
Copyright 0 1996 by the Genetics Society of America 

Estimating  the Age of the Common Ancestor of a DNA Sample  Using 
the Number of Segregating  Sites 

Human Genetics Center, University of Texas, Houston, Texas 770?0 
Manuscript received March 8, 1996 

Accepted for publication July 12, 1996 

ABSTRACT 
The  number of segregating sites in a  sample of DNA sequences and  the age of the most recent 

common ancestor  (MRCA) of the sequences  in the sample are positively correlated. The value of the 
former can be  used to estimate the value of the latter. Using the coalescent approach, we derive in this 
paper  the  joint probability distribution of the  number of segregating sites and  the age of the MRCA of 
a  sample under  the  neutral Wright-Fisher model. From this distribution, we are  able to compute  the 
likelihood  function of the  number of segregating sites and  the posterior probability of the age of the 
MRCA of a  sample. Three  point estimators and  one interval estimator of the  age of the MRCA are 
developed; their relationships and properties are investigated. The estimation of the age of the MRCA 
of human Y chromosomes  from  a  sample of no variation is discussed. 

T HERE are considerable interests in the age of  the 
most recent  common  ancestor (MRCA) of a DNA 

sample when studying the evolutionary history  of a  pop- 
ulation  from which the sample is taken. The  current 
controversy on  the age of the MRCA  of modern  humans 
attests the  need of proper statistical methods  for  the 
inferences on common ancestry. Because an  inference 
on  the age of the MRCA has to be based on population 
samples, appropriate  population genetics theory should 
be taken into  account. The coalescent theory ( KINGMAN 
1982a,b; HUDSON 1983; TAJIMA 1983) is a  natural 
choice because it deals with  how the sequences in  a 
sample coalesce to  their  common ancestors. In this pa- 
per, we shall present  a coalescent theory that is neces- 
sary for  the estimation of the age of the MRCA  of a 
sample using the  number of segregating sites and inves- 
tigate the  properties of  newly developed estimators 
from this theory. 

The  number of segregating sites in a sample of DNA 
sequences from a  population is the simplest quantity 
observable. Since WAITERSON’S (1975) work, the  num- 
ber of segregating sites has been widely used for estimat- 
ing  the essential population  parameter 0 = 4Np, where 
Nis  the effective population size and p is the  mutation 
rate per  sequence  per  generation,  and recently has 
been used for testing evolutionary hypotheses (e .g . ,  TA- 
JIMA 1989; FU and LI 1993b; Fu 1996). Although sam- 
ples of  DNA sequences have been used by several au- 
thors to estimate the age of human  mitochondria,  the 
sample by DORIT et al. (1995), which  consists  of 38 
sequences from the  intron of ZFYgene in the  human 
Y chromosome,  presented  a special challenge because 
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there is no variation in this sample. Any estimator of 
the  age of the MRCA that is proportional to the  number 
of segregating sites or the  mean  number of nucleotide 
differences between two sequences will  yield zero as the 
estimate, which  is apparently  unacceptable. DORIT et al. 
( 1995)  attempted to estimate the age of the MRCA  of 
the  human males from this sample, but  their analysis 
was not  rigorous ( FU and LI 1996; DONNELLY et aZ. 1996; 
WEISS and VON HAESELER 1996). FU and LI (1996) 
developed a  method from the coalescent theory to deal 
with samples with no variation and reanalyzed DORIT et 
aZ.’s sample. Their theory is extended  in this paper to 
cope with samples with  any number of segregating sites. 

THE THEORY 

We assume that  the  population under study  evolves 
according to the Wright-Fisher model,  that  mutations 
in  the locus from which DNA sequences are  obtained 
are selectively neutral,  that  the effective population size 
is constant over time and that  there is no recombination 
within the locus. We shall present our results for  a 
sample of DNA sequences from an autosomal locus so 
that  the  parameter 8 is defined as 4Np, where N is the 
effective population size and p is the  mutation  rate  per 
sequence per  generation.  Our results also apply to a 
DNA sample from a  mitochondrial locus by defining 0 
as 2Nfp, where N, is the effective  size  of the female 
population, and to a DNA sample from a locus in Y 
chromosome by defining 8 as  2N+, where N,,,  is the 
effective  size of the male population. 

