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ABSTRACT 
In this paper we present a  mathematical model of mutation and selection that allows for  the coexistence 

of multiple alleles at a locus with  very small selective differences between alleles. The model also allows 
for  the  determination of fitness by multiple loci. Models of this sort  are biologically plausible. However, 
some previous attempts to construct similar models have assumed that all mutations produce a  decrease 
in fitness, and this has led to a  tendency for  the average fitness of population members to decline when 
population  numbers  are finite. In  our model we incorporate some of the ideas of R. A. FISHER, so that 
both deleterious and beneficial mutations are possible. As a result, average fitness tends to  approach a 
stationary distribution. We have used computer simulation methods to apply the Fisherian mutation 
model to the problem of the evolution of sex and recombination. The results suggest that sex and 
recombination  can provide very large benefits in terms of average fitness. The results also suggest that 
obligately sexual species will  win ecological competitions with species that  produce a substantial fraction 
of their offspring asexually, so long as the  number of sites under selection within the genomes of the 
competing species is not  too small and  the population sizes are  not  too large. Our model focuses on 
fertility selection in an  hermaphroditic plant. However, the results are likely to generalize to a wide 
variety of other situations as well. 

Mr” do so many species produce  their offspring 
by means of sexual reproduction?  One possible 

answer to this question is that sex evolves and is main- 
tained because it enhances  the fitness of members of 
lineages in which sexual reproduction has been prac- 
ticed. This sort of “adaptationist” hypothesis about  the 
evolution of sex is the most common one pursued  in 
the scientific literature (MICHOD and LEVIN 1988; 
HURST and PECK 1996),  although  there have been alter- 
native approaches (e.g. ,  ROSE 1983). 

If an adaptationist answer  to the question of sex is 
correct,  then  the sexual mode of reproduction must ful- 
fil at least three requirements. First, it must not inevitably 
lead to the rapid demise of species through,  for example, 
the  spreading of contagious diseases. Second, popula- 
tions in which some offspring are  produced sexually 
must not inevitably be susceptible to the spread of muta- 
tions that  enhance  the rate of asexual reproduction. Fi- 
nally,  sex  must not  produce  a  strong disadvantage  in 
between-species competitions for resources. Most theo- 
retical  work on the evolution of sex has focused on  the 
last of these three requirements (either explicitly or im- 
plicitly). In this paper we follow  this tradition. However, 
we believe that our results  have bearing on satisfaction 
of the first two requirements as  well. 

On  the face of it, the ability  of sexual species to sur- 
vive despite competition from more-or-less asexual com- 
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petitors seems surprising. To see why, consider  the case 
of an outcrossing hermaphroditic  plant in which re- 
sources available for  reproduction can be devoted ei- 
ther to the  production of seeds or to the  production 
of pollen. Say that  the  number of seeds that  an individ- 
ual can produce is proportional to the  amount of re- 
sources devoted to seed production,  and likewise for 
pollen production.  Under these conditions, application 
of R. A. FISHER’S ideas about sex allocation lead to the 
conclusion that, at equilibrium, half of each individual’s 
reproductive resources will go into seed production and 
half into pollen production  (FISHER 1930; CHARLES 
WORTH and CHARLESWORTH 1981). 

Now, consider  a  second species that competes for  the 
same resources as the sexual species and that is also 
characterized by the same sort of trade off between 
pollen production and seed production. Say that, in 
this second species, a  proportion 4 of the seeds are 
produced sexually, and  the rest are  produced asexually. 
Thus,  the sexual species mentioned above would be 
characterized by 4 = 1, and  an entirely asexual species 
would be characterized by 4 = 0. Application of 
CHARLESWORTH and CHARLESWORTH’S analysis (1981) 
shows that, in such a species, we can expect  that  the 
equilibrium  proportion of resources that will be de- 
voted to seed production is [ l - (4/2)].  This means 
that, all  else being  equal, per-capita seed production 
will decrease linearly as 4 increases, and  an obligately 
asexual species (4  = 0) will produce twice  as  many seeds 
as an obligately sexual species (4  = 1). This observation 
embodies  the so-called  twofold  cost  of  sex. 
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Of course, we should  not take the  foregoing calcula- 
tion of the cost of  sex too literally. Seed and pollen 
production may not be  exactly proportional to the 
amount of resources devoted to these processes, and 
this  can  have a substantial effect on evolutionary out- 
comes (CHAIUESWOKTH and CHARLESWORTH 1981; 
CHAKNOV 1982).  Furthermore,  there  are various  costs 
associated with  sex that have not been  incorporated, 
such as the  danger of suffering a loss of fitness due 
to a sexually transmitted disease. Nevertheless, there is 
empirical support  for  the idea that pollen production 
produces  a very substantial decrease in the  potential 
fertility of a population. For example, in gynodioecious 
plant species where some individuals (females) produce 
seeds but  no pollen, and  others  produce  both seeds 
and pollen (hermaphrodites), the seed output of her- 
maphrodites is typically  well  below that  of females 
(LLOYD 1976; ASSOUAD et ~1.1978; VAN DAMME and VAN 
DEI.DEN  1984). 

Given the  foregoing  considerations, it seems reason- 
able to expect  that, in a  competition between two par- 
tially asexual species, the winner will be the species that 
produces  the smaller proportion of seeds sexually (the 
smaller 4 value).  Thus, we might  expect obligately  sex- 
ual outbreeding species to be extremely rare, or absent. 

The large number of obligate (or nearly obligate) 
outbreeding sexual species suggests that sex confers 
some ecological benefits that provide a counterweight 
to the cost of sex, which  in the  foregoing example is 
embodied by expenditure of resources on pollen pro- 
duction. The possible nature of these benefits has occu- 
pied a great deal of attention  among theoreticians and 
experimentalists (MICHOD and LEVIN 1988).  One of the 
earliest ideas was that sex provides benefits by allowing 
beneficial mutations that arise in different individuals 
to be combined in a single genome. Although the ori- 
gin of this idea dates back at least to WEISMAN (1889), 
it is usually attributed to FISHER  (1930) and to MULLER 
(1932),  and is sometimes called the Fisher-Muller Hy- 
pothesis. Another venerable evolution-of-sex theory has 
it that sex helps to slow genetic  deterioration  due to 
random increases in the  frequencies of deleterious mu- 
tations. This idea was proposed by H. J. MULLER in the 
1960’s, and it is generally known  as Muller’s Ratchet 
(MULLER 1964; FELSENSTEIN 1974; HAICH 1978; PAMILO 
et al. 1987; BEL.L 1988; I,YN(:H and  GABRIEL 1990; 
CHARI.ESWORTH et al. 1993; GABRIEL et al. 1993; KON- 
DKASHOV 1994). A variety of other theories have  also 
used deleterious  mutations in attempts to account  for 
the evolution of sex (BERNSTEIN et al. 1988; KONDIW- 
SHOV 1988; MICHOD and GAYLEY 1992). In addition, it 
has been suggested that sex confers an  enhanced ability 
to  survive attacks by parasites (HAMILTON el al. 1990). 

