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ABSTRACT 
A local barrier to gene flow  will delay the spread of an advantageous allele. Exact calculations for the 

deterministic case  show that an allele that is favorable  when rare is delayed very little even by a  strong 
barrier: its spread is  slowed  by a time proportional to log( (B/o)&S)/S, where B is the barrier strength, 
o the dispersal range, and fitnesses are  1:l + X1 + 2s. However,  when there is selection against 
heterozygotes, such that the allele cannot increase from low frequency, a  barrier can cause a much 
greater delay. If gene flow  is reduced below a critical  value, spread is entirely prevented. Stochastic 
simulations show that with  additive selection, random drift slows  down the spread of the allele, below 
the deterministic speed of 06s. The delay to the advance of an advantageous allele caused by a  strong 
barrier can be substantially increased by random drift and increases with B/ (2Spa2) in a  onedimensional 
habitat of density p. However, with selection against heterozygotes, drift can facilitate the spread and 
can free an allele that would otherwise be trapped indefinitely by a  strong barrier. We discuss the 
implications of these results for the evolution of chromosome rearrangements. 

I N a spatially structured  population,  adaptation de- 
pends on  the  spread of genes throughout  the region 

in  which they are favored. If the species is sufficiently 
abundant that any particular mutation occurs fre- 
quently, or if selection acts on  abundant polygenic  vari- 
ation,  then  adaptation will not  be  much slowed by spa- 
tial  subdivision.  However, in less numerous species, or 
where alleles are favored only in scattered habitats, lack 
of gene flow  may limit the availability  of the necessary 
variants. Even  if the  population does adapt rapidly, this 
adaptation may be based on different genes in different 
places, which may lead to reproductive isolation if these 
genes turn  out  to  be incompatible with each other. 
There is a particular difficulty if adaptation  depends 
on gene combinations that  cannot increase from low 
frequency and that  therefore  tend  to be contained be- 
hind narrow “tension zones” (KEY 1968). The spread of 
such gene combinations requires a “shifting balance” 
between different evolutionary forces (WRIGHT 1932). 

Here we consider  the effect of a local barrier to gene 
flow on the  spread of a favorable allele through  a con- 
tinuous habitat. We consider  the two qualitatively  differ- 
ent cases, first, where the favorable allele can increase 
from low frequency, and second, where it must increase 
above some threshold before it can  be established by 
selection. We begin by setting out exact calculations for 
infinite populations, and  then use simulations to show 
how random genetic drift can increase the delay caused 
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by a  barrier. These results are relevant to the key ques- 
tion of  how far adaptation and divergence are affected 
by population subdivision. 

Gene flow  may be impeded by a physical barrier, 
caused by a  reduction in density or dispersal, or by a 
genetic barrier, caused by incompatibilities at  other loci 
that cause a reduction in the fitness  of  hybrid popula- 
tions. Provided that selection on the locus in question 
is  weak, both physical and genetic barriers can be seen 
as causing a  sharp change in gene frequency, Ap, whose 
size  is proportional  to  the  gradient in frequency on 
either side, +/ax; the  strength of the  barrier is given 
by a single quantity with the dimensions of a distance: 
B = Ap/(ap/ax) (NAGYWU 1976; BARTON 1979a 
1986). We use this approximation throughout, and thus 
do not consider the detailed effects of barriers that  are 
not localized, and that may be due to selection on many 
loci. We only consider short-range dispersal; our simula- 
tions involve exchange between nearest neighbours, 
and  our analytic results approximate gene flow  by diffu- 
sion. Thus, we avoid the complexities of long-range dis- 
persal (see MOLLISON 1977; SHAW 1995).  The final re- 
striction is that we deal with the  spread of an allele at 
a single locus; this choice is made partly for simplicity, 
but also because our study is motivated by observations 
on the distribution of underdominant chromosomal 
rearrangements. 

In the  next section, we review  analytic  results  based 
on the diffusion approximation, and use deterministic 
calculations for a  onedimensional habitat to test their 
accuracy.  Since the effects of spatial subdivision are 
likely to be most important in sparse populations, we 



494 J. Piaek and N. H. Barton 

then use stochastic simulations in one  and two dimen- 
sions to find how random  drift affects the spread of 
favorable alleles. In  the DISCUSSION, we consider  the 
implications of our results for  the movement of tension 
zones, and in particular, for  the  spread of chromosome 
rearrangements. 

THE DETERMINISTIC CASE 

Diffusion through a continuous habitat: Provided 
that allele frequencies  change slowly in space and time, 
and provided that long-range dispersal is sufficiently 
rare,  the effects of gene flow can be approximated as 
a diffusion through  a  continuous  habitat (NAG- 
1975). With discrete generations,  the  rate of diffusion 
is given by a', the variance of the distance moved by an 
individual from its birthplace to a new place of breeding 
along  a  particular axis. (With overlapping generations, 
a' is the variance of distance moved per  unit  time). In 
one-dimensional stepping  stone models, we define  the 
migration rate m as the probability that an individual 
will move to either of the two adjacent demes. In two 
dimensions, we define m as the  chance  that an individ- 
ual  moves to any of  the  four adjacent demes. [This 
definition was used by SLATKIN and BARTON (1989) ; in 
two dimensions, it differs by a factor of two from that 
used in BARTON and  ROUHANI (1991) and  other pa- 
pers]. If the  deme spacing is E ,  then  the  relationship 
between the two parameters is 0' = m' in one dimen- 
sion, and a' = m2/2 in two dimensions. 

