locus fraction locus Polygenic Residual 

A 3.81 0.54 0.48 0.02 1.8 4.39  7.82 
B 3.17 0.57  0.49 0.03 1.2 6.22  6.69 
c 3.78 0.44 0.51 0.13 1.8 5.19  6.90 
D 4.01 0.54 0.51 0.08 2.0 4.48  7.10 
E 4.51 0.56 0.50 0.15 2.5 4.46  6.74 

True  parameter values 4.00  0.50 0.50 0.10 2.0 5.00 7.00 
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When the  approximate likelihood of the UMM  was 
maximized  with the program package PAP  Rev. 3.0, the 
estimate for the  recombination fraction was at its  lower 
boundary zero in pedigrees B, D and E (indicated by 
asterisks  in Table 1). To examine if other maxima exist 
for these pedigrees within the  parameter space of the 
recombination fraction,  the maximization process was 
restarted at  the previous maximum but with the initial 
value for  the recombination fraction set to 0.1. Since 
the likelihoods for pedigrees B, D and E were again 
maximized at  the same boundary,  the lower boundary 
for the  recombination fraction was increased from 0.0 
to 0.0001 and the maximization process was restarted 
again. Because  all these restarted maximization pro- 
cesses converged to the boundary 0.0 or 0.0001 for the 
recombination fraction, respectively, for all three pedi- 
grees, it was concluded  that  there was no  other maxi- 
mum within the  parameter space for pedigrees B, D 
and E. The maximum likelihood estimates under  the 
FPMM show  only  relatively  small differences among  the 
five simulated pedigrees and  are within  close range of 
the  parameters  that were used to simulate the pedigree 
data  (Table 2). 

The maximum likelihood estimates under the UMM 
approximated by HASSTEDT (1982) showed more vari- 
ability among  the 5 pedigrees, especially for the param- 
eters recombination fraction, major gene frequency 
and major genotypic means. As a consequence of the 
parameter estimates for the major genotypic means and 
frequencies under the UMM approximated by HAS 
STEDT (1982),  the  amount of variation the model fitted 
to  the major locus within each pedigree is also different 
and deviates considerably from the values obtained by 
the FPMM and those used to simulate the pedigree 
data. 

The CPU time to compute  a single likelihood by 
SALP  was around 5-10 min depending  on  the machine 
used and thus was considerably higher  than by  PAP 
Rev.  3.0. An exact comparison was not possible because 
the likelihoods were computed on different machines, 
due to higher memory requirements of the FPMM ap- 
proach. For the FPMM approach, memory require- 
ments increase approximately linear with the number 
of individuals, the analysis  of a 4021-member pedigree, 
as presented here, took around 70 megabytes. Even if 
the two likelihoods were computed  on  the same ma- 
chine, it would  be  necessary to assume the same degree 
of  efficiency in programming between SALP and PAP 
to make a fair comparison between the two approaches. 
Because the two packages are  programmed in different 
programming languages, each using specific features 
of that language, compiled by different compilers, and 
may thus be optimized to a  different  degree,  a compari- 
son in terms of CPU-time  between the two algorithms, 
as implemented in PAP  Rev. 3.0 and SALP, would  be 
meaningless (see e.g., COTTINGHAM et al. 1993). Further- 
more,  the time used to compute  a single likelihood also 

depends  upon  the  number of  polygenic  loci  used  in 
SALP. For linkage analysis, we have  shown  in  this paper 
that  a FPMM, as implemented in SALP, assuming 5 
polygenic loci, gives a better approximation to the simu- 
lated data  than  does  the approximate UMM imple- 
mented in the  subroutine PAPEND  of  PAP  rev.  3.0. 

The analysis under  either  the UMM or FPMM  may 
also be conducted using a Monte Carlo approach such 
as Gibbs Sampling (THOMPSON and Guo 1991; Guo 
and THOMPSON 1992). This requires less  memory than 
the FPMM approach  presented  here,  but due to re- 
peated  conditional sampling, Gibbs Sampling is in- 
tensive  with respect to  CPU-time. It should be noted 
that Monte Carlo methods yield approximate results, 
though  the approximations can always be improved by 
increasing the  amount of sampling performed if suffi- 
cient CPU-time is available. 

This study was supported in part by the Schweizerischer Nation- 
alfonds (C.S.), by the Illinois Agricultural Experiment  Station Hatch 
Project 350345 (R.L.F.), and by U.S. Public Health Service research 
grant (GM-28356) from  the National  Institute of General Medical 
Sciences and resource grant (RR-03655) from the National Center 
for Research Resources (R.C.E.). 

LITERATURE CITED 

BEEVER, J. S., P. D. GEORGE, R. L. FERNANDO, C. J. STORMONT and 
H. A. LEWIN, 1990 Associations between genetic  markers and 
growth and carcass traits in a paternal half-sib family of Angus 
cattle. J. Anim. Sci. 68: 337-344. 

BONNEY, G. E., 1984 On the statistical determination of major gene 
mechanisms in  continuous  human traits: regressive models. Am. 
J. Med. Genet. 18: 731-749. 

BONNEY, G. E., 1992 Compound regressive models for family data. 
Hum.  Hered. 42: 28-41. 

CANNINGS, C., E. A. THOMPSON and M. H. SKOLNICK, 1976 The 
recursive derivation of likelihoods on complex  pedigrees. Adv. 
Appl. Prob. 8: 622-625. 

CANNINGS, C., E. A. THOMPSON and M. H. SKOLNICK, 1978 Probabil- 
ity functions on complex  pedigrees. Adv. Appl. Prob. 10: 26-61. 