The genealogy of a sample of n DNA sequences can 
be divided into n - 1 states numbered from 2 to n. 
State k is the  period in which the genealogy has exactly 
k ancestral sequences  (Figure 1 ) . The time length tk of 
state k (in number of generations) is the secalled kth 
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FIGURE 1.-An example of the genealogy of a  sample of 
six sequences. T = + - * + and  the total time length 
of the genealogy is L = 2t2 + * + 6 k .  Dashed lines divide 
T into five periods (states). 

coalescent time. When sample is random, tk follows ap- 
proximately an  exponential distribution with parameter 
k ( k  - 1 ) / ( 4 N )  (KINGMAN 1982b).  The age ( T )  of 
the MRCA  of the sample is equal to 

T =  ,%+ + t ,  

and  the time length in the  entire genealogy is L = 2,% 

1 ) branches. Assume that  the  number of mutations in 
branch i conditional on the  length 1, of the  branch 
follows  Poisson distribution with parameter l ip.  Then 
the  number  K of mutations in the  entire genealogy 
conditional on the coalescent times t k  ( k  = 2 ,  . . . , n )  
is the sum of 2 ( n - 1 ) Poisson  variables and  thus fol- 
lows the Poisson distribution: 

+ . . .  + nt,. The sample genealogy  consists of 2 ( n - 

When the infinite-sites model is assumed, K is the  num- 
ber of segregating sites in the sample. Since different 
coalescent times are  independent,  the  joint probability 
density of ,%, . . . , t ,  is thus 

The  joint probability that  there  are K segregating sites 
in the sample and  that  the k t h  coalescent time ( k  = 2, 
. . . , n )  is equal to t k  is the  product of ( 1 )  and ( 2 ) ,  
namely 

k ( k  - 1) k ( k  - 1)  
K !  exp[ - 4N t k ]  . 

If coalescent times are rescaled such that one unit  corre- 
sponds to 4Ngenerations,  the above equation becomes 

Throughout this paper, all  times are so scaled  when 
their units are  not specified. Note that one unit of the 
scaled  time will correspond to 2Nf generations if the 
locus is in mitochondria  and 2Nm generations if the 
locus is in the  nonrecombining region of Y chromo- 
some. 

It follows from ( 3 )  that  the probability of the event 
that  there  are K segregating sites and  that  the age of 
the MRCA  of the sample is Tis 

k 

This joint probability is the  foundation for the infer- 
ences on T from K. We can show ( APPENDIX ) that 

where 

and 

It is clear that  there is only one term in the summation 
of Y K - I , k  for 1 = K,  while the  number of terms for < 
Kcan be shown to be CE=i;(K-L*n-2) (E;”’) ( y - ‘ ) ,  which 
is in the order of nK-‘. Therefore, it is not convenient 
to compute a k l  directly from ( 6 )  when K - 1 and n 
are  not small. Letting ( Y k l  = a k l ( 2 ) ,  it can be shown 
(APPENDIX ) that ck!kl(  2 )  can be computed from the fol- 
lowing iteration procedure: 

k =  i +  1, . . . , n  

n 

ail(i) = - a k l ( i )  ( 9 )  
k = z + l  

for 1 = 0, . . . , K .  The initial values for the iteration are 

a,K(n) = 1, ana( n )  = - - * = (YnK-, ( n )  = 0 .  (10) 

Two marginal distributions p ,  ( K )  and +n ( T )  can be 
obtained from p ,  (K, T )  ; the  former is the distribution 
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of K and the  latter  the distribution of  T. It is simple to 
show that 

where 
n K  11 

Equation ( 1 1  ) provides an alternative way to compute 
the probability of K than  the  formula derived by TAVARE 
( 1984).  ( T )  can be  obtained by summing p, ( K ,  T) 
over all possible  values of K. Because # n  ( T )  is indepen- 
dent of the mutation rate p, by setting p = 0 (thus B 
= 0 )  we have from (5) that 