Theoretical studies have  shown that some of the 
mechanisms proposed to account  for  the evolution and 
maintenance of sexual reproduction can produce  bene- 
fits of sufficient magnitude to overcome the twofold 

cost of sex (MICHOD and LEVIN 1988). In other words, 
in some cases we can expect an obligately sexual species 
to win competitions with  obligately asexual species in 
spite of the tendency of sexual species to divert large 
amounts of resources to “male  effort” such as pollen 
production. However,  this does not necessarily mean 
that  a sexual species will really win against all comers. 
For example,  the Fisher-Muller Hypothesis can produce 
large benefits for a sexual species that is in competition 
with an asexual species (FELSENSTEIN 1974; PAMILO et 
al. 1957). However, it appears  a small amount of sexual 
reproduction would be required to rid a population 
of virtually  all of the  interference between beneficial 
mutations  that is described by the Fisher-Muller Hy- 
pothesis (MAYNAKD SMITH and  HAIGH 1973; P A M I I . ~  et 
nl. 1987).  Thus, even if 4 is small (but positive) we 
can expect  that most beneficial mutations that arise in 
different individuals and that increase to a nonnegligi- 
ble frequency will eventually be  combined  into  the same 
genomes.  Therefore, it seems likely the rate of accumu- 
lation of beneficial mutations would  be very similar for 
a species that  produces only 20% of  its seeds sexually 
(4  = 0.2) and  one that is obligately sexual (4  = 1). 

A small difference in the  rate of accumulation of 
beneficial mutations could eventually produce large 
and sustained differences in the fitness of two species. 
However, if there is no  change in selection pressures, 
then this  would require  that  there is no practical limit 
to the improvements that can be made to certain loci. 
If there were a limit, then, in a typical  Fisher-Muller 
model, where only beneficial mutations are  considered 
(FEISENSTEIN  and YOKOYAMA 1976; PAMILO et al. 1987), 
both of the  competing species would  eventually reach 
the same asymptotic fitness. This “no-limit” require- 
ment can be relaxed if changes in the direction of selec- 
tion are allowed. However, these changes would  have 
to be frequent  enough to  avoid an approach to the 
asymptotic fitness, and yet infrequent  enough so that 
the small difference in the rate of accumulation of ben- 
eficial mutations can effect a large difference in fitness. 

It is not  just the Fisher-Muller Hypothesis that is sus- 
ceptible to this sort of criticism. For example,  a similar 
critique can be constructed  for  the Muller’s Ratchet 
theory. A recent study of Muller’s Ratchet by Ct<l\wE’.S- 
WORTH rt nt. (1993) suggests that  a species with a rela- 
tively  low rate of recombination can achieve nearly  as 
great  a  benefit as a species with a high rate of recombi- 
nation with respect to the  rate of accumulation of dele- 
terious mutations. This suggests that species with  low 
(but positive)  values o f 4  will not suffer from a substan- 
tially greater rate of accumulation of deleterious muta- 
tions than obligately sexual species, so long as linkage 
is not too tight. A similar conclusion is obtained by 
examination of simulation results produced by PAMILO 
et al. (1987). Given the costs associated with high values 
of +, this leads once again to the question of- how obli- 
gate (or near-obligate) sexuality is maintained. 
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Most  of the traditional evolution-of-sex theories have 
only been  examined  in the context of contests between 
obligately sexual and obligately asexual species. Never- 
theless, it is certainly possible that  one  or  more of them 
can be used to show  how obligately sexual species can 
prevail in between-species competitions with species 
that  produce  some,  but  not all of their offspring asexu- 
ally.  However, in  light of the  foregoing discussion, it 
seems unlikely that  either  the Fisher-Muller Hypothesis 
or Muller’s Ratchet will prove satisfactory in this regard. 
Additional research will be required to determine 
whether any of the  traditional evolution-of-sex models 
can provide a mechanism whereby obligately sexual spe- 
cies can out-compete species with  all other mating sys- 
tems. For further discussion of  this issue, see recent 
papers by GREEN and NOAKES (1995),  and by HURST 
and PECK (1996). 

In this paper we shall study a new model  in an  attempt 
to show  how obligate (or nearly obligate) sexual repro- 
duction can succeed in between-species contests. Our 
study focuses on a process whereby suboptimal genes 
can rise to a high frequency as a result of genetic drift. 
Although each imperfect  gene may, by itself, cause only 
a very small decrement in fitness, a  genome full of 
slightly imperfect  genes can have an  enormous effect. 
The decrease in fitness due to random changes in fre- 
quency of imperfect  genes is known  as drift load (KI- 
MUM and OHTA 1970).  Our simulation results provide 
evidence to support  the idea that drift load can be much 
less debilitating  in sexual, as compared to asexual spe- 
cies. We also  show that drift load can be substantially 
less debilitating  in obligately sexual species, as com- 
pared to species that  produce only some of their off- 
spring sexually, and  the rest asexually (0 < 4 < 1). 
Thus,  drift  load may be a critical factor that allows for 
the evolution and persistence of obligate sexuality. 

A MODEL OF MUTATION,  REPRODUCTION 
AND SELECTION 

The nuclear  genome consists of long chains of nucle- 
otides on chromosomes. A variety  of different types of 
mutational events can alter the  genome,  including exci- 
sions, insertions and  point mutations. Many of these 
changes will have no effect on phenotype (that is, on 
the  nature  and quantity of the various gene  products) 
( K ” M  1983). It is plausible that  other changes will 
alter  phenotype,  but will not cause any change in fit- 
ness.  Finally, there is a  third set of changes  that do alter 
fitness. We  will refer to mutations of  this sort as  FAMs 
(for fitness-altering mutations). 

What is the  distribution of  selective effects of FAMs? 
There is not  enough  data to make any precise and con- 
fident  statements in answer to this question. However, 
we do know that,  at least in Drosophila, mutations  that 
decrease fitness by 2 or 3%  are  common ( M u m  et al. 
1972). Many theoretical studies of the effects of muta- 

tion and selection have noted this fact, and  then  made 
the simplifylng assumption that all mutations  are delete- 
rious (e.g., KONDRASHOV 1984; CHARLESWORTH et al. 
1993). However, this assumption is problematic, as it 
tends to lead to a situation where, in any finite popula- 
tion,  there is a  continual  degeneration of mean fitness 
as deleterious  mutations drift to fixation (e.g., 
CHARLESWORTH et al. 1993). Admittedly, the  rate of  fix- 
ation of deleterious  mutations can be very  low  if  all 
mutations have a substantial effect on fitness. However, 
if deleterious  mutations of small effect are allowed, then 
fixations can occur  much  more frequently, but  the  dete- 
rioration of mean fitness may still be slow, because each 
fixation will have  only a small effect (CHARLESWORTH 
et al. 1993). KONDRASHOV claims  to  have  shown that  the 
deterioration of fitness can be slowed to a  near  (but 
not complete) stop if mutations  combine synergistically, 
so that  each  additional  mutation causes a larger de- 
crease in fitness (KONDRASHOV 1994). However, it 
seems certain  that KONDRASHOV would  have come to 
very different conclusions if he  had allowed for  the 
existence of a class  of  very-small-effect mutations 
(BUTCHEK 1995).  The existence of such a class  of muta- 
tions seems likely,  given current  data  (see,  for  example, 
M A C K ~ Y  1992; OHTA 1992; KEIGHTLXY 1994).  Thus,  for 
the present, it may be reasonable to reject any model 
of evolution in finite populations  that allows  only dele- 
terious mutations, because the resulting inexorable de- 
terioration of mean fitness is at  odds with the observa- 
tion that life  persists on  earth after billions of‘ years of 
evolution. 