Under  the diffusion approximation,  a  barrier  that is 
restricted to a narrow region causes a  sharp  step  in 
gene frequency A$. The gradients  in  gene frequency 
on either side ((@/ax) ~, (ap/ax)+) are  proportional 
to the flux of genes flowing in either  direction (J+ = 
(02/2)(8p/8x)+; NAGW 1976; BARTON 1986) and 
are also proportional  to  the size  of the step. The ratio 
between step size and  the gradient in allele frequency 
(B+ = Ap/ (@/ax) + ) gives a measure of the  barrier to 
gene flow in either  direction. This has the dimensions 
of a distance. If the  barrier is asymmetrical ( B ,  f B - ) ,  
then  the  gradients of allele frequency will differ on  the 
two sides. In a  stepping  stone  model,  a local barrier 
corresponds to a  reduction  in  the migration rate be- 
tween adjacent  demes by a factor k [ie., from m/2 to 
m/(2k) in one dimension, or from m/4 to m/(412) in 
two]. This causes an increase in the  gradient of allele 
frequency by a  factor k, and  hence produces an extra 
step in allele frequency ofA$ = ( k  - l )~(ap/dx) ,  where 
t is the  deme spacing. Hence,  the  barrier  strength is B 
= ( k  - 1)E. 

Spread of a  neutral  allele: If  two populations  that 
are fixed for  different alleles meet in a  sharp  step,  the 
discontinuity between them will be  smoothed out by 
gene flow. The decay of this initial step with time can 
be approximated by a diffusion equation: 

ap - a2 a'p - " - at 2 82) (1) 

where x is distance, and covers an infinite range (FISHER 
1937; HAL.DANE 1948). This equation has a solution 
given by the  integral of the  normal  distribution, with 
variance a". The collapse of the  gradient can be  mea- 
sured by the cline width w, which is defined as the 
inverse of the maximum slope of the  gene  frequency 
cline p(x) (MAY et al. 1975). In this case, w = M. 
Equation  1 can also be solved  explicitly  if the mixing 
of populations is impeded by a  barrier. The solution is 
a sum of  Gaussian integrals; it shows that the delay 
caused by the  barrier is proportional to (BAR- 

Spread of an  advantageous  allele: Suppose now that 
one allele has an advantage S over the  other  and  there 
is no  dominance;  the diffusion approximation requires 
that S be small. Equation 1 now includes an extra term 
representing selection: 

TON 1979a). 

dp=" a2 a'p 
at 2 a2 + SPq. ( 2 )  

FISHER (1937) showed that Equation 2 has a family of 
solutions, each consisting of a wave  with constant  shape, 
which advances at a characteristic speed. He argued 
that  the relevant solution was that with the minimum 
speed, c = a&S. Subsequent numerical and analytic 
work has confirmed  that  though solutions exist in which 
a  broad wave advances rapidly, random fluctuations at 
the  leading  edge, or boundary effects, tend to slow this 
down to Fisher's solution. (This kind of  wave  is referred 
to as a "pulled" wave, since its speed is determined by 
the  leading  edge; STOKES 1976).  The diffusion approxi- 
mation (Equation 2) is only  valid if long-distance dis- 
persal is sufficiently rare:  the dispersal distribution must 
fall away at least exponentially (MOLLISON 1977). Oth- 
erwise, long-range migrants can establish new centres 
of increase, so that advance is  by sporadic outbreak 
rather  than by a  smooth wave (MOLLISON 1977; SHAW 
1995). 

Since Fisher's solution to Equation 2 has not  been 
derived analytically, it is unlikely that  the effect of a 
barrier can be found explicitly. On dimensional 
grounds,  the delay T should depend  on  the dimen- 
sionless parameter = (B/a)&, having the form ST 
= f(B). BARTON (1979a) gave the  approximation ST = 

log (&8/2)  for  a very strong  barrier. This is the time 
taken to increase to p = 0.5 from a  threshold frequency 
N.  This threshold is chosen to be the time at which 
the allele begins to increase faster by selection than by 
the flux across the  barrier. The  argument ignores the 
effect of diffusion. A slightly more  accurate  argument, 
which  takes into account diffusion and avoids using an 
arbitrav threshold frequency, is given in APPENDIX A. 
This also  scales  with log(B)/S:  the crucial point is that 
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FIGURE 1.-{A) The delay to the  advance of an advanta- 
geous  allele, T, plotted as a function of barrier  strength. Re- 
sults are scaled so that if the  diffusion  approximation  of  Equa- 
tion 2 is valid,  the  same  relation  should  be  obtained  fo? all 
0, 3 thus, ST is plotted  against log(@, where B = 
(B/(T)&. The heavy  line  gives the  approximation  derived 
from  Equation 4, and  the  light  line the approximation ST = 
log(&B/2)  of BARTON (1979a). Circles  give  results from a 
one-dimensional  stepping-stone  model  with m = 0.5 and S = 
0.1;  squares give results  for S = 0.025. One  hundred forty 
demes  were  used,  with a barrier to the  right of deme 40; 
initially,  the 10 leftmost demes  were  fixed.  The  delay was 
calculated  from the difference  in total number of  alleles  be- 
tween the solutions  with  and  without a barrier, after the wave 
had passed the  barrier. (B) The difference in position  be- 
tween  the  waves  with and  without  the  barrier. Note that  the 
delay  decreases from a maximum after  the wave passes the 
barrier. This is because the wave is broadened by the  barrier 
and  hence  moves  faster. 

the delay only increases logarithmically with barrier 
strength, and  hence is  small even for  a very strong bar- 
rier. 