# , (T)  = n ! ( n -  l ) !  

x c  ( - 1 ) k ( 2 k  - l ) k ( k  - l )  e - k ( k - l ) T  

k=2 ( n  - k ) ! ( n  + k - l ) !  
n 

= ( - l ) k ( 2 k  - 1 )  
k=2  

This equation is equivalent to TAJIMA'S (1989) Equa- 
tion 3, except  that different time scales are used and 
that TAJIMA ( 1990) considered only the case n = 2N. 
Incidentally, since the  exponential distribution of a coa- 
lescent time is derived under  the assumption that n 
2N, Equation 13 should be applicable only to samples 
of  sizes that  are  much smaller than 2N. Nevertheless, 
TAJIMA ( 1990) showed that 42N( T )  is close to KIMURA'S 

(1970)  distribution of fixation time  of a new neutral 
mutant. 

From the joint probability density p ,  ( K ,  T )  and the 
two marginal probabilities p ,  ( K )  and 4n ( T) , two quan- 
tities that  are essential for the inferences on T can be 
computed. One is the likelihood function pn(  KI T) of 
T and the other is the posterior probability pn ( TI K )  
of T,  defined respectively as 

The posterior probability is equal  to 
n K  

pn ( TI K )  = c i l  z z aklklT1e-k(e+k-l) ( 16) 
k=2 1=0 

from which one can derive the conditional expectation 
and variance of T.  It is a simple matter to show that 

- E 2 (  T I K ) .   ( 1 8 )  

We  now consider several situations in which Equation 
5 is convenient to use  directly. The first  case is when K 
= 0. It is easy to see from (8 )  that Y O , k  = 1 .  Therefore 
( Y k L =  P k  ( 8 ) , which  implies that 

n 

p,(O, T) = n ! ( n  - l ) !   P k ( 8 ) e - k ( 8 + k - 1 ) T  . ( 1 9 )  
k=2 

Since WATTERSON (1975)  showed that 
n- I k 

8 + k  
P,(K= 0 )  = n - ( 2 0 )  

k= 1 

the posterior probability p ,  ( TI 0 )  becomes 

P7l( TIO) 

L k = l  k=2  

which was derived first by FU and LI (1996) .  Substitut- 
ing P k  for akl in ( 1 7 )  and ( 1 8 )  we have 

The likelihood function of Tis given by 

The second situation is when K = 1 .  We  have from 
( 8 )  that 

n 1 1 - 
Y l , k % + k + i - l  r=2 e + 2 k - 1 '  

It follows that 
n 

p n ( 1 ,  T )  = 8 n ! ( n -  I ) !  @ , ( e )  
k = 2  

1 

x e + k + i - l  

7 1 

Since it is known from WAITERSON (1975) that 
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FIGURE 2."Surface of p,,( K ,  T )  
when n = 30 and B = 2.0. 

one can thus  compute  the values of the likelihood func- 
tion and  the posterior probability without using the 
iteration  procedure specified by ( 9 )  and ( 10). 

Finally since 
>I  1 1 - 

y 2 . k = C ( e + h + i - l ) ~  i=2 ( 8 + 2 k - 1 ) '  

2 s i < j s n : i . j t k  (e  + k +  i -  l)(O + k + j -  1)  ' 

which  is also easy to compute, we have 
,I 

fi,l(29 T)  = 0 2 ? l ! ( n -  I ) !  P k ( e )  
k=2 

X [Y2(kT)'+ Yl+k(kT) + y ~ ~ k ] e " " k - l ) " '  * (26) 

Before we consider how to estimate T from the value 
of  K, it is helpful to gain some ideas on  the  shape of 
the  joint probability density fin (K,  T) , the likelihood 
function fin( KI T)  and  the posterior probability 
f i l l  ( TI  K) . Figure 2 shows the surface of f i l l  ( K, T)  for 
a sample of 30 sequences and I9 = 2.0. 