One might seek to correct deleterious-mutation-only 
models by assuming that beneficial mutations arise at 
some fixed rate. However,  this approach would proha- 
bly prove unsatisfactory, because it seems unlikely that 
fixation of beneficial mutations would  precisely coun- 
terbalance  the  deterioration of mean fitness caused by 
deleterious  mutations, and so no stationary distribution 
would  be reached.  Rather, we would be likely to arrive 
at  a situation where mean fitness deteriorates despite 
the beneficial mutations,  or where fitness increases 
steadily to unrealistic levels. Thus, it is necessary to find 
a  model in which the rates and magnitudes of deleteri- 
ous mutations and beneficial mutations are coupled. 

There  are  a variety  of  ways to achieve the  required 
coupling of rates and/or magnitudes  for  deleterious 
and beneficial mutations. For example, one can assume 
a house-of-cards model, in which the selection coeffi- 
cient associated with a new mutation is drawn from a 
distribution that is unrelated to the selection coefficient 
of the allele as it was before  the  mutation (KINGMAN 

1978). This leads to a situation where genes that  confer 
a high level  of fitness tend to sustain deleterious muta- 
tions, whereas highly deleterious  genes have a relatively 
large probability of sustaining beneficial mutations. Ap- 
proaches of  this sort have recently been  explored by a 
number of researchers (BARTON 1986; OHTA and TA- 
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CHIDA 1990; TACHIDA 1991; ZENC and COCKERHAM 
1993).  The house-of-cards model is analytically  conve- 
nient. However, it is also  biologically unrealistic be- 
cause, when a  gene  mutates, it is unreasonable to expect 
that  the  premutation state of the  gene will bear no 
relation to the  postmutation state. Furthermore, house- 
of-cards models can be problematic in simulation stud- 
ies because, when they are used, it can take a very long 
time  to approach  a stationary distribution. This was ob- 
served by TACHIDA  (1991), who used a  normal distribu- 
tion of mutant effects. We have observed the same phe- 
nomenon  both with normal distributions, and with 
uniform distributions of mutant effects. 

Instead of the house-of-cards model, we constructed 
a  model of mutation that is based on  the ideas of R. A. 
FISHER  (1930). This model allows for  both beneficial 
and  deleterious  mutations, and  mutant effects are bi- 
ased so that  there is a  correlation between the state of 
an allele before mutation, and its postmutation state. 
Furthermore, in our particular version of the Fisherian 
mutation  model,  a substantial fraction of mutations pro- 
duce  a very small change in  fitness. This property of 
the  model is in accord with  what limited data there is 
(see, for example, MACKAY 1992; OHTA 1992; KEIGHTLEY 

1994).  The tendency of our mutation  model to produce 
very small changes in fitness tends to speed  the  ap- 
proach to stationary distributions, and these small-effect 
mutations are one factor that distinguishes our model 
from a one-locus model of mutation that was produced 
by ZEN(; and COCKERHAM (1993). However, ZENC and 
COCKERHAM’S  model, like our own, allows for correla- 
tions between premutation and postmutation allelic  ef- 
fects.  Both ZENC and COCKERHAM’S  model and  our own 
are  related to a model  presented in a mathematical 
appendix of a  paper by LYNCH and GABRIEL (1990). 

The mutation and selection scheme used here is simi- 
lar, in  many ways, to models that have traditionally been 
used in quantitative genetics (see BULMER 1989 and 
references therein). In general, these models employ 
mutation schemes that make beneficial mutations in- 
creasingly more likely  as individuals become less fit. 
However, these models generally assume a Gaussian 
selection scheme, while we make a  much simpler as- 
sumption, which is that allelic  affects combine multipli- 
catively to determine fitness. 

To describe the Fisherian mutation scheme in detail, 
we must first make some assumptions about  the  nature 
of reproduction and selection. There  are  a wide  variety 
of models to choose from,  but for the sake of simplicity 
and concreteness, let us concentrate on  the case  of 
fertility selection in a diploid population of annual seed- 
bearing plants. Assume that all reproductively mature 
population members (if?., adults)  are capable of pro- 
ducing seeds. Seed production can be accomplished 
either sexually or asexually.  Each adult is assumed to 
produce  a very large (effectively infinite)  number of 
seeds, and a  proportion c$ of these seeds is produced 

by sexual means, while the rest are  produced asexually 
(where 0 5 c$ 51). If 4 > 0 (so that some seeds are 
produced sexually), then each adult individual is as- 
sumed to produce  pollen, in addition to seeds. The 
number of pollen grains that  an individual produces is 
assumed to be proportional to the  number of seeds 
produced by that individual. Furthermore,  the coeffi- 
cient of proportionality is assumed to be  sufficiently 
large so  that  there  are always enough pollen grains avail- 
able for all fertilizations. 

When adults generate seeds sexually,  they produce 
an ovule, and in general, this is fertilized by a pollen 
grain  that is randomly selected from the total collection 
of pollen grains produced in the  population  during 
that  generation. However, if the pollen grain selected 
is from the same individual that  produced  the ovule, 
then  the pollen grain is rejected and  another is selected 
at  random  (thus, selfing is not allowed). Standard Men- 
delian segregation and recombination without interfer- 
ence is involved  in the  production of both ovules and 
pollen. When an  adult  produces  a seed asexually, it 
simply copies its genetic material into  the  seed, so that 
the seed and its parent  are genetically identical,  except 
for new mutations. 

After seed production, N seeds are selected at  ran- 
dom,  and these germinate and grow  to reproductive 
maturity. Thus, N is the size  of the  adult  population. 

In light of the  foregoing assumptions, it should be 
clear that  an adult’s fitness is proportional to the num- 
ber of seeds that  the  adult  produces. That is to say, the 
number of seeds that an individual produces is propor- 
tional to the  expected  number of seeds that will grow 
to maturity to  which the individual contributes genetic 
material. 

Assume that  the  number of seeds produced by an 
individual depends only on  the individual’s genotype. 
Let I, represent  the  number of sites  within the  genome 
that  are subject to FAMs. That is, L is the  number of 
sites  within a haplotype that  are subject to selection. 
Some of these sites may lie  within noncoding regions 
of the DNA, since it is known that  mutations in these 
regions sometimes have substantial phenotypic effects 
(TUREILI 1984; KONDKASHOV 1988; KONDRASHOV and 
TUKELLI 1992; NOWAK 1994). In addition,  there  are 
likely to be multiple sites  within  many genes that  are 
subject to FAMs. Thus,  the  number of  sites  within the 
genome  that  are susceptible to FAMs  may be much 
larger  than  the  number of genes. Nevertheless, for con- 
venience, we will use the word “allele” to refer to one 
of the alternative sequences at  a given site. 

Let r represent  the  rate of recombination between 
adjacent sites on a  chromosome. Assume that  there  are 
H independently segregating chromosomes within the 
genome,  and  that  an  equal  number of sites  lie on each 
chromosome  (thus, L must be a multiple of H). 

