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ABSTRACT 
A new  maximum  likelihood  method  to  simultaneously  estimate  the  parameters  of  any  migration 

pattern from  gene  frequencies in stochastic  equilibrium is developed,  based  on a model  of  multivariate 
genetic  drift  in a subdivided  population.  Motivated by simulations of this  process in the  simplified  case 
of two subpopulations,  problems  related  to  the  nuisance  parameter g, the  equilibrium  gene  frequency, 
are  eliminated by conditioning on  the  observed  mean  gene  frequency.  The  covariance  matrix of  this 
conditional  distribution is calculated by constructing  an  abstract  process  that mimics the behavior of 
the  original  process  in  the  subspace of interest.  The  approximation  holds as long as there is limited 
differentiation  between  subpopulations.  The bias and variance of estimates of long-range  and  short- 
range  migration  in a finite stepping  stone  model  are  evaluated by fitting  the  model  to  simulated  data 
with  known  values of the  parameters.  Possible  ecological  extensions of the  model  are  discussed. 

T HE pattern of migration (or gene flow) between 
a set of geographically separated populations re- 

flects a large number of ecological and genetic pro- 
cesses. First, migration is often restricted to relatively 
short distances (e.g., LEVIN and KERSTER 1974). Sec- 
ond, if carrying capacities vary between populations, 
optimality models predict  that individuals should  adopt 
a  conditional dispersal strategy responding to the differ- 
ences in local carrying capacities ( HOLT 1985;JOHNSON 
and GAINES 1990). Finally,  effective rates of migration 
may be modified by the  breeding system (ANDERSSON 
1994)  and by geographic variation in selection ( ENDLER 
1986). Actual estimates of migration are  important be- 
cause they suggest how important migration is for  the 
species, for example in limiting the development of 
local adaptations (e.g., SLATKIN 1973; NAGYLAKI 1975). 

In subdivided populations, when rates of migration 
are  high, migration interacts with genetic drift oc- 
curring in each  subpopulation, and the  gene  frequen- 
cies will then, after a  number of generations,  reach  a 
stationary equilibrium distribution. Under  the island 
model this distribution is the  beta (WRIGHT 1931 ) . For 
more complicated migration patterns such as stepping 
stone models ( KIMURA and WEISS 1964) and models of 
spatially continuous populations ( MALECOT 1975 ) , 
only the variances around  the equilibrium gene fre- 
quencies and the correlations between populations at 
different distances have been  found analytically. If there 
is a limited amount of migration, and if effective popu- 
lation sizes are large, the  number of generations neces- 
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sary to  reach equilibrium distribution may be very large, 
and  the observed genetic structure may then reflect the 
initial historic genetic composition of the populations. 

Evolutionary forces such as mutation and selection 
can also be important in determining geographic ge- 
netic variation. For many loci, and for many problems 
in population genetics, however, it is reasonable to as- 
sume that these forces are small compared to migration 
and drift, and that they therefore can be neglected 

Given the large amount of already existing data on 
geographic genetic variation, it should be of great inter- 
est to develop models that make inferences about gen- 
eral migration patterns possible.  Previous approaches 
to this problem have  mostly been based on the  expected 
amount of genetic differentiation under the island 
model as measured by the  parameter F,, (WRIGHT 
1951), estimated for all pairs of subpopulations or for 
all subpopulations taken together. Using the theory of 
the island model, some overall measure of gene flow  is 
then calculated. While this approach has  verified that 
the genetic correlations decreases with distance as pre- 
dicted by e.g., stepping  stone models ( SLATKIN 1993), 
it is clear that  the assumptions of the island model are 
not valid in general. 

The  dependencies between the  gene frequencies be- 
tween the subpopulations are  an  important  feature of 
the  data  that must be incorporated in a  general model 
for  the problem. Except under the island model, it is 
these dependencies  that contain most  of the informa- 
tion about  the unknown migration pattern.  Here, using 
some ideas in FELSENSTEIN ( 1982), we develop a model 
that can be used to estimate the parameters of  any 
migration pattern by maximum likelihood. The model 

(CROW 1985; AVISE 1994). 
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is based on the underlying multivariate genetic drift 
process that  generates  the data. An attempt is made to 
eliminate the unknown equilibrium gene frequencies 
from the model by considering the distribution gener- 
ated by the drift process, conditioned on the sufficient 
statistics for these nuisance parameters. Using  simula- 
tions, we show that it is reasonable to  approximate this 
conditional distribution by the multivariate normal. A 
method  for calculating the covariance matrix of the 
distribution similar to COURGFAU (1974) is suggested, 
based on insights gained from further simulations. F l -  
nally, to evaluate the  properties such as  bias and effi- 
ciency of parameter estimates obtained using the 
model, we estimate the  parameters of an example mi- 
gration  pattern,  a finite stepping  stone model, from 
simulated data. 

THE GENERAL MODEL 

Consider n + 1 populations indexed i = 1, 2, . . . , 
n + 1. Let Ni be  the variance effective  size ( EWENS 1979, 
eq. 3.96) of population i. We  will only consider the 
simplest case of a single diallelic locus  with two alleles 
A1 and AB. Let the elements of the column vector p, 
represent  the allele frequencies of Al in the populations 
in generation t ,  and let m,- be the probability that  an 
individual born in population i received a  gene from a 
parent in population j .  Each  row  of the ( n  + 1 ) X ( n  
+ 1 ) migration matrix M *  = [ mij] therefore sums to 
one.  The  gene frequency in the ( n + 1 ) th  population 
remains constant and equal  to q, that is, this population 
is of infinite effective  size, and can thus be thought of 
as a large outside world population. The ( n  + 1 ) th 
column of M* represents  the immigration rates from 
this outside world into each subpopulation. These im- 
migration rates can in general  be different. We will let 
these immigration rates also include mutations, since 
the effects  of mutations are indistinguishable from the 
effects  of immigration from the outside world. 