It can be seen from Figure 2 that  the peak of Tshifts 
with K and vice  versa. Figure 3, a and  b, shows the 
likelihood function and  the  posterior probability of T 
respectively, for a number of  values  of K. It is clear by 
comparing  the two panels (a  and b )  that  the value  of 
T  corresponding to the peak of a likelihood function 
is smaller than  that of a posterior probability when K 
is close to zero and becomes larger when K is large. 
This is a feature  that  determines  the  relationship be- 
tween the maximum likelihood estimator and  the  other 
two estimators derived from the posterior probability 
distribution. 

ESTIMATION OF T 

Since both  the  joint probability of K and T and  the 
marginal probability of K depend  on 8, therefore, to 
estimate T from the value of K based on  either  the 
likelihood function or the  posterior probability, one 
must know the value of 0 or have an estimate of 13 prior 
to the estimation of T. As an initial step, we shall assume 
in this paper  that  the value of 6 is known. 

Before we set forward to develop estimators of T, it 
is natural to ask whether  K is informative about T. One 
way to answer this question is to examine the correla- 
tion coefficient, p , ( B ) ,  between K and T given by 

Since  K is positively correlated with the total  time 
length L of the genealogy of the sample and  the  latter 
is  positively correlated with T, p n  ( 0 )  is thus positive. 
However, if p n  ( e )  is close to  zero,  it is  likely that know- 
ing  the value of K is of little help  for  determining  the 
value of T; on  the  other  hand, if pN ( e )  is close to 1, 
knowing the value of K will be  almost  equivalent  to 
knowing the value of T. 

Consider the case  of two sequences. The  joint distri- 
bution of K and  Tis obviously equal to 

which can also be obtained from ( 5 ) .  Therefore 

= 20 t22e-z'dt 

= e. 
and  the correlation coefficient between K and  Tis 
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TABLE 1 

The  correlation coefficient ~ " ( 8 )  between K and T 

cl 

0.2 

0.1 

0.0 
0.0 1.0 2.0 3.0 4.0 

T 

2.0 

0.5 

0.0 
0.0 1.0 2.0 3.0 4.0 

T 

FIGURE 3.-Likelihoods ( a )  and posterior  probabilities ( b )  
for n = 30 and 6' = 2. In a and b, the curves with  descending 
peaks  correspond to K = 0, 2, . . . , 16, respectively. 

It is thus clear that p 2  ( 0 )  increases to 1 when 0 a p  
proaches infinity. In other words, the value  of K is a 
good indicator of the value  of Twhen  the value  of K is 
likely to be large, and is a  poor  indicator of Twhen its 
value is likely to be small. Although we are unable to 
find simple analytical solution for pn ( 0 )  when n > 2, 
pn (8)  can be computed numerically. Table 1 gives the 
values of ,on ( 0 )  for  a  number of combinations of n and 
8. It is clear from the table that pn (8)  decreases with n 
for a given  value  of 0. This is because for a larger sam- 
ple, there  are  more ways that  the  K segregating sites 
can be  partitioned  into states of the sample genealogy 
and therefore its value  has  less predictive power on the 
value  of  T. It is also true  that pn( 0 )  increases with 0 

n 6' = 0.1 0.5 1 2 5 10 

2 0.30 0.58 0.71 0.82 0.91 0.95 
5 0.25 0.49 0.62 0.74 0.86 0.91 

10 0.22 0.44 0.57 0.69 0.82 0.88 
20  0.20 0.41 0.53 0.65 0.79 0.86 
50 0.18 0.37 0.47 0.62 0.76 0.83 

for a given sample size n. Based on the information in 
Table 1, it seems reasonable to assume that pn ( 0 )  will 
approach 1 when 0 approaches infinity for any sample 
size. To summarize, the informativeness of K on T de- 
pends on the value of 0. For the purpose of getting 
reliable estimate of T, one should examine loci  with 
large mutation rate per site and obtain as longer se- 
quences as possible. 

We  now consider the estimation of T from the value 
of K. Two  types  of estimator of T can be devised from 
the theory developed in the previous section. One is 
the maximum likelihood estimate and  another is the 
Bayesian estimates. We consider them in turns. 