Let u s  assume a multiplicative model of fitness deter- 
mination. This model is, conceptually, the simplest one 
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possible, as it allows  us to assign a selection coefficient 
to each allele that can occur  at  a site. There is also some 
support  for  a multiplicative model from MUKAI’S classic 
set of experiments (MUKAI et al. 1972). However, MU- 
M’S results might also be said to  support  an additive 
model, since the multiplicative and  the additive models 
are very similar if the selection coefficients involved are 
sufficiently  small. Nevertheless, the additive model can 
give negative fitness values,  which are impossible in dis- 
crete-time models like ours. Thus, we prefer  a multipli- 
cative model. 

Because the  population is diploid, each site under 
selection occurs twice  within the  genome.  Number  the 
occurrences of each site  as 1 and 2, in arbitrary order. 
Assume that  the state of each of an individual’s 2L sites 
can be represented by a real number x, where “-30 < x 
< 00. Assume further  that  the  optimum state for each 
allele is achieved when x = 0. Let d+ represent  the 
absolute value of the deviation from the  optimum state 
of the allele at  the  jth occurrence of the ith site in the 
kth adult  for  a  particular  generation (ie., dZ,],k = 1x1 ) .  
Let Dk represent  the sum of these deviations for  the kth 
adult. That is, 

I. 

Dk = [d,l,k + di,2,kl. (1) 
*= 1 

Let w k  represent  the fertility (and thus  the fitness) of 
the kth adult  during a  particular  generation, relative to 
an  adult with the  optimal genotype (where 1 5 k 5 N). 
(The optimal genotype is one  for which x = 0 for all 
21, alleles that  are  under  selection). This is to say, wk 

is proportional  both to the  number of seeds that  an 
individual produces, and proportional to the  number 
of pollen grains that  an individual produces. The value 
of wk is assumed to depend  on Dk  as  follows: 

Wk = eXp (-Dk). (2) 

To make the multiplicative nature of the model more 
apparent, this can be rewritten as 

I .  

wk = n [exp(-dt,l,k) exp(-dt,2,k)l. (3) 
*= 1 

This can be rewritten yet again in terms of traditional 
selection coefficients. If  we define to be  the selec- 
tion coefficient associated with the jth occurrence of 
the ith site in the kth adult in a  particular  generation, 
then we have 

%I,k = - exp (- d z , / , k )  . (4) 

Thus we have 0 I s , ~ , ~  < 1, and  the selection coefficient 
associated with a  particular allele is equal to zero when 
df,/,k equals zero, and it tends toward 1.0 as  di,j,k tends 
toward infinity. Note that  Equation  3 can be rewritten 
in  terms of selection coefficients as  follows: 

1. 

wk = n (l - & , l , k )  (l - Si ,B,k) l .  ( 5 )  
L= I 

It is worth noting  that  the  scheme  for  determining 
fitness that is specified by Equation 5 involves some 
degree of dominance.  Thus, if  we consider two alleles 
(A, and A*) with selection coefficients s1 and s,, then 
we will find  that  the fitness of an AIAP heterozygote is 
not  the  arithmetic average of the fitness of the AlAl 
homozygote and  the fitness of the A2A2 homozygote 
(assuming that  the rest of the genotype is the same at 
all other loci for  both homozygotes, and for  the  hetero- 
zygote). Dominance disappears, however, if  we measure 
the logarithm of fitness, rather  than fitness itself. 

We can now turn to a  detailed description of the 
Fisherian mutation process. For sexually produced 
seeds, mutations  occur  during gamete formation. For 
asexually produced seeds, mutation occurs during seed 
production. The probability that any  given allele that 
is incorporated  into  a seed will have just  undergone  a 
mutation is assumed to be independent of the  mode 
of seed production,  and it is represented by p ( i e . ,  p 
is the allelic mutation rate). A mutation is assumed to 
change  the value associated with an allele by an  amount 
m, such that  the  mutated value of the allele is given by 
x = m + x?, where ~ is the value  of x that would 
have been associated with the allele if no mutation had 
occurred (i.e., 9 is the  parental value of x for  the allele 
in question). 

The distribution of m used in the simulation studies 
is a  “reflected  gamma”  distribution. This distribution 
has been used to model mutations of genes that  control 
quantitative characters (KEIGHTLEY and HILL 1987; 
KEIGHTLEYand HILI, 1988; see also ~ M U R A  1983, p. 241; 
HILL and RASBASH 1986). In generating  the reflected 
gamma distribution, we follow KEICHTLEY and HILL’S 
example, and use a gamma distribution with shape pa- 
rameter ’/, (KEIGHTLEY and HILL 1987). This ensures 
that  a considerable proportion of mutations will have 
a very  small effect, while others will have a substantial 
effect. That is to say, the distribution is leptokurtic. This 
sort of distribution is in line with current  data  on  the 
effects of mutations (MUKAI et al. 1972; MACKAY et al. 
1992; OHTA 1992; KEIGHTLEY 1994). 

In the reflected gamma distribution used in this pa- 
per,  the density function  for positive  values  of m is given 
bY 

where r(1/2) is a  gamma  function with parameter I / q .  

For all m > 0, this distribution has half the  height of a 
gamma  distribution with shape  parameter  equal to 
Similarly, the density function  for negative  values of m 
is  as  follows: 

Thus, the  entire distribution is symmetric about zero, 
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and so the expected value of m is zero. The expected 
value of m given that m is positive is 1/(2a). Thus, a sets 
the scale  of the distribution. It should be clear that  the 
expected absolute value ofm is also  given by 1/ (2a). For 
this reason, we willuse (ml to represent  the value  of 
1/ (2a). In words, Iml represents the average  effect of 
mutations. 

Under  the above-specified set of assumptions govern- 
ing  mutation,  reproduction and selection, only deleteri- 
ous mutations are possible when an allele is in its opti- 
mal state. On the other  hand, beneficial mutations ( i . e . ,  
mutations that  reduce  the selection coefficient against 
an allele) become more likely  as an allele becomes less 
perfect ( i e . ,  as I X I  becomes large).  Indeed, as I X I  tends 
toward infinity, the probability that any  new mutation 
will be beneficial tends toward 1/2. These characteristics 
are in line with Fisher's ideas about  the  nature of FAMs 
(FISHER 1930; KIMURA 1983). 

PROCEDURES FOR THE SIMULATIONS  STUDIES 

Let us  now  move on to consideration of the simula- 
tion studies. Before presenting  the results of the simula- 
tions, we  will explain the  methods used and the reason- 
ing  that led to the selection of the particular parameter 
values that were employed. 

Choice of parameter values: As we have seen,  data 
on Drosophila suggest that  mutations  that decrease fit- 
ness by -2% are  common.  Therefore,  for most of the 
simulation studies presented in this paper, we set a so 
that  the average effect of a  mutation to a perfect allele 
(x = 0 )  is to decrease fitness by 2%. Using Equation 4, 
i t s  straightforward to show that this is achieved when 
Iml = 0.0206, and this means a = 24.253. A reflected 
gamma distribution with  this  value  of a is shown in 
Figure 1. 