Apart from these assumptions, M* can take  any form 
depending  on what assumptions we make about  the 
underlying migration pattern. The migration matrix is 
generally a  function of the parameters of some migra- 
tion pattern model. 

If  we include genetic drift,  the  gene frequencies in 
generation t + 1 may be expressed as 

pt+l = M*pt + e ,  ( 1 )  
where the elements of e represent  the stochastic 
changes in the process. The elements of e are binomial 
variables rescaled to have zero expectations and vari- 
ances equal to P , , ~  ( 1 - P , , ~  ) / 2 N ,  except e,+l that always 
equals zero. Also note  that we assume that  the changes 
in the  gene frequencies due to migration and drift are 
small so that  the sequential order of the events in the 
life  cycle can be ignored. 

Substituting the  gene frequencies with their deviation 
x, = p,  - q from the equilibrium gene frequency, we 
see that ( 1 ) can be rewritten as 

xt+l = M x t  + e ,  ( 2 )  

where xt is an n-dimensional column vector and M is a 
n X n matrix that equals M* except that  the ( n + 1 ) th 
row and column have been  dropped.  The sum of each 
row  of M is consequently equal to or less than  one. 

As noted by BODMER and CAVALLI-SFORZA ( 1968 ) and 
FELSENSTEIN ( 1982),  the variances  of the elements of e 
depend  on  the gene frequencies. To make the variances 
constant, one might use the arcsine square root trans- 
formation,  but this also changes the expectations in the 
process. In fact, no transformation exists that will make 
both  the variances constant and the expectations linear 
in p ,  and  a  more careful analysis will show that such a 
transformation is not necessary, at least to derive the 
covariance matrix of the stationary distribution of  this 
multivariate process. 

This derivation can be done as follows.  We first  want 
to find the recursion relation between the variances 
and covariances from one generation to the next. Multi- 
plying each side of ( 2 )  with their own transposed yields 

X , + ~ X ~ ~  = M x & : M T +  &,eT+ ( M x , )  'e + ee". ( 3 )  

The elements of the matrices in the second  and  third 
term on the right hand side, formed by taking products 
of  row and column vectors,  involve products of the sto- 
chastic  variables ej and xi,,. Even though these stochastic 
variables are dependent for i = j ,  we  always  have 
E (  e, x,,,) = 0 since E (  e, I x,,,) = 0. If  we take expectations 
of ( 3 ) ,  these terms therefore vanish and we get 

c,,, = MC,M' + E(ee') ,  ( 4 )  

where C, is the covariance matrix of the distribution at 
time t .  

It remains to evaluate the expectation of the last term 
in ( 4 ) .  Because the elements of e are  independent  and 
with zero expectations, only the elements of the matrix 
ee' along  the diagonal have nonzero expectations. If 
we first  write each element of the column vector e as 

where eo,, is stochastic with variance equal to one  and 
expectation equal to zero, then we see that 

1 
2 Ni 

- ( q (  1 - 4) - tic,,), ( 6 )  " 

sinceE(p,,,) = qandsince E ( & )  - (Epi,,)' =Var(&,,) 
= c,,,. The average genetic drift in the process is thus 
reduced by an  amount  proportional  to  the variance cii 

around  the equilibrium gene frequency q, as  also  shown 
by COURGEAU (1974) p. 365. 
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Substituting ( 6 )  into ( 4 )  and  noting  that  the covari- 
ance matrix C,,, must equal C ,  as t tends  to infinity and 
a stationary distribution is attained, we now  know that 
the covariance matrix C of this stationary distribution 
must satisfy the  equation 

c = MCM'+ E, ( 7 )  

where the matrix E = E (  ee') . Note that E depends 
on C . Equation 7 can be rewritten to  a system  of linear 
equations in the n ( n + 1 ) / 2 unknown covariances cy 
and solved for C .  

A  more formal proof of the existence of this limit is 
given in COURGEAU (1974). It  should  be  noted  that 
the solution of ( 7 )  is exact to the  extent  that  the order 
of the events in  the life  cycle can be  ignored. 

FITTING  THE  MODEL  TO A GENETIC SAMPLE 

Some introductory remarks: Typically, in studies on 
genetic differentiation,  a large number of individuals 
have been sampled from  a set of subpopulations i = 1, 
2, . . . , n,  and  the frequencies in each subpopulation 
pl , p , ,  . . . , pn of different alleles  have been  determined 
by e.g., protein electrophoresis or restriction fragment 
length polymorphism (RFLP) analysis. Our interest is 
to make inferences about  the parameters of the  under- 
lying migration pattern from these gene frequencies. 
Formally, this can be done by assuming that  the popula- 
tion system  has reached its stationary distribution,  then 
use this stationary distribution of the process as the 
probability distribution for  the  data,  and finally estimate 
the  parameters of the  model by maximizing the proba- 
bility  of the observations. 