Figure 1A compares  these  approximations with deter- 

ministic calculations for S = 0.025 and S = 0.1.  Results 
for these two selection pressures fall on the same line 
(compare circles and  squares), showing that  the diffu- 
sion scaling is accurate. The delay does indeed increase 
logarithmically with barrier  strength,  but is much less 
than  predicted by either  approximation:  the best fit for 
S = 0.1 is ST = 0.53 log (0.53(B/a)J(2S)),  and 0.52 
log(0.71 (B/a)&) for S = 0.025. The delay is  less than 
expected because when the barrier is strong,  the allele 
has time to spread over a large distance before it in- 
creases to appreciable frequency. Hence,  the initial 
wave  of advance is broad,  and so advances more quickly, 
reducing the delay; it settles to a solution to Equation 
2, but  one with higher  speed  than  the  minimum. Over 
time, it converges on  the solution to Equation 2 that 
has minimum  speed, a 6 S  (STOKES 1976). This can be 
seen in Figure lB, which  shows the difference in total 
allele frequency between a freely advancing wave, and 
a wave that is impeded by a  barrier of strength B = 1000. 
The difference in positions increases to a maximum as 
the wave meets the barrier,  but  then decreases, because 
the wave moves faster for some time after it escapes 
from the  barrier. Because the  rate  at which  this 
“pulled” wave  slows down depends  on random fluctua- 
tions at  the  leading  edge,  the delay may be sensitive to 
details of the  model such as deme spacing and dispersal 
distribution. 

Selection  against  heterozygotes: If heterozygotes are 
less  fit than  the average of the two homozygotes (ie., 
if there is “underdominance,” with fitnesses 1:l + S - 
s:l + 2 9 ,  then  the allele will spread  more slowly than 
the rate a&S predicted by Equation 2. There  are two 
alternative predictions  for  the wave speed. First, when 
the allele can increase from low frequency (S > s) , 
consideration of the  leading  edge ( p  4 1) shows that 
there is a family of solutions, with minimum speed c = 
ad=; these are  pulled waves (HADELER 1976). 
Second,  there is  always a solution that follows a logistic 
(or  tanh) curve, with p = 1/(1 + exp(-4(x - c t ) / w ) ) ,  

and width w = G s ;  this has speed c = &/a; a 
perturbation analysis  shows that this is the solution for 
S e s (BARTON 1979b). This solution is referred to as 
a “pushed” wave, since its speed  depends  on  the way 
selection acts  over the whole cline. Numerical results 
from stepping  stone models show that  the wave speed 
is  given by Sa/& for S < 2s, and by when 
S > 2s (Figure 2). These results also  show that  the 
diffusion approximation is accurate for fairly strong se- 
lection ( S  = 0.1). 

If heterozygotes are fitter than  the original homozy- 
gote ( S  > s) , then  the invading allele  can increase expe  
nentially from an indefinitely low frequency. The delay 
therefore increases logarithmically  with barrier strength, 
as in  the case  of  additive selection (Figure 1A). The 
effect of a  barrier is qualitatively different if the allele 
cannot increase from low frequency (ie., if S < s). In 
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FIGURE 2.-The speed of a wave  of advance, as a function 
of the degree of underdominance (S/s). The upper straight 
line shows the speed of the tanh solution, c = Sa/&, while 
the lower  curve  shows 
dicted by considering 
speed c is scaled  relative  to 
and squares are for s = 0.005. These results are from a step 
ping-stone  model with m = 0.5, starting with the  leftmost 10 
demes fixed, as for Figure 1. The speed was estimated by 
regressing  total  allele  frequency Z p  against  time. 

this  case, a sufficiently strong barrier can prevent spread 
altogether: an equilibrium will be reached in  which the 
flux across the barrier is balanced by selection  against 
the invading  alleles. We first find this equilibrium, and 
hence the critical barrier strength needed to prevent 
invasion, and  then gwe numerical results for the delay 
caused  when the barrier is  below the critical  value. 

Including selection against heterozygotes in  Equa- 
tion 2 gives 

where = (s - S)/2s is the threshold frequency below 
which the allele is selected against; as before, the  range 
of x is from --OO to CQ. At equilibrium, Equation 3 can 
be integrated 

- = -4. JC + p2(6p0 - 4p( l  + p,,) + 3p2). (4) 
a x  u 

ap 1 2s 

Applying the  boundary  conditions  that p tends  to 1 on 
the  left, and 0 on  the  right,  determines  the  constant of 
integration, C, on  either side of the  barrier. At the 
barrier  (taken  to  be  at x = 0),  the  gradient is equal 
to the ratio between the  step  in allele frequency and 
the  barrier  strength.  This gives  two simultaneous 
equations  for  the allele frequencies on  either side of 
the  barrier, p - ,  p + ,  
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FIGURE 3,"These graphs show the critical  combinations of 
barrier strengths that prevent an allele  from  invading; barrier 
strengths are scaled  relative  to the distance o/&. From  left 
to right, the curves are for S/s = 0.2,  0.5, 0.8. The allele is 
spreading from right to left; the horizontal axis  shows the 
critical B,, while the vertical  axis  shows the critical B-.  The 
allele will be trapped if the barrier to  flow to the right is too 
strong (B ,  right of the curve) or if the barrier to flow to the 
left is too weak (B- below the curve). If the barrier to flow 
to the right is too strong, the allele cannot advance, even  if 
there is free flow in the opposite direction (B- = 0; threshold 
B+ is 2.92,  7.69,  35.69 for S/s = 0.2, 0.5, 0.8, respectively). 

(2)+ = - 
(P- - P + )  

B+ 

These equations can be solved numerically for given 
barrier strengths ( B - ,  B+) and threshold frequency 
(Po) .  To find the critical barrier strengths which prevent 
invasion, rewrite Equation 5a as an expression for B - ,  
as a function of q-.  This has a minimum, which gives 
the critical B- for given p,. Equation 5b then gives the 
value  of B, as a  function of p+ at  the critical point. 