Point estimators of T: The first point estimator we 
consider is the maximum likelihood estimate of T de- 
noted f a , ,  which  is the value  of T  that maximizes the 
likelihood function of Tgiven by (14 ) .  In other words, 
t,,,,, is the solution for the following equation: 

where 

and the value  of &,bn ( T )  / dTcan be obtained by setting 
both 0 = 0 and K = 0 in (27 ) .  

Next we consider estimators derived from the poste- 
rior probability pn ( TI K )  . Estimators of this type are 
commonly called Bayesian estimators. We consider two 
Bayesian estimators, one  denoted Lode is the value  of 
T  that maximizes the posterior probability, and  another 
denoted Le,, is the conditional expectation of T, ie., 
Le,, = E (  TI K) . Since pn( K) does  not  depend  on T, 
Lode is the value  of T  that maximizes p, ( K ,  T )  . There- 
fore, Lode is the solution for the following equation: 

t { ~ a r , k ' T 1 [ 4 ~ - k ( B + k - l )  e - k ( * + k - l ) T = O ,  

k= 2 11 
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To understand  the relationship between these three 
estimators, consider first the case of two sequences. 
Since the likelihood function of T for a sample of two 
sequences is 

and  the posterior probability is 

it is  easy to show that 

K 
L a x  = - 28 

K 
&node = 2(8 + 1 )  

and 

We thus have the relationship b o d e  < kcan for any  given 
value of 8. Furthermore &,,ode 5 &,, I hean when K I 
8 and b o d e  < hean < when K > 8. Note that E (  K )  
= 8 when n = 2. 

Examining these three estimators for n = 3, we found 
that none of them can be expressed as a  linear  function 
of K.  When n > 3, these estimators become too compli- 
cated to be derived analytically. Therefore, we com- 
pared  the numerical values of these estimators for a 
number of combinations of n,  K and 8. Figure 4 gives 
two examples of the values these estimators. Figure 4a 
corresponds to 8 = 2 and sample size 10, and Figure 
4b corresponds to 0 = 5 and sample size 30. The  pattern 
of the values of the  three estimators in a  and  b, as  well 
as those in many other  parameter settings not shown 
here,  enable us to conclude that 

1. The value  of each of the  three estimators increases 
with K.  

2. For  any  values of 8 and sample size n, Lode is smaller 
than Lean. This is because the posterior probability 
of Tis skewed to the left. 

3. The maximum likelihood estimate Lax is equal to 
zero when K = 0 and is the smallest among  the  three 
estimators when K is small. 

4. The value  of the maximum likelihood estimator f,, 
increases with K most  rapidly and eventually  be- 
comes the largest among  the  three estimators after 
K is larger than  a value that is larger than E (  K )  . 

Interval estimate of T: Besides the two Bayesian 
point estimators &,ode and tmean, one can construct inter- 
val estimates of T from the posterior probability 
p ,  ( TI K )  . For example, the 95% interval estimate of T 

1.5 

0.5 

0.0 
0 2 4 6 8 10 

K 

F. 1.0 

0.0 
0 5 10  15 20 25 

K 
FIGURE 4.-Estimates of T for given values of K .  (a )  n = 

10 and 0 = 2; ( b )  n = 30 and 0 = 5. 

can be defined as ( T2.5, T97.5), where T, is the value of 
S such that 

where sos p ,  ( K ,   t )  dt can be shown to be 

k=2 1=0 

l!kl-i-l 
S C i e - k ( B + k - l ) S  

,=O ( Z -  i ) ! ( 8  + k -  1)"+' 

Obviously T2,5 should be smaller than T97.5. 
Figure 5 gives examples of the 95% interval estimate 

of Tfor several  values  of 8 in a sample of 50 sequences. 
It is clear that  the length of 95% interval of T becomes 
shorter with increasing 6. Because a  shorter interval of 
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FIGURE 5.-The 95% interval estimate of Tfor a sample of 
50 sequences. The two dotted lines, dashdotted lines and 
solid lines correspond to the  upper and lower  limits  of the 
interval estimate for 6' = 1, 5 and 10, respectively; the two 
horizontal lines correspond to the interval estimate based on 
the  prior distribution, & (  T) , of T .  K99 is the  number of 
segregating sites such that p ( K  5 K99 1 6 ' )  = 0.99. The values 
of K99 for 6' = 1, 5 and 10 are 12, 46 and 90,  respectively. 