An additional difficulty is  however introduced by the 
parameter q,  the frequency of the long-range migrants, 
which  in general will be unknown. We have no interest 
in making inferences about q,  that is, q is a nuisance 
parameter in the model. Sufficient statistics are im- 
portant in models containing such nuisance parameters 
because they contain all information in the  data  about 
the unknown parameter. The sampling distribution of 
the  model,  conditioned on some sufficient statistics t for 
the nuisance parameter 8, is the relevant distribution 
to consider, because this distribution, by definition, is 
independent of the  true value  of the nuisance parame- 
ter. By conditioning on t ,  we restrict our attention to 
only a small part of the sample space, and  ignore other 
possible outcomes that  are irrelevant for  the problem. 
In  the  context of maximum likelihood estimation, this 
principle is called conditional likelihood ( MCCULLAGH 
and NELDER 1989, ch. 7 ) .  

In  the  present case,  with n subpopulations in the 
system, the relevant distribution that we seek, on which 
calculations of the likelihood must be based, is the ( n  
- 1)dimensional stationary distribution of the process, 
conditioned on some sufficient statistic for q.  Because 
of the complexity of the  generated  distribution,  finding 
a sufficient statistic for q and finding  the  corresponding 

conditional distribution, will necessarily  have to be 
based on some approximations. 

Approximations  for  small  fluctuations: If the fluctu- 
ations around q are small, for example if there is a high 
rate of immigration from the outside world into each 
subpopulation,  then  the genetic drift will be nearly con- 
stant, and the process can then be approximated by 
a multivariate autoregressive process. This process is 
known to have the multivariate normal as its stationary 
distribution. Since E ( p i )  = q for all populations, we 
know from the  properties of the multivariate normal, 
that  the weighted mean gene frequency 

n 

i= 1 

is sufficient for q,  provided that  the weights w l ,  . . . , wn 
are chosen to minimize the variance of p (APPENDIX B )  . 

It  can also be shown that  the multivariate normal 
distribution conditioned on the  linear combination p 
= wjp, is also multivariate normal (KENDALL et al. 
1983, exercise 15.1). Also, if  we as suggested by 
FELSENSTEIN (1982), work  with the deviations  of each 
gene frequency from the weighted sample mean,  that 
is, an ( n  - 1)dimensional vector y where yz = pi  - p, 
then  the distribution of y conditional on  pis indepen- 
dent,  not only of q ,  but also  of p (APPENDIX c )  . 

The vector y may be expressed as a  linear matrix 
transformation of p , 

where the ( n - 1 ) X ( n)  matrix 

K = l  
-w, 1 - ... - Wn- 1 

-.". . (10) 

L - w I  -% 1 - wn-l -wnJ 

The unconditional covariance matrix of y is then 

c, = KCK'. (11) 

Again, since y I p is independent of p (APPENDIX C )  it 
follows that  the conditional covariance matrix C, I+ that 
we seek equals C, given by ( 11 ) . 

We can therefore consider ( 11 ) , when C is calculated 
from ( 7)  , to be  a naive approximation of C, I+. By mak- 
ing some further distributional assumptions, the likeli- 
hood can be calculated. Our main concern at this stage, 
however, is  how  well ( 11 ) approximates C, I+ when the 
fluctuations around  the equilibrium gene frequency q 
become large. This will be investigated in the  next sub- 
section. It still seems reasonable, however, to rely on 
the assumption that  the distribution of p,  when condi- 
tioned on (8) , is approximately independent of q,  also 
more generally. 

Simulations of the two population  case: To get  an 
impression of the behavior of the process, we  will first 
simulate its stationary distribution. We  will look at the 
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"1 

FIGURE l."Simulations of the  stationary  distribution  in  the two population  case  with N = 10, m = 0.3 and q = 0.5. (A)  When 
the  long-range  migration  rate is high ( u = 0.1 ) , the  stationary  distribution is close  to  binormal. (3) As the long-range  migration 
rate  becomes  small ( u = 0.01 ) , the  gene  frequencies  are  close  to  fixation  most of the time and  the  total  distribution is far from 
binormal.  Note  that  the (n - 1)dimensional  conditional  distribution  indicated by boldface  lines is still close  to  normal. 

special case  of two populations, each of equal effective 
size N = 10, both receiving long  range migrants with 
gene frequency q = 0.5 at rate u. In  addition, we  will 
let  the two between-population migration rates be  equal 
to m. The migration matrix is then 

M =  ( 1  - U )  [l,, l : m ] .  ( 1 2 )  

We also assume, in the simulations, that genetic drift 
occurs after migration. Each  of the  components of the 
vector p = ( p , ,  Is) can then take  any  value  of the 
rational numbers 0,  1/20, ' / 20 ,  . . . , 1,  and there  are 
21 * 21 = 441 possible discrete states in the process. By 
simulating, say 200,000 generations, and counting  the 
number of generations  the  population  spends in each 
state, we can find the stationary bivariate distribution 
of the process. Figure 1 shows this distribution for two 
different long-range migration rates. We see that  the 
distribution in fact is close to multivariate normal as 
long as the long-range migration rate u is high. How- 
ever, as soon as  this migration rate becomes small the 
populations are close to fixation for  a large part of the 
time. Interestingly, the relevant conditional distribution 
does however  still appear to be close to normally distrib- 
uted, which  suggests that  the multivariate normal may 
still be a good approximation of the (n - 1)-dimen- 
sional conditional distribution that we seek. 