COTTINGHAM, R. W., R.  M. INDURY  and A. A. S C ~ F E R ,  1993 Faster 
sequential genetic linkage computations.  Technical report, De- 
partment of Cell Biology,  Baylor College of Medicine, One Bay- 
lor Plaza, Houston, TX 77030, USA. 

COWAN, C. M., M. R. DENTINE, R.  L. Ax and L. A. SCHULER, 1990 
Structural variation around prolactin gene linked to quantitative 
traits in an elite holstein sire family. Theor. Appl. Genet. 79: 
577-582. 

ELSTON, R. C., 1990 Models for discrimination between alternative 
modes of inheritance,  pp. 49-50 in Advances in Statistical Methods 
for Cmetic Improvement of Livestock, edited by D. GIANOIA  and K. 
HAMMOND. Springer-Verlag, New  York. 

ELSTON, R. C., and J. STEWART, 1971 Ageneral model  for the genetic 
analysis of pedigree  data. Hum.  Hered. 21: 523-542. 

FERNANDO, R. L., C. STRICKER and R. C. ELSTON, 1993 An efficient 
algorithm  to compute  the posterior genotypic distribution for 
every member of a pedigree- without loops. Theor. Appl. Genet. 
87: 89-93. 

FERNANDO, R. L., C.  STRICKER and R. C. EISTON, 1994 The finite 
polygenic mixed model: an alternative  formulation for the  mixed 
model of inheritance.  Theor. Appl. Genet. 88: 573-580. 

GORADIA, T. M., IC h G E ,  P. L. MILLER and P. M. NADKARNI, 1992 
Fast computation of genetic likelihoods on human pedigree 
data.  Hum.  Hered. 42: 42-62. 

Guo, S. W., and E. A. THOMPSON, 1992 A monte carlo method for 
combined segregation and linkage analysis.  Am. J. Hum.  Genet. 
51: 1111-1126. 

HASSTEDT, S. J., 1982 A mixed model approximation for  large  pedi- 
grees. Comput. Biomed. Res. 15: 295-307. 



1656 C. Stricker, R. L. Fernando  and R. C. Elston 

HASSTEDT, S. J., 1989 PAP: Pedigree Analysis Package, Rev. 3. Depart- 
ment of Human Genetics, University of Utah, Salt Lake City. 

HASSTEDT, S. J., 1991 A variance components/major locus likeli- 
hood  approximation  on quantitative data.  Genet. Epidemiol. 8: 

HASSTEDT, S. J., 1994 PAP: Pedigree Analysis Package, Rev 4. Depart- 
ment of Human Genetics, University of Utah, Salt Lake City. 

HOESCHELE, I., and  T. R. MEINERT, 1990 Association of genetic  de- 
fects with yield and type traits: the weaver locus  has  a  major effect 
on milk yield. J. Dairy Sci. 73: 2503-2515. 

JANSS, L. L. G., J. H. J. VAN DER WERF, and J. A. M. VAN ARENDONK, 
1992 Detection of a  major gene using segregation analysis in 
data  from several generations,  in Proceedings of the 43rd Annual 
Meeting of the  European Association of Animal Production, Vol. 
1, Ministerio de Agricultura,  Madrid,  Spain, 144 pp. 

LAI.OUEL, J. M., 1979 Gemini-a computer program  for optirniza- 
tion of general  nonlinear functions.  Technical report 14, Pop. 
Genet. Lab., Univ. Hawaii, Honolulu. 

LALOUEI., J. M., 1980 Probability calculations in pedigrees under 
complex  modes of inheritance.  Hum.  Hered. 30: 320-323. 

LANDER, E. S., and D. BOTSTEIN, 1989 Mapping  Mendelian  factors 
underlying  quantitative traits using RFLP linkage maps. Genetics 
121: 185-199. 

LANCE, K., and M. BOEHNKE, 1983 Extensions to pedigree analysis. 
V. Optimal  calculation of mendelian likelihoods. Hum.  Hered. 

113-125. 

33: 291-301. 

LANGE, K., and R. C. ELSTON, 1975 Extension to  pedigree analysis. 
I. Likelihood  calculations for simple and complex  pedigrees. 
Hum.  Hered. 25: 95-105. 

MORTON, N. E., and C. J.  MAC CLEAN, 1974 Analysis of family resem- 
blance 111. Complex  segregation analysis of quantitative traits. 
Am. J. Hum.  Genet. 26: 489-503. 

NELDER, J. A,, and R. MEAD, 1965 A simplex method  for function 
minimization. Computer  Journal 7: 308-313. 

STRICKER, C., R. L. FERNANDO and R. C. EISTON, 1995 SAP-Segre- 
gation and Linkage Analysis for Pedigrees,  Release 2.0, Computer pro- 
gram package. Swiss Federal  Institute of Technology ETH, Insti- 
tute of Animal Sciences, Zurich, Switzerland. 

THOMPSON, E. A,, and S. W. Guo, 1991 Estimation of likelihood 
ratios for complex  genetic  models. IMA J. Math. Appl. Med. Biol. 

WEILER, J. I., M. SOLLER and  T. BRODY, 1988 Linkage analysis of 
quantitative traits in an interspecific cross of tomato (Lycopersi- 
con esculentum X Lycopersicon pimpinellifolium) by means of 
genetic markers. Genetics 118: 329-339. 

ZENG, Z.-B., 1994 Precision mapping of a  quantitative  trait loci. Ge- 
netics 136: 1457-1468. 

ZHUCHENKO, A. A., A. P.  SAMOVOL, A. B. KOROL and V. K. ANDRWSH- 
CHENKO, 1979 Linkage between loci of quantitative  characters 
and marker loci. 11. Influence of three  tomato chromosomes on 
variability of five quantitative  characters in backcross progenies. 
Genetika 1 5  672-683. 

8: 149-169. 

Communicating editor: B. S. WEIR 