What value  of L (the  number of sites) should be used 
in the simulation studies? It is clear that  a very large 
number of different sites in the  genome  are capable of 
sustaining FAMs. For example, in Drosophila, it appears 
that  there are -10,000 genes (KONDRASHOV 1988). In 
mice and humans it appears  that  there  are -80,000 
genes (ANTEQUERA and BIRD 1993). In addition, it is 
likely that nearly all intact genes are susceptible to 
FAMs. This assertion is based on the  idea  that, if an 
intact  gene was not susceptible to FAMs, then it would 
probably accumulate frame-shift mutations or  other 
mutations  that prevent expression, and so become a 
pseudogene.  Furthermore, as mentioned  earlier,  the 
number of sections of DNA that  are capable of sus- 
taining FAMs is probably far in excess  of the  number 
of genes capable of sustaining FAMs. This is because 
there  are sites in  noncoding regions of the  genome  that 
can sustain FAMs (TURELLI 1984; KONDRASHOV 1988; 
KONDRASHOV and  TURELLI 1992; NOWAK 1994) and 
there  are probably multiple fitness-affecting sites  within 
many genes, each of  which is capable of sustaining 
FAMs . 

n 

E 
v 
rc 

-0.1 -0.05 0 0.05 0.1 

m 
FIGURE 1.-The distribution of m used in  the simulation 

studies. This is a reflected gamma  distribution  (see  Equations 
6 and 7). The value of a is set to 24.253. This  ensures that  the 
average selection coefficient associated with a  perfect allele (x  
= 0) that has undergone a single mutation is s = 0.02. 

Despite the large number of fitness-controlling muta- 
ble sites that  are  present in most organisms, there  are 
severe  limits on  the  number of mutable sites that can 
be accommodated in a usable computer simulation pro- 
gram. For most of the simulations, we compromised by 
using 1000 sites ( L  = 1000). 

Next, let us consider what  value ofp  ( the allelic muta- 
tion rate) is reasonable for use in the simulations. Un- 
fortunately, there is no  hope of using a biologically 
realistic value for this parameter (say between lo-" and 
lo-')), because the simulations would  take much too 
long to run. Even  if such a low value could be used, 
the genomic rate of mutation ( i e . ,  the rate per diploid 
genome) would be too low because we are  unable to 
run  the simulations with more  than  a few thousand 
sites. The genomic rate of mutation may be more im- 
portant  than  the allelic rate, as it can have a  strong 
effect on genetic load (KIMUKA and MARUYAMA 1966). 
Therefore, we  will seek to employ a value of p that gives 
a reasonable value for  the genomic rate of mutation. 

Let U represent  the  genomic  rate of fitness-altering 
mutations  (thus, U =  2Lp).  There has been  a substantial 
amount of  work carried out to establish the value  of U 
in Drosophila, and  there has also been some work on 
plants (MUM 1964; MUKAI et al. 1972; CROW 1979; 
KONDRASHOV 1988; CHARLESWORTH et al. 1990; KON- 
DRASHOV and TURELLI  1992). According to KONDRAS- 
HOV and TURELLI  (1992)  the  data on multicellular eu- 
karyotes are consistent with  any  value  of Ubetween 0.1 
and 100. However, we think that  the lower end of  this 
range ( U  = 0.1) is extremely implausible in light of the 
experimental  data  (for  example, see MUKAI et al. 1972; 
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CHARLESWORTH et al. 1990; 1992).  Furthermore, it is 
important to recognize that laboratory experiments typ- 
ically focus on only one  or two components of fitness, 
and that many deleterious  mutations may not  be appar- 
ent  under laboratory conditions (SIMMONS and CROW 
1977; CROW and SIMMONS 1983; KONDRASHOV and TU- 
RELLI 1992). 

In light of the  data just cited, it seems likely that U 
> 1 applies in natural  populations of Drosophila, and 
probably in  a wide  variety  of other  higher organisms as 
well. This impression is strengthened if  we accept the 
idea  that  a substantial fraction of  FAMs  will have a very 
small effect on fitness, while others will alter fitness by 
2% or  more.  The presence of this sort of variation 
should increase our estimate of U because variance in 
selection coefficients tends to cause underestimates of 
the value of Ufor purely mathematical reasons (MUM 
et al. 1972; HOULE et al. 1992), and because small-effect 
mutations may go unnoticed in laboratory experiments. 
As pointed out previously, the  idea  that many FAMs 
have a very  small effect on fitness is consistent with 
existing data. Such an assumption is also consistent with 
the  distribution of mutant effects used in our model. 
For example, with the  distribution of rn values  shown 
in Figure 1, the average mutation to a  perfect allele will 
decrease fitness by 2%. However, 24% of the time a 
mutation will decrease fitness by  less than 0.2% (s  < 
0.002).  Furthermore, 8% of the time, a  mutation will 
decrease fitness by  less than  0.02% (s  < 0.0002). 

With these considerations in mind, we decided to 
run most of our simulations with U =  2.0. If L = 1000, 
this means p = 0.001.  Given the  data cited above and 
our leptokurtic  mutation  function,  a  higher value of U 
might be justified. However, our preliminary studies 
suggested that high values  of U tend to produce  an 
advantage for obligate (or  near obligate) sexuality, and 
so a relatively low value  of Uis conservative in the con- 
text of a theory of the evolution of sex. 

Before we could proceed with the multi-locus simula- 
tions, we had to make some choices with regard to the 
number of chromosomes ( H )  and  the  rate of recombi- 
nation between adjacent sites under selection ( r ) .  In 
doing this, we used the mouse genome as a  guide, since 
it is relatively  well studied and seems fairly  typical for 
an animal or  higher plant with regard to the total map 
distance in  the  genome (1600 cM) and  the  number of 
chromosomes ( H  = 20) (DAVISSON and RODERICK 1990; 
SHIELDS  1993). With  this in mind, we used H = 20 
independently segregating chromosomes in all of the 
simulations. For simplicity, we assumed that  the  rate of 
recombination (r)  was the same between all adjacent 
sites. 

What value of r is most realistic for use in the simula- 
tions? Unfortunately, existing data is much  too  poor to 
provide a reliable answer to this question. However, in 
higher plants the  rate of recombination between adja- 
cent  nucleotides is typically in  the  range 10-9-10” 

(SHIELDS 1993). Similar values probably hold in many 
animals. Thus, values in this range provide a lower 
bound  for  the average rate of recombination between 
adjacent sites. The rate of recombination between sites 
that  are  at opposite ends of a typical gene  that is a few 
kb in length would be  on  the  order of lop5. Further- 
more, we can estimate the average rate of recombina- 
tion between adjacent genes in  the mouse by dividing 
the total map  length of the mouse genome (1600 cM) 
by the estimated number of genes [80,000 (ANTEQUERA 
and BIRD 1993)] to produce  an estimated average rate 
of recombination between adjacent genes of  0.0002. 