Figure 3 shows the critical combinations of barrier 
strengths; the  three curves correspond to S/s = 0.2,0.5, 
0.8. If B+ is sufficiently strong  (right of Figure 3), or if 
B- is sufficiently weak (below  curves on Figure 3), then 
the allele cannot invade. Figure 4 shows the delay  as a 
function of barrier  strength, calculated from a stepping- 
stone model. This increases to infinity at  the critical 
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FIGURE 4.-The  delay  to  the  spread  of  an  allele  as a func- 

tion of barrier  strength, for a onedimensional  stepping  stone 
model  with m = 0.5. Squares  show  results  for S = 0.025, s = 
0.05 giving  fitnesses 1:0.975:1.05; circles  show  results  for S = 
0.1, s = 0.2 giving  fitnesses 1:0.9:1.2. Results are scaled  relative 
to  the  time l / s  and  distance o/& the  graph should thus  be 
independent of 
strength is at B, 

barrier  strength and can be large below  this  value. 
(Note  that  the delay is plotted as ST, on a log scale). 
The effect of a  barrier is much  greater  than  for  an allele 
that is favored in the heterozygote, because the allele 
must build up above a  threshold frequency before its 
spread is assisted by selection. 

THE  EFFECTS  OF RANDOM DRIFT 

We  now consider  the effects  of random drift on  the 
spread of an advantageous allele, treating  the models in 
the same order as  in the previous section. The stochastic 
problem is harder to treat, because simulations are 
slower and must be replicated. Moreover, the effects of 
random drift are qualitatively different in one  and two 
dimensions ( ~ E C O T  1948), and so both cases must 
be  treated. 

The  stochastic  simulation: The effect of barriers, 
deme size and selection on the time needed  for fixation 
of a favored allele was studied using a stepping-stone 
model.  Throughout, we use the convention that  the 
deme spacing is E = 1,  so that  the  deme size  is N = p. 
Initially, different alleles  were  fixed on  either side of a 
barrier at x = 0,  representing secondary contact be- 
tween diverged populations. There was no migration 
beyond the  bounds of the array. The time delay, T, due 
to a  barrier was estimated by subtracting  the mean time 
to fixation without a  barrier from that with a  barrier. 

In one dimension, simulations were run using Mathe- 
matica (WOLFRAM 1991). Selection acted on a large 
number of diploid juveniles; the recursion for  change 
in allele frequency is p' = p (  1 + 2S - q s ) ) /  (1 + 2pS - 
2pqs). A fraction m of these then migrated, half to  the 
left and half to the right. N diploid parents were then 
sampled; the  next  generation was formed by random 
union of a large number of gametes. The  number of 

demes and position of the  barrier were chosen to avoid 
edge effects; most runs used 41 demes, with a  barrier 
between demes 6 and 7. 

To increase speed, simulations in two dimensions 
were run using a program written in Pascal; 20 X 10 
demes were simulated, with the allele advancing along 
the axis of length 20 demes. Runs were terminated  at 
10,000 generations, or when the advantageous allele 
was completely fixed; the time at which the  latter oc- 
curred was taken to be  the time to fixation. The two- 
dimensional simulation differed slightly, in that migra- 
tion is  by a small number of adults, rather  than by a 
large number of juveniles. Random fluctuations there- 
fore occur both  through  the  random sampling of  mi- 
grants between demes and  through  random variation 
in reproductive success  within demes. Such stochastic 
migration can alter spatial correlations, and increases 
the variance of gene frequency above that  expected 
due to sampling drift alone (see EPPERSON 1994). For 
example, in systems where the stochastic variance oc- 
curs from random sampling of a migrant group of  size 
2Nm, the variance of gene frequencies can be increased 
up to double  that for the  corresponding case of deter- 
ministic migration; this is because there  are two rounds 
of sampling rather  than  one (EPPERSON 1994). 

In each generation, the number of migrants from a 
deme was taken from the binomial distribution with  pa- 
rameters m, N, where m is migration rate and N is the 
number of adult individuals  in the  deme before migra- 
tion. Genotypes of migrants were  assigned  randomly 
from the genotypes  within the  deme of origin after ran- 
dom drift. Sampling was without replacement. Parents 
were expected to produce an infinite number of  gametes 
and therefore selection on gametes was a deterministic 
process, as in the  onedimensional simulations. 

All procedures used to simulate migration, random 
drift and selection were checked against theoretical ex- 
pectations. The probability and rate of fixation of a 
neutral allele without migration agreed with a Marko- 
vian transition probability matrix for a single deme;  the 
fixation probability of an advantageous allele (with and 
without migration) was 2Sfor small S. Stochastic migra- 
tion was checked against the decay  of cline width  of a 
neutral allele (from Equation 1) and also agreed closely 
with theory. 