T implies better estimate of  T, Figure 5 concurs with 
our earlier analysis  of the  correlation coefficient be- 
tween K and T. Figure 5 also  shows that  a large 8 im- 
proves  mainly the estimate of the  upper  bound of T 
when K is small and the lower bound of T when K is 
large. 

AN EXAMPLE: THE HUMAN Y CHROMOSOME 

We shall consider the sample of  DNA sequences by 
DORIT et al. ( 1995) from an  intron of Z I T  gene in 
the  human Y chromosome. The sample consists  of  38 
sequences of  738  base pairs and has no sequence varia- 
tion ( K  = 0 )  . Since Fu and LI ( 1996)  (also see DON- 
NELLY et al. 1996,  WEISS and VON HAESELER 1996) have 
already analyzed  this sample, we shall  give a supplemen- 
tary  analysis  below. 

To estimate the age of the MRCA  of this sample, one 
has to obtain an estimate of the value  of 8 = 2N&. 
Because homologous DNA sequences from several pri- 
mates were  also  available, DORIT et al. ( 1995) estimated 
the  mutation rate per sequence  per years  as  0.98 X 

Assume 20 years  as one  human  generation,  the 
mutation  rate ( p )  per sequence  per  generation is thus 
1.96 X 10 -6 .  In  additions to the value  of p, we need to 
know the value  of N,. Figure 6 shows the curves  of the 
posterior probability for several  values  of N,. One can 
see that  a  larger value  of N, results in a  more concen- 
trated distribution of  T.  If one fixes the value  of N, 
and varies the value  of p, the effect on the posterior 
probability would be  the similar to  that shown  in Figure 

5. In other words,  with increasing mutations rate, the 
posterior probability distribution will be more concen- 
trated,  therefore  the  inference on Twill be more accu- 
rate. 

Assuming equal sex ratio, FU and LI (1996) took N, 
= 5000 according to TAKAHATA ( 1993). This results  in 
8 = 0.196.  Fu and LI (1996) obtained Lode = 114,000 
yr, Lean = 174,000 yr and  the 95% interval estimate of T 
is from 60,000 to 408,000 yr. The maximum likelihood 
estimate Lax of Tis  equal to zero as pointed  out earlier. 

One can also compute  the Bayesian estimates Lode 
and Lea,, and  the 95% interval estimate of T directly 
from the  prior distribution +n ( T )  . This yields that Lode 

= 124,000, Lea, = 195,000 yr and  the 95% interval 
estimate of T from 65,000 to 473,000 yr. Comparing 
these point estimates to those based the posterior prob- 
ability distribution, we can see that  the  former  are 
smaller. The interval estimate of T based on the poste- 
rior probability, which is a  better indicator of the quality 
of the information in the sample, is 60,000 yr narrower 
than that based on  the  prior distribution of  T. The 
improvement is apparently significant though  not dra- 
matic, which is not surprising for two reasons.  First, 
when t9 = 0.196 the correlation coefficient between K 
and  Tis 0.25; therefore,  the value  of K provides  only a 
modest amount of informative about T. Second, one 
can compute  the probability of no variation from (20) ,  
and with 8 = 0.196  this probability is 0.42,  which is not 
small at all. Therefore,  the posterior distribution of T 
is not too different from the  prior distribution of  T, 
which is equivalent to the posterior probability of T 
with 8 = 0. 