We will now look at how  well ( 11 ) , which is based 
on multivariate normality, approximates the covariance 
matrix of the conditional distribution generated by the 
original process for large fluctuations around  the equi- 
librium gene frequency q. We  will check this by doing 
some further simulations, but we  will still  only consider 
the simplified case  of two subpopulations. There is then 
just  one contrast yl = pl - p = '/'(pl - p )  and the 
covariance matrix is the variance of this single contrast. 
The exact conditional variance of yl can  be  found nu- 
merically by doing simulations as described above, if 
the calculation of this variance is based on the values 

of yl at  the points in time when the process is in one 
of the states 

p = ("/,o, /20), (7'0, '%o),  . . . , (*%O, %o) 20 

if the observed mean gene frequency is  say, p = 
For the  unconditional variance we can get  an explicit 

solution. With the symmetry assumptions above it is 
clear that  the variances of pl and p are equal, that is, 
cll = ~ 2 ~ .  Solving ( 7 )  for cll and c12 we then  find, after 
some algebra, that 

Var(yl) = 74(cll  + c22 - c12) = % q u  

X ( 2  - u -  2q+ u q ) / ( 2 m -  2m2 + 2 u -  u2 

- 4um + 4um2 + 2u2m - 2u2m2 - 16Num2 

- 40Nu2m + 40Nu2m2 + 16Num - 32Nu3m2 

+ 8Nu4m2 + 8Nu' - 8Nu' 

+ 2Nu" + 32Nu'm - 8Nu4m) .   (13 )  

Note that this expression tends to zero as the  long range 
migration rate u becomes small (provided  that m > 0 ) .  

Figure 2, A and B, shows the  conditional variance 
(calculated using simulations) and  the  unconditional 
variance (calculated using Equation 13)  . We see that 
Var ( y l )  only approximates Var (yl I jj) when u and m 
are large. This shows that our naive approximation ( 11 ) 
of  the conditional covariance matrix does not hold in 
general. An alternative method is therefore  needed  to 
calculate the conditional covariance matrix of the n - 
1 contrasts. 

An alternative, similarly behaving  process: It is inter- 
esting to notice (Figure 1 B )  that  the conditional distri- 
bution appears to be only weakly dependent  on  the 
value  of p. In fact, if the stationary distribution was 
multivariate normal,  then this conditional distribution 
would be completely independent of p (APPENDIX C )  . 
This suggests that if we instead look at  an alternative 
process PI, forced to move  only  within the subspace 
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FIGURE 2.-Comparison of Var ( yl I p )  (calculated using  simulations) ( A ) ,  Var ( yl ) (Equation 13)  (B)  , and Var (A) ( C )  of 
the  alternative  process  described  in  the  text (Equation 19).  

where pequals  the observed mean gene frequency, but 
otherwise change  the process as little as possible, the 
stationary distribution of this altmative process may be 
more similar to  the  conditional distribution of the origi- 
nal process p, that we seek. This modification of the 
process can be done as  follows. 

Let kg1 designate the temporary state of the process 
after migration and drift have occurred. Conditional 
on  that  the covariance matrix is C, in the previous gen- 
eration,  the covariance matrix of % f l  is, as before, 

C T + ~  = M C , M ~  + E. (14) 

Remember  that E depends on C,. To keep the process 
within the n - ldimensional subspace, we now project 
kT+l down into  the ( n  - 1)dimensional subspace where 
2 = 0 by subtracting  the weighted mean from each 
element of (Figure 3 ) .  This can  be done using the 
transformation 

- 

1 

0.8 

0.6 

G 

0 0.2 0.4 0.6 0.8 1 
Pl 

FIGURE 3.-In  the  multivariate  normal  case,  the  distribu- 
tion  conditional on ji is independent of q, provided  that pis 
sufficient for q. The  conditional  distribution of y also  happens 
to  be independent of pitself. This  suggests  that  a  process f i t  

forced  to  move  only  within  the  subspace of interest will gener- 
ate  the  relevant  conditional  distribution of the  original pro- 
cess p,,  also  when  the  overall  distribution  is  far  from  multinor- 
mal, provided  that  the  conditional  distribution is only weakly 
dependent on p. 

where element ij of the n X n matrix D is 

We  now  know that  the covariance matrix of is 

= DC:~D'. (17) 

Substituting (14) into (17)  and noting  that C,,, must 
equal C, as t tends to infinity, we know that  the covari- 
ance matrix of the stationary distribution satisfies 

c = (DM)~(DM)~+ DED? (18) 

This equation is,  like (7)  for  the original process, still 
a  linear system  of n ( n + 1 ) / 2 unknown covariance. It 
must in general be solved numerically (APPENDIX A ) .  

It is interesting  to look at  the symmetrical  two-popula- 
tion case. The solution of (18) is then straightforward, 
and the variance of the contrast is 

Var(Y1) = 74(c11 + ~2~ - 2cI2) = PC1 - jj)/ 
((16m + 8u - 16m2 - 4u2 - 32um + 32um2 

+ 16u2m + 16u2m2)N + 1) .   (19)  

Figure 2C  shows the behavior of this approximation for 
different values  of u and m in the two-population  case. 
Compared  to  the  conditional variance of the original 
process (Figure 2A), we see that  the approximation 
works reasonably well, at least when there is a high rate 
of between-population migration m. 