Spread of an  advantageous  allele: Mathematical 
analysis  of the  interaction between selection, gene flow 
and drift is in general intractable. However, we can use 
some heuristic arguments to illuminate the simulation 
results.  First, consider the  spread of an advantageous 
allele in the absence of a  barrier. Taking expectations 
of Equation 2,  

-2 a2r U 
- - " u y + m ( l - F ) .  (6) 

2 a2 
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Since the variance in allele frequency  produced by ran- 
dom drift reduces the  proportion of heterozygotes by 
a fraction F, i t  will reduce  the response to selection and 
slow the advance of the wave; the effective selection 
coefficient is reduced to S( 1 - F ) .  In a spatially uniform 
polymorphism with  stability S and population density p 
= N/E', the standardized variance F =  var(p)/&would 
be constant, and equal to 1/( 1 + 4paJ2S) in one di- 
mension, and I / (  1 + 4npa2/ln (1/&)) in two dimen- 
sions (WECOT 1948). NAGYLAKI (1978) showed that 
in a one-dimensional cline, Fdepends on the  dimen- 
sionless quantity pad%, being inversely proportional to 
it for large values, and  tending  to 1 for small values. If 
we assume F has the same form for  a wave of advance, 
then we expect a speed 

c=J"3&s 

c=)% (4npu') 

(one  dimension),  (7a) 

(two dimensions),  (7b) 

where ~0 = a&% is the deterministic speed  corrected 
for high value of selective advantage used in simulations 
(S = 0.1). Figure 5 compares simulated values of the 
wave speed with these predictions; A is calculated by 
least-squares regression of l/z on l / p .  There is a good 
fit, with A estimated as  3.87 in one dimension, and 
12.96 in two. This is much  greater  than  the value A = 

describing the effect of drift on a uniform polymor- 
phism in one dimension, or A = In (1/&') = 0.80 in 
two. It seems that  random  drift  reduces heterozygosity 
in  the advancing wave, and hence its rate of advance, 
much  more than would be  expected from its effect on 
neutral polymorphisms. 

In the alternative limit of  very  low density, most 
demes  are likely  to  be fixed for  one  or  other allele. The 
probability of fixation of a favorable allele that  enters 
a  deme fixed for its homologue is  2S/ (1 - exp (-4") ) ; 
the converse probability is  2S/ (exp(4NS) - 1). There 
are,  on average, Nm such migrants in each direction, 
and so the  expected  rate of advance of the  boundary 
between demes fixed for  the  different alleles is 
(Nm)(2S/(1 - exp(-4NS)) - 2S/(exp(4NS) - I ) )  = 
2NmS (see SLATKIN and CHARLESWORTH 1978). This ap- 
proximation is  shown by the  steep  line on the left of 
Figure 5A. 

As well  as  slowing the advance of the favored allele, 
drift  introduces  random variation in its position. Al- 
though  the  mean location of a set of clines will increase 
linearly with time, at  the  rate shown in Figure 5, the 
position of any one cline will  vary around this expected 
position. In each generation,  drift  introduces a random 
perturbation  that advances or retards  the cline by some 
amount. Since successive perturbations  are  indepen- 
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FIGURE 5.-(A) The  speed of a wave of  advance in one 
dimension,  plotted  against  deme size. 0 show mean speeds 
from 10 replicates of the stochastic  simulation, with 95% con- 
fidence limits. ( S  = 0.1, m = 0.5; 60 demes,  starting with the 
leftmost six fixed). The curve shows the  predicted  relation- 
ship from Equation 9, with A = 3.87 calculated by least-squares 
regression of l /c '  against l /p .  The horizontal  line shows the 
deterministic  speed, 06, while the  steep line to the left 
shows the approximation for small p,  c = 2pa'S. (B) The 
corresponding  graph, for two dimensions. (S = 0.1, m = 0.2; 
60 X 10 demes, starting with the leftmost 6 X 10 fixed; A 
12.96). 

P 

dent,  the variance in position around  the expected loca- 
tion increases linearly with time (Figure 6) .  The vari- 
ance in position increases at  a  rate  1.19a/p& 
(APPENDIX B). This prediction agrees with one-dimen- 
sional simulations for high densities ( p  > lo),  but over- 
estimates the increase in variance for low density (Fig- 
ure 7). This may be because at low density, drift 
substantially reduces heterozygosity, and  hence wave 
speed (Figure 5a). In two dimensions, fluctuations at 
different positions along  the wave tend to cancel, so 
that  the variance in overall position should increase 
with A, rather  than linearly with time (BARTON 1979b). 
However, we were unable to simulate large enough 
areas to confirm this argument. 

Spread of an advantageous allele past a barrier: In 
the deterministic case, we showed that even a  strong 
barrier has little effect on  an advantageous allele: be- 
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FIGURE 6.-The variance around  the  expected position, 
plotted a  ainst time. The expectation from Equation B1, 
l . l9/po ?- 2s is shown by the straight  line. Based on 10 repli- 
cates of the stochastic simulation  in one dimension. (p = 40; 
S = 0.1, m = 0.5; 60 demes, starting with the leftmost six 
fixed). 

cause such an allele can increase exponentially from 
low frequency, the delay  only increases logarithmically 
with barrier  strength. SLATKIN (1976) considered the 
stochastic case and demonstrated  a relation between 
the delay  in time to fixation with decreasing migration 
rate and the  number of individuals within a  population. 
His argument was based on the  approximate time to 
fixation of an advantageous allele within a single popu- 
lation, ( l / S )  In [2Np(O)] ,  where p ( 0 )  is the initial allele 
frequency. However, SLATKIN'S formula applies to flow 
into  a single deme,  rather  than  the  rate of spread across 
an array of demes. Here, we combine  a heuristic argu- 
ment with simulation results to show that  random drift 
can substantially enhance  the effect of a  strong  barrier, 
above that  expected in a  dense  population. 