Since our analytical  results are derived under the 
WRIGHT-FISHER model with a  constant effective popula- 
tion size and since the  human population is apparently 
subdivided and is growing, the above  analysis should 
be viewed  as preliminary. However,  NEI and TAKAHATA 
( 1993) showed that, when population subdivision is not 
substantial ( i e . ,  4 M m  is not too small where m is the 
migration rate), the formula, 4N( 1 - 1 / n )  , of the 
mean age of the MRCA  of a sample from a  random 
mating population is also a good approximation to that 
of a sample from a subdivided population with N re- 
placed by the effective population size  of the subdivided 
population.  Therefore,  the theory and estimators devel- 
oped in this paper should be an usefu! starting point 
for the inferences on T. 

DISCUSSION 

We have focused on the age of the MRCA  of a sample 
from a  population.  It is often more interesting to be 
able to estimate the age of the MRCA  of a  population, 
such as the cases  of the  human  mitochondria  and Y 
chromosomes. The age of the MRCA  of a sample can be 
different from that of a  population  and thus younger. 
SAUNDERS et al. (1984) showed that  the probability the 
two are  the same is 
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( n  - 1 ) ( N +  1) 
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Because sample size  is  usually much smaller than  the 
effective population size N ,  the above probability is ap- 
proximately equal to ( n - 1 ) / ( n + 1 ) . It follows that 
when n is large, it is reasonable to treat the MRCA 
of a sample as that of a  population. For example, the 
probability that  the MRCA  of a  random sample of 38 
sequences is the same as the MRCA  of a  population is 
0.95. Therefore, it is reasonable to treat the estimate of 
the age of the MRCA  of the sample by DORIT et al. 
( 1995) as that of the male human  population,  although 
one would feel safer if the sample size had  been 100, 
which  gives  0.98 probability that  the two MRCAs are 
the same. 

We presented in this paper  three  point estimators of 
T and showed that  their values for a given sample are 
usually different. In particular, the maximum likeli- 
hood estimate can be substantially different from 
the two Bayesian estimates Lode and LC,,. This raises 
the question on which  of the  three estimators should 
be preferred. As we have seen that when there is no 
variation in a given sample, the maximum likelihood 
estimate tax of T is 0, which  is  by  all means a bad 
estimate. The maximum likelihood estimator ignores 
the fact that  T has a bell-shaped distribution so that it 
is unlikely to be either too small or too large and thus 
yields estimates that seems to be too small when K is 
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FIGURE 6.-Posterior probability p,( TIO) 
with different effective population sizes for a 
sam le of 38 sequences, given that p = 0.98 X 
10- P X 20. The curves  with descending peaks 
correspond to N, = 30,000, 15,000,10,000,7500, 
5000 and 2500, respectively. 

3.0 

close to zero and too large when K is large. Therefore, 
Bayesian estimates should be preferred over the maxi- 
mum likelihood estimate of T from the value of K. 
Between the two Bayesian estimators, Lode should be 
preferred over Le,,, because the  former is the most 
likely  value of T  for  the given  value  of K while the 
latter is the average  value of T. When one has to draw 
conclusions about  T from a single sample, the average 
value  of T appears to be less relevant. However,  this 
judgment is necessarily  subjective to some extent  and I 
recommend to report  the values  of  all the  three estima- 
tors when analyzing real samples. 

We also presented an interval estimate of T derived 
from the posterior probability distribution of T. It 
should be emphasized that  the resulting 95% interval 
of Tis not  the 95% confidence interval of any of the 
three  point estimators discussed in this paper. This fact 
can be overlooked easily and when the phrase “interval 
of T” is used loosely, it is tempting to interpret it as 
the confidence interval of a  point estimator, although 
the two intervals should be correlated. Because the in- 
terval estimate of  Tallows one to make a very informa- 
tive probabilistic statement, such as, with  0.95 probabil- 
ity Tis in a certain interval, I strongly recommend  the 
use of interval estimate of T .  