As mentioned above, it seems likely that nearly all 
genes are  under some sort of selection, so 0.0002 is a 
reasonable upper  bound  for  the average distance be- 
tween sites. Nevertheless, with  only  1000  sites  in the 
genome, using r = 0.0002  as the  rate of recombination 
between adjacent sites may be problematic, as it implies 
an unrealistically low rate of recombination between 
sites at opposite ends of the  chromosome. We can cor- 
rect  for this by distributing  the sites  evenly across chro- 
mosomes (with 50 per  chromosome) and assuming a 
total map distance of 80 cM per  chromosome (the aver- 
age for  mice). This results in  a  rate of recombination 
between adjacent sites of -0.016.  Of course, this “cor- 
rection” is itself problematic, as the average rate of 
recombination between adjacent selected sites in most 
real organisms must be much lower than 0.016. With 
these considerations in mind, we used r =  0.016 in most 
of the simulations, but we also tested the effects  of  lower 
and higher values  of r. 

Standard  parameter value5 As explained above, 
most of our simulations used I r n l  = 0.0206._This should 
be  considered to be the  standard value of I r n l ,  and this 
standard value was used in every simulation reported 
in this paper, unless a  different value is given  explicitly. 
Similarly, the  standard value for  the  number of sites 
is L = 1000 and the  standard value for  the rate of 
recombination between adjacent sites is r = 0.016. The 
standard value for  the allelic rate of mutation is p = 
0.001, and this means that  the  standard genomic rate 
of mutation is U = 2.0. The standard value for  the 
number of generations  run in a simulation trial is 
100,000, and  the  standard  number of generations over 
which the  output statistics are calculated is 50,000 (i.e., 
data was collected during  the last  50,000 generations 
of  the  trial). The standard value for  the size  of the 
population is N = 100. In all  cases, the  standard values 
were used unless different values are explicitly given. 

Initialization,  data collection and  descriptive  statis- 
tics: Simulation trials were initialized by generating  a 
population of N individuals, each of which had  a  per- 
fect genotype (ie., x = 0 for all alleles, and thus Dk = 
Ofor i =  1 , 2 ,  . . . ,  N). 

As mentioned above, most of the simulation trials 
were run for 100,000 generations, and  data  for calcula- 
tion of the output statistics was generally collected for 
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0.0001 
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0 20000 40000 60000 8 0 0 0 0  100000 

Generation 
FIGURE 2.-The  change in 8 over the course of a single 

trial.  For  this  trial,  the  parameters  were  set to their  standard 
values. Thus, 1 = 0.0206, L = 1000, r = 0.016, U = 2.0 and 
N = 100. We also set I$ = 1 .O, so the population was obligately 
sexual.  The  data  are  presented  on a log  scale. 

the last 50,000 of these generations. From an evolution- 
ary perspective, we should be most interested  in  the 
behavior of a  population  once it has achieved a station- 
ary distribution and is no longer under  the influence of 
the initialization conditions. We found  that  the slowest 
approach to a stationary distribution seemed to occur 
for  the largest values of 4. Therefore, to demonstrate 
that 50,000 generations is sufficient to produce what 
appears to be a stationary distribution, we ran a trial 
using the  standard values, and setting 4 = 1. We plotted 
the resulting mean finesses over the course of the gener- 
ations. The data  are  presented  in Figure 2. Mean fitness 
is represented by a, and  the value  of a for  a  particular 
generation was calculated by averaging the wk values 
over all of the adults present  during  that  generation. 
Thus, we have 0 < a 5 1. As can be seen from the 
graph,  the a values do  not seem to be undergoing any 
directional  change after the first  20,000 generations. 
We took various other measures of the  population, and 
these produced similar results. We also kept track of 
the  number of x = 0 alleles present  in  the  population. 
All  of these were gone  from the population and had 
been replaced by alleles for which I x I f 0 by generation 
21,900. Taken  together, these observations suggest that, 
for  the  standard  parameter values, 50,000 generations is 
more  than  enough to establish a stationary distribution, 
and thus it appears  that we were justified in our decision 
to begin calculating the  output statistics after 50,000 
generations  had elapsed. 

Despite this apparent lack  of directional  change after 
50,000 generations,  there is considerable variation be- 
tween generations  in a. Therefore, we calculated addi- 
tional statistics. The first of these is called 5, and it is 

the  arithmetic  mean of the  avalues over the last 50,000 
generations of a trial. Thus, to calculate 5 under  the 
standard value of 100,000 generations  per trial, we 
summed up the a values from generations 50,001 until 
generation 100,000, and divided the result by 50,000. 

While 5 is a convenient descriptive statistic, the geo- 
metric mean of the values  over time should be a 
better  indicator of the ability  of a species to compete 
against other species than is the  arithmetic  mean. 
Therefore, we calculated GA, which is the geometric 
mean of the  avalues  during the last 50,000 generations 
of a trial. Experience with the  model revealed that, in 
general,  the 5 values obtained from running  the pro- 
gram were within a few percent of the  corresponding 
Gg values obtained  (although  the 5 values  were  always 
higher  than  the  corresponding  G~~values,  and this must 
be so whenever there is variation over time in the 
values). With these observations in mind, we decided 
to concentrate  on  the Gg values  in this paper,  and we 
largely ignore  the 5 values. 

Between-population differences in fitness are caused 
by differences in the distributions of selection coeffi- 
cients. To characterize these values, during each gener- 
ation we calculated the mean selection coefficient, aver- 
aging over  all of the alleles present in the  population 
(selection coefficients were calculated using Equation 
4). The mean selection coefficient is called L 

Naturally, Svaries from one generation to the  next, 
just like a. Therefore,  for each trial, we calculated an 
additional statistic, called S, which is the  arithmetic 
mean of $ calculated over the last  50,000 generations 
of the trial. 

Another statistic calculated during  the simulation tri- 
als was the coefficient of variation of the wk values. This 
quantity may be represented as KO. It is calculated by 
dividing the  standard deviation of the wk values for  a 
given generation by the value of a for  that  generation, 
and  then multiplying the result by 100. Thus, V, , / lOO 
is simply the  standard deviation of  relative fitness, where 
relative fitness is measured as  relative  to iii. 

The arithmetic average of K,, was calculated over the 
same generations  for which the Gg and =S values  were 
calculated ( i e . ,  the last  50,000 generations of a  trial). 
This average is denoted by y,,. 

As we noted  in  the  Introduction,  the  more sexual a 
species is, the  more it is likely  to suffer a fertility loss 
because of the  expenditure of resources on pollen. For 
the purposes of some comparisons, it is useful  to take 
this source of fertility differences into  account. The a 
values are  not  corrected  for this source of differential 
fertility. 

As we have seen,  a rough-and-ready guess  as to the 
magnitude of the decrease in seed output as a result of 
pollen production is  given by [ l  - (4/2)].  With  this 
in  mind, we calculated a  corrected measure of fitness, 
to be called a<. The value of  is given by 
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0. 
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B 
0.0003 - 

0.00025 - 

0.0002 - 

0.0001 5 - 

0.0001 - 

5 1 0 5 -  

0. 