Some special cases are of interest. As u tends to zero, 
and for small m, (19) tends to the limit 

Var(yl) = PC1 - jj) 
16Nm + 1 ' 

in contrast to  approximation ( 13) that  tends  to zero. 
The simulations of the original process also  suggest that 
this limit is larger  than zero. Notice that  the variance 
given the  mean  (Figure 2A) seems to be independent 
of u when u is much smaller than  the between-popula- 
tion migration rate m. 
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Another check of result (19) is the special  case  of m 
equal to zero, in which the model is equivalent to the 
island model, with our parameter u representing  the 
parameter usually called m in the island model. For 
small u, ( 19) then reduces to 

The island model predicts that Var (pl ) = Var ( p )  = 
q(  1 - q )  / ( 4Nu + 1 ) . Since pl and p ,  are  independent, 
it then follows, from the island model, that 

which is approximately equal to (21 ) , unless Nu is 
small. 

A  third special case is the limit obtained when both u 
and m tend to zero, that is, when there is large between 
population differentiation. For the original process all 
the probability is  now concentrated on the  “edges” of 
the  unit  square, which constitutes the state space of the 
process.  Because we are considering the  conditional 
distribution given p there is, in the limit, for p < 
only two equally probable states p = (2p, 0 )  and p = 
( 0 ,  2fl  and  it is  easy to show that 

However,  in  this limit, approximation (19) becomes 

Var(Y1) = PC1 - p ) ,  (24) 

which  only equals (23) when p = 
In conclusion, the  approximation may mimic the be- 

havior of the original process quite well, at least in the 
two-population case, as long as there is not too much 
between-population differentiation, which is a fortu- 
nate  feature of many real data sets. 

Maximizing the likelihood As suggested by the simu- 
lation, if there is little genetic differentiation between 
subpopulations, and if we have large sample sizes, it is 
reasonable to use the multinormal distribution (see e.g., 
KENDALL et al. 1983, p. 479) as an approximation of 
the conditional stationary distribution of the process 
given p. The likelihood function for the observed gene 
frequencies at nk loci is then 

L(P  I N,, . . . ,  pn,) 

where P is the  parameter vector of the assumed  migra- 
tion pattern M. 

In summary, to find the maximum likelihood esti- 
mates of the parameters of the migration pattern being 
assumed (see e.g., the  next section), we start with some 
initial parameter values and calculate the migration ma- 

trix corresponding to the underlying migration pattern, 
using e.g., Equation 26. We then calculate the  uncondi- 
tional covariance matrix C of the whole distribution 
generated by the process by solving ( 7 )  (APPENDIX A )  . 
The  appropriate weights are  then given by (B.5)  and 
the transformation matrix D by ( 15) . Solving ( 18) for 
the alternative process using this transformation matrix, 
we have the covariance matrix Cy,? C of the relevant 
conditional distribution. Since the solution of (18) de- 
pends on the equilibrium gene frequencies, which may 
differ between loci, it is adviseable  first to solve the 
system for the standardized covariance matrix Co = [ 1 / 
?( 1 - f l ]  C once, and  then calculate covariance matri- 
ces from Co for each locus separately. Having calculated 
C ,  the likelihood is given by (25).  Going back, ad- 
justing  the parameters repeatedly, using some numeri- 
cal algorithm for maximizing functions of  several  vari- 
ables, e.g., the AMOEBA routine (PRESS et al. 1986), 
we obtain maximum likelihood estimates of the param- 
eters. 

AN EXAMPLE MIGRATION PATTERN 

A finite stepping  stone model: So far, no assumptions 
have been  made  about  the form of the migration matrix 
M .  In general, any parametric migration model should 
be possible to incorporate.  Here, to test the perfor- 
mance of the  model, we will simulate data from a s tep 
ping  stone  model, which  has theoretically well  known 
behavior, and use the  general model to estimate its 
parameters. We  will use a finite stepping  stone model 
with n = 10 subpopulations, along  a single dimension, 
each of  effective  size Ne. Each subpopulation exchanges 
individuals at  a rate % / 2  with each of its neighbors, 
and receives long range migrants from the outside 
world at rate u. The subpopulations at the edges have 
emigration and immigration at rate mu / 2 only  in one 
direction. With these assumptions, the migration matrix 
is 

Simulation of data from this model, for  a given set of 
parameters, is again done by assuming that genetic drift 
occurs after immigration. Data can be generated by 
initializing all gene frequencies to say pi = 0.5 and  then 
simulating 500 generations. Repeating this procedure 
10 times, ignoring linkage disequilibrium, we have data 
at 10 different loci. For small  values  of u it may happen 
that one allele becomes fixed in all populations at the 
end of a simulation. In such cases, we simulated 500 
additional generations, one  or more times until the 
mean  gene frequency was between 0.1 and 0.9. 

Data generated from the  stepping  stone model de- 
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FIGURE 4.-Sampling dis 
tributions of t2 and $, for 
various  parameter  combina- 
tions for 100 simulated  data 
sets  from a  finite  stepping 
stone  model with 10 popula- 
tions and 10 loci. The effec- 
tive population size Ne = 100 
in  all  simulations and is 
treated as a known parame- 
ter. The true values  of u and 
m,, are indicated by dotted 
lines. 
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Short range migration m, 

scribed above do potentially contain information about 
all the  three  parameters Ne, u, and % (in addition to 
the equilibrium gene  frequencies), that is, each param- 
eter  combination potentially generates its own unique 
genetic covariance structure. However, from the theory 
of infinite one-dimensional stepping  stone models, we 
know that  the effective number of parameters are re- 
duced to two in the limit when u becomes much smaller 
than m. One parameterization of the model is then  the 
rate of exponential decrease d- in  the correlation 
between populations with distance, and the variance 
q (  1 - q )  / (1 + 4Ne&) of the fluctuations of each 
subpopulation  around  the equilibrium gene frequency 
q (CROW and KIMURA 1970, Equations 9.9.28 and 
9.9.29). We can therefore in this situation only expect 
to  obtain estimates of, in our parameterization, eg., u 
and m,, as functions of Ne. We  will therefore  concentrate 
on estimating u and rn,, and treat Ne as a known parame- 
ter. When working with real data,  prior information 
about Ne could be used if this is available in the litera- 
ture. 