When the barrier is  very strong, migrants cross it only 
rarely. The flux across is J = ( a 2 / 2 ) / B ,  the density of 
genes is 2p, and so the expected number of genes cross- 
ing per  generation is (pa ' /B) .  Each of these genes has 
probability 2S of  fixing, and so the expected time before 
an allele begins to  fix  is B/ (2Spa'); we assume B S 
2Spa2, so that only one allele fixes. [Note that the proba- 
bility of fixation is 2S, regardless of the presence of the 
barrier (assumed impermeable) on  one side (MA- 
RUYAMA 1972) ] .  There is then  a  further delay before the 
allele  rises to high frequency and begins to spread as a 
steady wave. This second delay can readily be calculated. 
When the allele is rare, its expected frequency (includ- 
ing cases  of  loss and fixation) is given by Equation 2, 
and  depends on the initial total allele frequency, 1/2p.  
After a time long  enough for the fate of the allele to  be 
decided,  but  short  enough  that it is still rare, its expected 
frequency giuen that it will bejixed is equal to the overall 
expectation, divided by the probability of fixation, 2s. 
Hence,  the eventual expected frequency, conditional on 
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FIGURE 7.-The rate of increase in variance around  the 
expected position in a one-dimensional habitat,  plotted 
against density, p. The curve shows the expectation from 
Equation 10,  1.19/po&. Circles show mean speeds from 10 
replicates of the stochastic simulation, with 95% confidence 
limits. Parameters are as in Figure 6. 
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fixation, is given by following Equation 2, with initial 
inoculum 1/4pS; this  converges to a wave  of advance, 
with some delay.  Scaling arguments show that this  delay 
is, on average, a functionflpafi/S, where the dimen- 
sionless quantity is a measure of the relative 
strengths of drift and selection (see NAGVWU 1978). 
Deterministic simulations for S = 0.1, m = 0.5 show that 
flx] 3.50 + 0.55 In(%) + 0.01461n(x)' (estimated by 
least squares fit of the delay to ln(p)). Overall, therefore, 
the expected delay is B/(2Spa2) + f l p a f i / S .  This 
increases linearly  with barrier strength,  rather  than loga- 
rithmically,  showing that drift can substantially  amplify 
the effect of a barrier. 

This prediction is compared with simulation results 
in Figure 8. The lower  curve  in Figure 8A shows the 
delay in an infinite population (from Figure 1). This 
only increases logarithmically with barrier  strength, and 
so is much less than in finite populations. The simula- 
tions show that  the delay increases linearly with barrier 
strength,  and is greater when density is  low (circles: p 
= 20, squares: p = 10). There is reasonable agreement 
with the prediction described above, which is shown by 
the straight lines for each of the two densities. However, 
the delay is somewhat lower than predicted for one 
dimension. The two-dimensional simulations were nec- 
essarily run with a  short  barrier, and so the above argu- 
ment  should apply,  with p replaced by pL, where L is 
the  length of the barrier. If the  barrier were  very long, 
alleles  would  cross and begin to fix at many  places  simul- 
taneously. One should  then take into  account  the time 
taken for alleles advancing from different points to 
spread  along  the  barrier from their separate origins; 
this might increase the delay  above the one-dimen- 
sional prediction, as is seen in Figure 8B. The relation- 
ship between the time  delay and the  length of the bar- 
rier, L, is given in Figure 8C. The  graph shows a 
situation with a  strong  barrier ( B  = 500). Here,  the 
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FICLJRE 8.- (A) The  average  delay, T, caused by a barrier 
in one  dimension,  plotted  against  barrier  strength.  Results 
are  scaled  to  the  dimensionless  quantities ST and B = 
B&%/o. Simulations  were run for S = 0.1, at a density p = 
20 (0 )  and p = 10 (W) .  Confidence  intervals (95%) are 
shown,  derived  from 20 replicates.  The straight lines  show 
the  theoretical  predictions  for a strong  barrier, B/(2Spu2) + 
f [po&/S ,  for p = 10 and 20.  The  deterministic results ( p  
= m) are shown  by the  lower  heavy  curve,  which is interpo- 
lated  from the results in Figure 1 for S = 0.025. (B) The 
corresponding  graph  for two dimensions.  Density  here was p 

delay is primarily a  function of probability that  a mi- 
grant will cross the  barrier. It can be seen the delay 
decreases inversely  with pL, as argued above. 

Escape of a tension  zone from a  barrier: Suppose 
now that selection acts against heterozygotes, such that 
the invading allele cannot increase from low frequency. 
In the deterministic case, a sufficiently strong  barrier 
will prevent  the invasion altogether;  instead,  the incom- 
ing allele will reach  an equilibrium between migration 
across the  barrier and selection against it, given by Eq. 
5. With finite population size, there is some chance  that 
the allele will drift to high enough frequency to escape 
the  barrier. While it would be  hard to calculate the rate 
of escape, we expect it to decrease exponentially with 
deme size (see BARTON and ROUHANI 1987, 1991). 

Figure 9 shows the average delay  as a  function of 
barrier  strength. For (S/s) = 0.5, the critical barrier 
strength is ( B / o ) &  = 6.82, above which the delay be- 
comes infinite in an infinite population (heavy  curve 
in Figure 9). All the simulations were for barriers 
stronger  than this critical value. Random drift can free 
the favorable allele and so in (almost) all  cases the 
delay decreases as deme size becomes smaller. A similar 
pattern is seen in two dimensions; there,  the delay is 
closer to the deterministic expectation for p = 96, and 
considerably reduced  for p = 12 (Figure 9b). Figure 
1OA shows the same data,  plotted against deme size 
instead of barrier  strength. As expected,  the delay in- 
creases exponentially with deme size when the  barrier 
is strong (as shown by the approximately linear increase 
on this log scale for B = 20, 30, 40). However, there is 
little increase in the delay  with deme size  when the 
barrier is only just stronger  than  the critical value [ B  = 

10 (circles) us. the critical value  of B = 6.82a/& = 

7.621. Figure 10B shows corresponding results for two 
dimensions; again, these roughly linear  graphs suggest 
that  the delay increases exponentially with deme size. 
Here, however, the lines for  different  barrier  strengths 
are  more nearly parallel than in one dimension, indicat- 
ing  that an increase in barrier  strength increases the 
delay by the same factor, independent of deme size. 