We showed that  the usefulness of the value of K as 
a  predictor of the value  of T  depends  on  the value of 
0. The larger  the 0 is, the  more informative the value 
of K becomes. This observation is in line with the find- 
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ing  that  the accuracy in the estimation of 8 from K 
increases with the value of 8 ( FELSENSTEIN 1992; FU 
and LI 1993a). Because we assume that 8 is known in 
this paper, while in reality the same  sample will proba- 
bly be used to estimate both 8 and T ,  a  sample of 
DNA sequences  from  a locus with large value of 8 will 
improve the estimations of both 8 and T. 

Finally, it has been  demonstrated  that phylogenetic 
information  in  a sample can improve the accuracy in 
the estimation of 8 ( e.g., FU 1994) ; it is thus of interest 
to explore  the possibility of incorporating phylogenetic 
information  in  a sample into  the estimation of the age 
of the MRCA of the sample. One such approach has 
been developed by GRIFFITHS and TAVARE ( 1994). The 
extent of the improvement of inference by such ap- 
proaches  remains to be seen,  but  the estimation of the 
age of the MRCA based on  the  number of segregating 
sites should be efficient at least for DNA samples with 
few segregating sites. 

I thank Drs. J. FEISENSTEIN, W. H. LI and N. TAKAHATA, and a 
reviewer for  their  commens  and suggestions. This research was sup- 
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APPENDIX:  DERIVATION OF p,( K ,  T )  

Let 

gk = k(I3 + k - 1 )  

T k =  T -  t,- . . .  - tk 

2- 1 

L ( k ,  i) = kT+ ( j -  k ) t , ,  
j =2  

and 
2- 1 

G ( k ,  2) = g J  + c ( g r  - gd t j .  
j = 2  

Because of the  constraint & + * * + tn = T,  t ,  is 
equal to T,-, . It follows that Equation 4 can  be written 
as 

S, L K ( ~ ,  n )  e - G ( n , n )  
r,t- 2 

dtn-I , . dt,  

which can be  computed by integrating with respect to 
tn - l ,  . . . , & in turns. Note that it is equivalent to write 
L K (  n, n )  e - G ( n , n )  as 

n K  

fn-l = akl( n )  ~ ' ( k ,  n )  e - G ( k , n ) ,  
k=n Is0 

where 

a n K (  n )  = 1, (Y,O ( n )  = * * . = (Y,K-I ( n )  = 0. (28) 

Suppose that  the  function to be integrated with respect 
to ti is 

n K  

= ak, ( i+   l )L' (k ,  i +  l ) e - c ( k " + l ) .  
k = t + I  1=0 

Then because 

d ' L 1 ( k ,  i + 1 )  - Z ! ( i  - k)'  
dt{ ( 1 -  j ) !  

- Ll-J(  k ,  i + 1 ) ,  

The integration with respect to ti results in 
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where 

k =  i +  1 ,  . . . ,  n 
n 

a i l ( i )  = - a k l ( i )  ( 2 9 )  
R=i+l 

for 1 = 0,  . . . , K.  
The last integration with respect to 4 yields 

X ( k ~ )  l e - k ( o + k - l ) T  (30)  

Therefore, pn ( K ,  T )  can be calculated from (30 ) once 
we know the values of &( 2 ) ,  which can be  obtained 
sequentially from the iteration ( 2 9 )  with initial condi- 
tions given by (28) . Substituting k (6  -t k - 1 ) for g k  

in ( 2 9 )  results  in the iteration procedure  defined by 
( 9 )  and (10) .  

w e  now  show that ( Y k l  ( 2 )  is also  given by ( 6 ) .  It is 
easy to see from the iteration procedure described 
above that 

Suppose that 

which is  obviously true for i = n - 1. Then we have 
from ( 2 9 )  that  for k 2 i 

Although it is not easy to show  analytically that this 
equation also holds for k = i - 1,  comparing the numer- 
ical  values  of ( Y k l (  i - 1 ) computed by the above equa- 
tion and by the iteration procedure indicates that it 
indeed holds for all  values of k = i - 1, . . . , n. It thus 
follows that 

and  furthermore 

- - ( - l ) k ( O  + 2k - 1 )  
( k  - 2 ) ! ( n  - k ) !  nyZ: ( 0  + k + i) 

We thus have Equations 6-8. 