Bias and  variance of estimates: Figure 4 shows the 
sampling distributions of the estimators zi and &, for 
100 simulated data sets, with Ne = 100, and various 
combinations of u and %. The bias and standard devia- 
tions of the estimators are summarized in Table 1. 

There  are several interesting points to notice. First, 
the sampling distribution is concentrated  around  the 
true values, indicating that  the  method works.  Both u 
and % appear to become slightly overestimated, but 
the bias is small, and is anyhow dependent  on the  more 
or less arbitrary parameterization of the model. 

Second, as u becomes small  relative to m,, we also see 
that  the uncertainty in the estimate of u becomes very 

large. This is consistent with our simulations of the two- 
population case that indicated that  the  conditional dis- 
tribution of the contrasts becomes independent of u 
when u tends  to zero. Interestingly, the uncertainty in 
&, seems, at  the same time, to decrease. 

Third,  there is also  negative covariance between the 
estimates, which  makes intuitive sense. Genetic similar- 
ity can be due to two causes: long-range and short-range 
migration. If there is  less long-range migration, there 
has to be more short-range migration. This negative 
covariance seems to disappear when u becomes much 
smaller than % (upper right  plot, Figure 4 ) .  

Finally, note  that  the maximum likelihood estimate 
of u for some data sets becomes effectively equal  to zero 
(Figure 4, lower left plot) indicating that long-range 
migration has no detectable effect on the genetic struc- 
ture  for these particular data sets. Figure 5 shows a 
contour plot of the likelihood function  for one such 
data set, plotted on log scale for u. We see that  the 
likelihood, given this particular data set, tends to a limit 

TABLE 1 

Bias and  standard  deviation of zi and & based on the 
simulations shown in Figure 4 and 

on untransformed  estimates 

Bias SD Bias SD 
U ( 4 ( Q )  mo (rib) (rib) 

0.10 0.022 0.079 0.50 0.000 0.18 
0.10 0.012 0.042 0.16 -0.002 0.08 
0.10 0.003 0.033 0.05 0.002 0.04 
0.01 0.012 0.020 0.50 0.003 0.13 
0.01 0.005 0.011 0.16 -0.003 0.03 
0.01 0.002 0.005 0.05 0.002 0.02 
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neighboring populations will act as “memory” of the 
subprocess in the populations under consideration. In 
our example we avoided this problem by using exactly 
the same model for simulations and model fitting. 

Although we initially  assume the existence of an out- 
side world population,  the simulations indicate that  the 
model also can be used in situations where the subpopu- 
lations are completely isolated. This is because the dis- 
tribution of the  gene frequencies, when conditioning 
on p, tends to a limit as the rate of immigration from 
the outside world becomes small. The model is in fact 
perhaps most suitable in such situations because the 
problems with neighboring populations mentioned 

o.Ooo1 0.001 0.01 0.1 
U 

FIGURE 5.-Contour  plot of the  likelihood  function L (  u, 
%) for one  particular  simulated  data  set  from  the  example 
stepping  stone  model  with  long-range  migration u = 0.01 and 
short-range  migration mo = 0.5 (indicated by dotted  lines  on 
the graph). 

as log u tends to -m. We can only interpret  the  contours 
in Figure 5 as parameter combinations given equal sup- 
port by the  data. The only inference  that can be made 
about u is that it must be smaller than  a certain value. 
Like in all interval estimation, it is  however  difficult to 
make any probabilistic statements as to  whether  the 
true value  of u and m, lies  within a certain contour, 
without assuming that  a  prior probability distribution 
for u exists. 

Also, for small  values  of (Figure 4, upper  right 
plot), the maximum likelihood estimate of m, some- 
times becomes equal to zero, that is, the genetic struc- 
ture is sometimes indistinguishable from the genetic 
structure  generated by the island model. 

DISCUSSION 

Assumptions: The approach used here is based on 
several approximations, and  it would be desirable to 
more formally analyze the behavior of the alternative 
process p t ,  not  just for the two-population case, and 
not  just using simulations. The fact that  the alternative 
process starts to behave poorly as the between-popula- 
tion differentiation increases is disturbing. Even so, the 
model appears to give good estimates for  both  the short- 
and long-range migration rates for  data  generated with 
our example stepping  stone  model, and this is encour- 
aging. For real data and for  more complex migration 
patterns, we expect the model to at least give a good 
approximation of the relative likelihood of competing 
migration patterns. 