DISCUSSION 

The effect of population  structure  on  adaptation de- 
pends very much on whether alleles tend to increase 
even when rare,  or must instead rise  above some thresh- 
old frequency before being favored. These two  cases 
reflect the  contrast between Fisher's view of evolution, 
in which adaptation is most efficient in large popula- 
tions, with Wright's, in which random drift and re- 

= 12 (@, 50 replicates)  and p = 96 (W, 25 replicates), m = 
0.2, S = 0.02. (C) The  relationship  between  the  delay  caused 
by the local barrier ( B  = 500)  and  the  length of a barrier L. 
Squares  indicate a scaled  delay, ST, for S = 0.02, while circles 
for S = 0.08 coming  from  100  replicates for L 5 20 and 50 
replicates  otherwise. m = 0.2, p = 12. 
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FIGURE 9.-(A) The average delay as a function of barrier 

strength with heterozygote disadvantage s = 0.2, and selective 
advantages S = 0.1, in one dimension; m = 0.5. For these 
parameters, the critical barrier  strength is B+ = B- = 
6.82a/& (see Figure 3) .  Above this value, the delay becomes 
infinite in an infinite population. Values are based on 20 repli- 
cates, for densities p = 2, 5, 10, 20, 25. (B) Results for two 
dimensions, using an array of  20 X 10 demes. (s = 0.04, S = 
0.02, m = 0.2; for these arameters,  the critical barrier strength 
is B+ = B- = 6.82a/ ,re 2s, as before). Values are based on 50 
and 25 replicates, for densities p = 12 and 96, respectively. 

stricted gene flow are essential for  continued progress. 
In  the first case, the  spread of an allele through  a  con- 
tinuous  habitat is somewhat slowed by random  drift 
(Figure 5). In a dense  population, a local barrier causes 
a slight delay (e log ( B )  ) , which can be substantially 
increased when deme size is  low (=B Figure 8). In 
contrast, when selection against the heterozygote pre- 
vents increase from low frequency, a local barrier to 
gene flow can prevent an advantageous allele from 
spreading  through a dense  population. Drift can then 
facilitate the  spread and can free an allele that would 
otherwise be trapped indefinitely. Two-dimensional re- 
sults are qualitatively similar; the delay caused by a bar- 
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FIGURE 10.-The delay, plotted on a log scale against deme 
size, for B = 10, 20, 30, 40; the  data  are  the same as in Figure 
9. (A) One dimension. (B) Two dimensions. 

rier decreases substantially as the  length of contact be- 
tween two races increases. Thus,  genetic differentiation 
will be greater where gene flow  is confined to a narrow 
corridor such as a  mountain valley or shoreline. 

Our results could be used to describe the spread of 
any beneficial allele. However, our study was motivated 
originally by the evolution of chromosome  rearrange- 
ments, and in particular, by the  geographic  distribution 
of centromeric  (Robertsonian) fusions in mice and 
shrews (SEARLE 1993). Here,  populations are usually 
fixed for  a  particular  combination of metacentrics over 
substantial areas. This suggests that new metacentric 
fusions are  either lost or spread rapidly to fixation. 
Moreover, the large number of metacentrics that have 
been derived from the ancestral acrocentric karyotype 
suggests that they increase the fitness  of their carriers. 
This selective advantage could arise due to a novel re- 
shuffling of genes (WILSON et al. 1974), meiotic drive 
(NACHMAN and S m E  1995), reduction in recombina- 
tion between epistatically interacting  genes (CHARLES 
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WORTH and CHARLESWORTH  1980; for  a mechanism of 
recombination suppression see DAVISSON and AKESON 
1993) or competitive superiority (CUANNA et al. 1984; 
SCRIVEN 1992). No direct estimates of  selective  advan- 
tage are available.  However,  analysis of overlapping 
clines in the hybrid zone between the Oxford and Her- 
mitage races  of  shrews suggested an advantage of  meta- 
centrics over acrocentrics of S = 2.6% (HATFIELD et al. 
1992).  The hybrids originating from crosses  between 
two chromosome races are  expected to suffer partial 
sterility due to problems at meiosis.  Two  types  of  hybrids 
are  found. “Simple” heterozygotes are  detected, if one 
parental race is fixed for one  or more fusions while the 
corresponding arms in the other are acrocentric. These 
hybrids  usually suffer only weak selection (VIROUX and 
BAUCHAU 1992; WALLACE 1994).  “Complex” heterozy- 
gotes could arise if their parental races share one arm in 
two different fusions; this could be due to independent 
fusions of the same chromosome arm, or whole-arm 
reciprocal translocation. Where one arm is shared in 
two fusions (monobrachial homology), hybrids are  then 
expected to suffer strong selection because they form 
chain or ring configurations at meiosis (CAPANNA et al. 
1976), and hence  a substantial decrease of heterozygote 
fitness (RED1 and CAPANNA 1988; SEARLE 1988). 