0 
0 0.2 0.4 0.6  0.8 1 

0 

0.003 
0.2  0.4 0 .6  0 . 8  1 

0 
FIGURE S.-Results from the simulations when the  standard parameter values  were  in force. A shows the change in CK as 4 

(the proportion of offspring produced sexually)  goes from 0 to 1. B shows the effect of 4 on ?ug.. C shows the effect of 4 on 
7, while D shows the same data, except that  the scale on the ordinate is expanded, and the data point for 4 = 0 has been left 
off. In all four panels, the data points represent the mean values for the two replications run (the corresponding standard errors 
are given in Table 1). 

and if two similar species that  are competing for some 
(’) resource have different i;lgc values, then, all  else being 

equal, we can expect the  one with the  higher value to 
similarly, we can the value of G~ to account for win the between-species competition. This is so even if 

is  given  by different allocations of resources to pollen and seed 
production.  Furthermore,  the ratio of the 5gcvalues for 

of the per-capita rates of seed production for those two 
species. This said, it is important  to recognize that “all 

Comparison of ?3gc values is particularly revealing. This else” will not necessarily be equal, and this is consid- 
measure is not very susceptible to random fluctuations, ered  further in the discussion section. 

the cost of sex. The  modified value  is called GF, and it the two species have different values of 4, and thus 

i;)gc = [ 1 - #Ig (9) two different species  provides an estimate of the ratio 
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TABLE 1 

Computer simulation results 

Mean no. of 
segregating 

- - 
Wgr Kt, alleles 5 

4 values and changes from 
standard  parameter values - 

% 
4 = 1  

4 = 0.8 

4 = 0.6 

4 = 0.4 

4 = 0.2 

4 = 0  

4 = 1, N =  50 

4 = 1, N =  200 

4 = 1, N =  400 

4 = 1 , L = 2 4 0  

$ = 1 , L = 5 0 0  

4 = 1, L = 2000 

4 = 1, u= 1 

4 = 1, u= 4 

= 1, u= 8 
- 

4 = 1, lml = 0.00201 

4 = 1, 1 1 1 2 1  = 0.0102 
- 

- 

4 = 1, Iml = 0.0425 

4 = 1, Iml = 0.281 
- 

4 = 1 , r = O  

4 = 1, r = 0.0002 

4 = 1, r = 0.5 

4 = 1 , E = 8  

4 = 0.4, E = 8 

4 = 0.0, E = 8 

4 = 1 , E = 4  

4 = 1 , E = 2  

4 = 1, E = 8, Iml = 0.005 

4 = 1, E = 4, Im( = 0.005 

- 

- 

0.000527 

0.000335 

0.000154 
(2.47 X ) 
2.82 X lo-' 

(3.49 x 10-6 ) 

(4.55 x lo-7 ) 

(4.84 X 1 0 - ~  
2.33 X 

(8.98 X 

(8.84 X ) 
5.02 X 10"" 

1.63 X 
(1.99 x ) 

(2.28 x lo-" ) 
0.00797 

0.0337 
(0.000709) 
0.0488 

(0.000267) 
0.00965 

(5.28 X lo-" ) 
1.75 X lo-" 

(2.38 X lo-' ) 
0.00156 

(1.56 X ) 
4.45 x lo-,? 

(6.84 X ) 
5.55 X 

(8.40 X ) 
0.00381 

(0.000146) 
0.00101 

(2.50 x lo-" ) 
0.000199 

(1.75 X ) 
1.91 x 

2.72 X 
(1.47 X 10" ) 

(1.28 X ) 

(2.40 X 10" 

(1.30 x 10-5 ) 

1.03 X 

0.000556 

0.139 
(0.000316) 
0.00715 

(0.000225) 
1.18 X lo-"' 

(9.70 X lo-") 
0.0369 

(4.00 X lo-' ) 
0.00558 

(4.28 X ) 
0.318 
(0.00148) 
0.125 
(0.00118) 

0.000263 
(1.75 X lo-' ) 

0.000201 

0.000108 
(1.73 X ) 

(2.74 X 10" ) 

2.25 x 
(3.87 X 10" ) 
2.10 X 10" 

(8.98 X 
8.13 X 10" 

(7.96 X lo-" ) 
5.02 X IO-"' 

(9.96 X ) 
0.00398 

(1.14 X ) 
0.0169 

(0.000355) 
0.0244 

0.00483 
(2.64 X ) 

(1.34 X ) 

8.73 X 10" 
(1.19 x 10-8 ) 

0.000781 
(7.76 X ) 
2.23 X lo-" 

(3.42 X 10" 
2.78 X 10" 

(4.20 X ) 
0.00190 

(7.30 X ) 
0.000503 

(1.25 X ) 
9.94 x 10-5 

(8.77 X 
9.55 X 

(7.35 x 10P ) 
1.36 X 10"" 

(6.42 X ) 
5.17 X 

(1.20 x lo-? ) 
0.000278 

(6.49 X ) 
0.0693 

(0.000158) 
0.00572 

1.18 X IO-"' 
(9.70 X lo-") 

(0.000180) 

0.0185 

0.00279 
(2.14 X lo-' ) 

(0.000740) 

(0.000591) 

(2.00 x ) 

0.159 

0.0626 

18.9 
(0.0100) 

18.8 
(0.0300) 

18.6 
(0.0150) 

18.3 

17.6 
(0.00501) 

13.9 
(0.00501) 

18.0 
(0,0199) 

19.3 
(0.0150) 

19.6 
(0.0100) 

18.2 
(0.00501) 

18.7 
(0.0100) 

19.0 
(0.0150) 

13.4 
(0.0100) 

26.4 
(0.0250) 

36.7 
(0.0150) 

4.45 
(0.00400) 

12.6 
(0,0199) 

27.1 
(0.0250) 

62.5 
(0.0100) 

18.1 
(0.0100) 

18.2 
(0.0250) 

18.8 
(0.0150) 

68.2 
(0.0550) 

96.0 
(0.220) 

145.0 
(0.0500) 

58.5 

41 .O 
(0.401) 

28.2 
(0.0450) 

24.7 
(0.0300) 

(0.0100) 

(0.0500) 

2.63 
(0.00100) 

2.59 
(0.00100) 

2.53 
(0.000501) 

2.43 
(0.000501) 

2.28 
(0.00100) 

3.09 
(0.00100) 

1 .so 
(0.00100) 

4.28 
(0.00 100) 

7.57 
(0.00199) 

7.23 
(0.00601) 

4.16 
(0.00351) 

1.83 
(0.00100) 

1.86 
(0.00150) 

3.97 
(0.00199) 

6.13 
(0.00150) 

3.13 
(0.00150) 

2.86 
(0.00150) 

2.37 
(0.00100) 

1.76 
(0.00100) 

2.52 
(0.00100) 

2.53 
(0.000501) 

2.64 
(0.00100) 

1.72 
(0.00100) 

1.46 
(0.00100) 

(0.00100) 

(0.00100) 

2.30 

1.81 

2.06 
(0.000500) 

2.36 
(0.000500) 

2.45 
(0.000500) 

0.00376 

0,00399 
(7.50 X 10") 

0.00437 

0.00521 
(8.56 X 10"') 

0.00758 

(3.39 x l 0P)  

(7.95 x 10-(') 

(1.90 x 10") 
0.0283 

(8.30 X lo-') 
0.00662 

(6.10 X 10"') 
0.00241 

(1.46 X 10"") 
0.00169 

(1.05 X lo-') 
0.00626 

(1.14 x I O - ' )  
0.00462 

0.00330 

0.00322 

0.00499 

(4.99 x 10 7) 