Another  problem is that real data in general are gen- 
erated by a multivariate process in a  much larger num- 
ber of populations than those sampled. The state of the 
whole  system  is therefore no longer completely charac- 
terized by the n-dimensional vector pt, and  the process 
is therefore no longer Markovian because these extra 

above are  then eliminated. 
The  current version  of the model is also limited in 

that it handles only two alleles at each locus, and 
thereby ignores much almost independent information 
available  in multiallelic data. Combining the least fre- 
quent allelic  classes should however  only lead to less 
efficient estimates and  not to additional bias. We have 
also ignored sampling error,  but  the additional variance 
due to finite sample size  is  easily incorporated by adding 
the binomial sampling variance to the calculated covari- 
ance matrix before each calculation of the likelihood. 
Since additional sampling error will tend to mask  any 
underlying patterns in the  data, large sample sizes  will 
of course be essential for  the model to work. 

Practical considerations: Even though  the  method 
presented  here is computationally intensive, it is reason- 
ably  fast for analysis  of a small number of populations. 
Finding maximum likelihood estimates of the parame- 
ters of the example migration pattern, typically took 
-30  sec for single data sets on a Pentium 90 MHz proc- 
essor, when starting in the  true  parameter values. Al- 
most  all  of the  computer time is consumed in  solving 
( 7 )  and ( 1 8 ) ,  for each computation of the likelihood. 
However, the  number of populations that in general 
can be analyzed is quite limited as the  computer time 
increases very  rapidly  with the  number of populations 
n (APPENDIX A ) .  For idealized migration patterns  the 
number of unknown covariances can potentially be 
greatly reduced if one takes advantage of  possible sym- 
metries. For example, for the migration pattern used 
here,  one could use the fact that ciiequals c(%+l-i) (n+l-j) .  

FELSENSTEIN (1982) discusses explicit solutions for the 
covariance matrix of another similar approximation 
based on arcsine transformations and symmetric  migra- 
tion matrices, which  only  involves taking the inverse of 
n X n matrices. 

Comparison  with  other  approaches: The  method 
used here differs from recent alternative approaches  to 
the  problem based on association tests  between genetic 
and geographic distance matrices (e.g., MANLY 1991; 
SLATKIN  1993; RAYBOULD et al. 1996). Although these 
approaches have proven useful in practical data analy- 
sis, it is not clear if the assumptions underlying the 
estimators of genetic distance on which these methods 
are based are valid in general. One such estimator, WEIR 
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and COCKERHAM'S (1984) 8 ,  does, for example, assume 
that all populations have descended from a  common 
ancestral population and that all populations then  are 
maintained under  the same conditions, and the ex- 
pected amount of genetic differentiation in these s u b  
populations is then estimated. In contrast to this, NEI 
and CHESSER (1983) estimate the actual amount of  ge- 
netic differentiation between populations at  the time of 
sampling as defined by WRIGHT'S ( 1943) F,, parameter. 
These estimates are  then used in further exploratory 
data analysis. The problem with these approaches, how- 
ever, is that  there, in general, is no simple relationship 
between rates of migration and genetic differentiation, 
and this makes the  interpretation of the estimated pa- 
rameters difficult. 

SLATKIN and BARTON (1989) suggested using the 
beta distribution to estimate gene flow by maximum 
likelihood, also for stepping  stone like models, based 
on the result of "A (1972) who found  that  the 
distribution of gene  frequencies in finite stepping  stone 
models closely resembles the beta. However, this result 
refers to the marginal distribution in single subpopula- 
tions. Most  of the  information in the  data,  except under 
the island model, lies in the  dependencies between the 
gene  frequencies in each subpopulation, and to do any 
likelihood based inference  the full multivariate distribu- 
tion is therefore  needed. 

New maximum likelihood methods based on Monte- 
Carlo Markov-Chain methods and coalescent theory 
( KUHNER et al. 1995)  for making inferences from se- 
quence  data  are  perhaps  more promising in that they 
can be extended  to  incorporate  more complex patterns 
of migration. 
Future directions: The motivation behind this work 

has been to develop a model that makes it possible to 
calculate the  approximate likelihood of more general 
ecological models of the migration pattern,  including 
effects  of e.g., differences in population size, geographic 
distance, and  other factors that possibly influence rates 
of migration, and that  therefore potentially are re- 
flected in the genetic structure  generated by the drift 
process. We are currently working  with such models. 
One could alternatively use  all the n2 elements of the 
migration matrix as unknown parameters in the model. 
However, apart from the  computational difficulties  with 
so many parameters, we believe that simpler models 
based on the biology  of the species in question are likely 
to  produce  more insights. 

This work puts estimation of migration patterns and 
evolutionary trees into a common framework, making 
more formal likelihood ratio simulation tests  between 
alternative geographical and historical hypothesis possi- 
ble, a  problem discussed in FELSENSTEIN (1982). 
Whether such tests are computationally feasible and 
whether they will have the necessary  statistical  power 
remains to  be  seen. 

It must be stressed that  there  are several other ways 

to approximate  the distribution generated by the drift 
process, that  need to be  explored.  Here  an  attempt was 
made to incorporate  the fact that  the variances of the 
stochastic changes in the process depend  on  the  gene 
frequencies, also when approximating  the conditional 
distribution. Alternative solutions, perhaps based on 
transformations of the  data, may produce  better results 
in a larger part of the  parameter space. 