A particularly well-studied example is found in the 
Upper Valtellina  valley in northern Italy, where four 
Robertsonian races meet with the all-acrocentric race of 
the house mouse (Mus domesticus) (HAUFFE and SEARLE 
1993). The distribution is patchy, one race being usually 
restricted to one  or two villages. In samples collected 
between 1989 and 1991, most individuals were  homozy- 
gous, yet  hybrids  were found in almost every  village 
(HAUFFE  and SEARLE 1993). Most  villages  in Upper Val- 
tellina are divided by natural barriers such as streams, 
gullies or pasture, which may prevent movement of 
chromosome races. What can one say on  the  future 
evolution of this system? If two races  occupy different 
villages, their stability will depend  on  the  strength of 
both physical and genetic barriers and population den- 
sity ( i e . ,  on B, s, and p ) .  For example, the Poschiavo 
(POS, 2n = 26) and  Upper Valtellina (W, 2n = 24) 
races are fixed in four  neighboring villages (POS in 
Migiondo, W in Sontiolo, Tiolo and  Lago). What is 
the  chance  that the UV race will invade the POS race? 
Due to monobrachial homology the fitness  of the hy- 
brids between the two races is estimated to be reduced 
by 30-40% due to chromosome nondisjunction at mei- 
osis (HAUFFE  1993). Based on capture-recapture study 
in the same area,  the  deme size  varies  between 1 and 
23 mice, and there  are -50 potential breeding sites 
(demes) in each village  with the average distance be- 
tween demes E = 33 m  (H. HAUFFE, unpublished data). 
Tiolo and Sontiolo are isolated by a distance of 500 m 
from Migiondo, corresponding to 15  interdeme dis- 
tances. In addition, these villages are  separated by a 
fast-flowing  river and a motorway. This should greatly 

increase the effective interdeme distance; we chose 20 
here as a conservative estimate. Hence, physical barriers 
could decrease migration rate by “20 times. Taking 
selection against hybrids as s = 0.3 and m as  0.2, it leads 
to  a value  of the scaled barrier ( B / o ) &  = 48. The 
critical values for barriers with S / s  = 0.5 and  0.8  are 
7.69 and 35.69,  respectively.  Both the theoretical values 
are below the estimates from the field data, which 
means that the barrier could be overcome by a combi- 
nation of drift and a  rather high selective advantage to 
the homozygote ( S  > 0.2). While the field data have 
supported the presence of random drift, there is no 
evidence for the high advantage that would be neces- 
sary to break these barriers. Therefore we conclude that 
the distribution of both POS and W races will be stable 
until the population is disrupted by some extrinsic ca- 
tastrophe. 

Many other animal species have their range divided 
into subpopulations differing in chromosome arrange- 
ment (WHITE 1978; BARTON and HEWITT 1985; KING 

1993). These chromosomal races are often associated 
with  physical barriers such as streams, rivers, roads, gul- 
lies or inhospitable areas [see  SAGE et al. (1993) for  a 
review on mice; MERCER and SEARLE (1991): shrews in 
Scotland; BRUNNER et al. (1994): shrews  in  Switzerland; 
P A ~ O N  (1993): pocket gophers in northern America; 
NEVO and BAR-EL (1976): mole rats in Israel; BARTON 
and GALE (1993) : grasshoppers in the Alps Maritimesl. 
Such barriers increase the  chance  that  a chromosomal 
mutation will rise to high frequency despite selection 
against the heterozygote (MDE 1979),  but as our anal- 
ysis  shows, impedes its subsequent spread.  The fate of 
chromosome races, or  more generally, of novel “adap- 
tive peaks,” may therefore  depend  more  on  the  chance 
factors that influence the distribution of the species, 
than on the adaptive competition between gene combi- 
nations envisaged by WRIGHT (1932) in  his theory of 
the “shifting balance.” 
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APPENDIX A SPREAD  PAST A STRONG  BARRIER 

If the  barrier is strong,  an advantageous allele spread- 
ing from the left will quickly be fixed on  one side of 
the  barrier (x < 0). Integrating Equation 2 over x > 0, 
assuming q = 1, and applying the boundaq condition 
that @/ax  = l/Bjust to  the  right of a  barrier at x = 
0 shows that  the total number of alleles on the other 
side (x > 0) will increase as: 

- - -- IT2 + S 1 pdx. (Al) 
2B 

Integrating over time, 

[ 2BS 
pdx = - IT2 (exp(St) - 1) for p e 1. (A2) 

Equation A2 accounts for  the influx of alleles, and their 
subsequent increase. When St * 1, the influx becomes 
negligible, and the allele frequency approaches  the 
Gaussian solution to Equation 2 with q = 1 and  no 
influx, so that (@I/&) = 0 at x = 0. Thus 



504 J. Pihlek and N. H. Barton 

This is only  valid for small p ,  and St  4 1,  but suggests 
that p(0 ,  t )  will approach 1 after a time  given by setting 
Equation A3 to 1 at x = 0; this time is an approximation 
to the delay caused by the  barrier and is greater  than 
the value of ST = log (&&'2) given by BARTON 
(1979a) (see Figure 1A). 

APPENDIX B 

The rate of increase  in  variance of position can be 
calculated  using the same method as for underdomi- 
nance (BARTON 1979b). Let  Fisher's  solution  to  Equation 
2 be &(x - c t ) ,  where c = a f i .  Denote deviations from 

this  solution by w (x - ct, t )  . These follow a linear diffren- 
tial equation that has one eigenfunction (Ad&/&),  
which corresponds to a shift  in  position by Ax, and has 
eigenvalue  zero.  Since  this is orthogonal to  all the other 
eigenvalues, a perturbation E ( X )  causes an eventual  shift 
A x  = S~(x)(d&/ax)dx/S(d&/dx~dx. The variance of 
perturbation E is proportional to &q,,/2p in  each genera- 
tion, and so the rate of increase of var(Ax) is 

Numerical solution of Equation 2 using the Runge- 
Kutta algorithm, followed by numerical integration of 
Equation B1, shows that this rate is 1.19a/p&. 