We thank PETER BEERLI and BERNT-ERIK SRTHER for valuable com- 
ments  on  the manuscript. The Norwegian Research Council and  the 
Norwegian Institute for Nature Research provided financial support 
for  the study. 
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APPENDIX A 

Comments on the numerical solution of ( 7 )  and 
(18): COURGEAU (1974) showed how ( 7 )  can be re- 
written into  a system  of n2 linear  equation. However, 
for computations, it is important  to take advantage of 
the fact that cil = c j i .  It is then only  necessary to work 
with m = n ( n + 1 ) / 2 equations and unknown covari- 
ances. First, define 

0 for i + j  

1 for i = j .  
(A.1) 

For each element of C, there is a  corresponding  linear 
equation  that now can be written 

n n  

cij = mtkmjlckl + 6, - " . (A.2) 
k = l  1=1 2N. 

If the first double sum is split in two in addition to the 
terms along  the diagonal, then  the covariance terms 
above the diagonal can be combined with those below, 
and so 

n k - 1  n 

C ( mlkmjl + mamjk) ck1 + m2mjkCa 
k = l  1=1 k= 1 

This system  of equation can be  reindexed to the system 

Ac = b, (A.4) 

where A is a m X m matrix, and c and b are  mdimen- 
sional column vectors, indexed by the new indexes r 
and s that  are uniquely determined by ij and kl, respec- 
tively. From (A.3 ) we see that  element TS of A now is 

% = { mZkmjl + m,lm,k - 1 - 6, - for r = s A k f 1 (A.5) 1 
2N 

1 -  
1 

6, - 
2N 

The  elements of b in (A.4) is 

f o r r = s A  k =  1. 

and the vector c has elements 

c = C" r IJ' (A.7) 

Equation A.4 can then be solved using some numeri- 
cal algorithm, e.g., LU decomposition (PRESS et al. 
1986, p. 3 9 ) .  

The rewriting of ( 18) is similar. First, calculate the 
n X n matrix U = DM. The equation  corresponding to 
element ij of C is then 

n n  n 

cij = Uikullckl + d z k d j k  - 1 - Ckk 

2Nk ' (A.8 1 
1=1 k = l  k= 1 

which can be rearranged to 
n k - 1  

n 

and reindexed  into  a system  similar to (A.4) .  
Note that since the  computer time needed to solve 

a system  of m equations is of order m', the time needed 
to solve ( 18) with n subpopulations, is of order n6. The 
computer memory requirements  (storage of matrices) 
are of order n4. If there  are many subpopulations, it 
may therefore be better to solve ( 7 )  and (18)  itera- 
tively, initializing all the elements of Co to e.g., zero or to 
some previous solution, and  then  compute  subsequent 
matrices Cl,  CB, - - - until C converges. However, for 
small  values  of long-range migration rate, we found  the 
convergence of C to  be very  slow. 

APPENDIX B 

Choosing the weights of 3: Given the covariance ma- 
trix C of the  gene frequencies the weights should be 
chosen to minimize the variance of pgiven by 

f( w l ,  . . . , wn) = Var = Var wip, 
C I  1 

n n i - 1  

= x w3ci, + 2 w,wjcij, ( B . l )  
i= 1 i= l  j = l  

subject to  the constraint 
n 

g ( W 1 ,  . . . , w,) = x W ,  - 1 = 0. (B.2) 
i= 1 

Using the  method of Lagrange multipliers, the optimal 
weights must satisfy a set of n equations,  the kth equa- 
tion being 
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Substituting the partial derivatives  of (B. l )  and (B.2) 
into (B.3), we get 

?I 

CkjWj = X, (B.4) 
i= 1 

which is equivalent to Cw = A ,  implying w = C "A. 
Choosing X to satisfy (B.2)  it follows that 

These weights happen  to  be  independent of the un- 
known q, since C is proportional  to  a standardized co- 
variance matrix co rescaled by the  factor q(  1 - q )  . 
Note that  the til's in (B.5) are elements of the inverse 
matrix C" . 

APPENDIX C 

Independence between  y and $: Let t be  a column 
vector with  all elements equal  to  the weighted mean 
gene frequency, p = t (  p )  = X;==, wip i .  We want to 
establish that  the distribution of the vector y = p - t ,  
in the multinormal case, is independent of the statistic 
t itself, when conditioned on t. 

The problem can be simplified if  we first transform 
p to p* using the  linear transformation 

P* = A p ,  (C.1) 

where the matrix A has the  property  that  the elements 
of p * become independent  and with expectations equal 
to q,  that is, we require  that 

E(P*) = q,  ((2.2) 
where all elements of the  column vector q are  equal to 
q. Since we also  have E(Ap) = AE(p) = Aq, it follows 
that 

implying that  the rows  of A and A" sum to  one. 
By the same argument as in APPENDIX B , the sufficient 

statistic t for  the unknown q as a  function of p* in  this 
new model is 

n 

t(p*) = c w?p? ,  (C.4) 
i= 1 

where 

and a: = Var ( f i r ) .  Defining the vector 

y* = p* - t ,  ( C.6) 

it follows from the  properties  of A that 

C O V ( ~ ? ,  t )  = Cov(p? - t ,   t) = Cov(pT, 0 - Var(t) 

= wTVar(pT) - (w,*)2Var(p,")= 1/0; 
n 

1 / 0 k  2 j =  1 

implying that  the vector y* is independent of t. 
We  now  know that 

y = p - t = A "  p * -  t=  A"(y* + t )  - t 

= A"y* + (A-I - I )  t .  (C.8) 

Because each row  of A" sums to one, it follows that 
(A-I - I )  t = 0 and  hence 

y = A"y*. ( c.9 ) 

Since the distribution of y* conditional on  tis  indepen- 
dent of t ,  so  is the distribution of y. 