(3.45 x 10-6) 

(4.89 x 10P) 

(7.59 x lo-(') 

(7.45 x 10 ") 

(1.90 x lo-;) 

0.00716 

0.00278 

0.00344 
(1.23 x 10") 

0.00425 
(4.40 X 10"') 

0.00655 
(3.82 x lo-") 

0.00637 
(2.33 X lo-') 

0.00571 

0.00374 
(1.16 X 10"') 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

(1.15 x 10") 
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TABLE 1 

Continued 

Mean  no.  of 
4 values and  changes  from  segregating 
standard  parameter values 

~~ ~ 

- 
% vu, alleles ‘s 

- 
4 = 1, E = 2, Iml = 0.005 0.0224 0.0112 18.2  2.65 N/A 

4 = 1, E = 1 ,  1 1 1 2 1  = 0.005 0.00185 0.000927 8.19 3.01 0.00314 
- (5.80 X 1 0 - ~  ) (2.90 X ) (0.0100) (0.00100) 

(1.90 x 10-6 ) (9.50 X 10” ) (0.00300) (0.00100) (5.00 X lo-’) 

Each  entry in the left-hand column gives the value  of 6 and  any  changes  in the standard  parameter values for the associated 
rows. The  data  shown  without  parentheses  represent the means for two trials,  while  the  data in parentheses  gives the standard 
errors  for  the  data in the preceeding row. The  column  entitled  “mean  number of segregating  alleles”  gives the average number 
of segregating  alleles  per  selected site, averaging  across all selected  sites,  and  over  the last 50,000 generation of the  trials. In all 
cases where no value of E is given (or where E = l ) ,  the  data are for the multiplicative  model  described  in  the text. Where E 
> 1, the  data  are  for  the  model  incorporating  synergistic epistasis. In the  collection of data for q,> and  the mean  number of 
segregating  alleles, only four significant  digits were collected.  Therefore, we have inflated  the  standard  error estimates in these 
columns so that  the  figures  given are equal to or greater than  the  standard  error  estimates that would have been  recorded  had 
a larger number of significant digits  been  collected. 

All combinations of parameter values studied were 
used for two trials. It would  have been  preferable to 
run a large number of trials for  each choice of parame- 
ter values, but this was precluded by constraints on com- 
puter time. Our decision to  run two trials for each pa- 
rameter  set was justified by the fact that we generally 
found relatively small differences in  the two values of 
S and Eg obtained. This is reflected by the size  of the 
standard  errors  reported in Table 1. 

RESULTS 

The effects of altering the  mode of reproduction 
(4): Let us now turn to a  consideration of  how the 
mode of reproduction affects fitness. In Figure 3A the 
values  of Gg obtained  for six different values  of 4 are 
presented. As can be seen from the figure,  the Ggvalues 
rose monotonically as 4 increased. Although it is not 
apparent from Figure 3A, the increase is most dramatic 
between the lowest  two  values  of 4 used (4  = 0 and 4 
= 0.2).  When 4 = 0, Gg = 5.02 X lo“”, and when 4 
= 0.2, Eg = 2.33 X 10”. This is an increase of more 
than 18 orders of magnitude. From 4 = 0.2 to 4 = 1, 
Eg increases further,  but  the increase is only -2000- 
fold over this entire  range  (see Table 1). 

Note that,  in every  case  shown in Figure 3A, the value 
of Gg is far below  its maximum-possible value  of 1.0. 
This means  that  the results are characterized by high 
levels  of genetic load. We shall show, in a  subsequent 
section,  that this is a  consequence of the multiplicative 
nature of the  model, and  that  the high levels  of load 
can be  eliminated by use  of a nonmultiplicative model. 
Unfortunately, a nonmultiplicative model  introduces  a 
number of difficult complications, and so, in the major- 
ity  of this paper, we  will use a multiplicative model. 

Figure 3B shows the GK, values that were calculated 
from the EE values  shown in Figure 3A. The Gg,. values 
also increase monotonically with 4, though  the increase 

is less dramatic  than  in  the case of the Gg values. This 
is a result of the increased cost of sex that is associated 
with higher values  of 4. The monotonic increase in the 
Ggc values  suggests that, under the  conditions of the set 
of simulations from which the  data were derived, obli- 
gate (or near-obligate) sex will be favored in between- 
species competitions. 

The effect of the  mode of reproduction  upon w is 
reflected in the way that’s  changed with 4 (although w 
also depends  on linkage disequilibrium).  A  plot of S as 
a  function of 4 is shown in Figure 3C. As would be 
expected in light of Figure 3A, ?declined monotonically 
with 4. Figure 3D shows the same data as Figure 3C, 
except  that  the  range of  values on  the  ordinate is 
smaller. This means that  the value for 4 = 0 cannot be 
shown, but  the  monotonic  decline in S with 4 is much 
more  clear. 

It is worth noticing that  the 5 values are  good  pre- 
dictors of the Gg values. For example, if  we calculate 7 3  

for  the case of 4 = 1 on  the assumption that  the selec- 
tion coefficients associated with  all alleles are exactly 
equal to ‘s, then we get w = (1 - 0.00376)20”” = 
0.000535. This is close to the actual value of GK for 4 
= 1, which is -0.000527. 

Additional details of the  data  obtained from the simu- 
lations that used the  standard  parameter values are pro- 
vided in  the first 12 rows  of Table 1. For example,  the 
table shows that, with the  standard  parameter values in 
effect, the coefficient of variation of wk values is between 
13% and  19%. This range ofvalues is biologically  plausi- 
ble, as  it  suggests that  the variation in fitness between 
individuals within the  population is not extremely large, 
and of the same order as figures calculated for Drosoph- 
ila populations (CHARLESWORTH 1987). 

Table 1 also  shows that, with the  standard  parameter 
values in  force, only a few different alleles were  usually 
present  at any  given site. Further analysis suggested 
that,  for most sites, a single allele was present in more 
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than 85% of the 200 instances of the site  within the 
population  [except in the case of obligate asexuality 
(4  = 0) where the typical figure was closer to 50%]. 
Furthermore,  in all  cases except  for 4 = 0,  analysis 
suggested that  the selection coefficient associated with 
the most common allele at a site was typically about 
half the size  of the average selection coefficient associ- 
ated with the  other alleles at the same site. Thus, we 
have a  picture of a  population  in which most sites  have 
one  or two common alleles, and possibly a few less  com- 
mon alleles that often have larger selection coefficients 
than  the coefficients associated with the most common 
alleles. 

A more  complete  picture of the effects of 4 upon 
selection coefficients can be  obtained by examination 
of Figure 4. This shows the distribution of selection 
coefficients for 4 = 0, 4 = 0.2 and 4 = 1. The  data 
were collected from generation 100,000 on the second 
of the two trials run for  each of these three values of 
4 (with the  standard  parameter values in force).  The 
lefthand  three panels of the figure suggest that  the 
proportion of selection coefficients in  the left-most 

bin”  (0 5 s < 0.01) is highest for  the sexual popula- 
tion (4  = 1). This proportion is somewhat reduced 
when 4 = 0.2, and  under asexuality (4  = 0) the  propor- 
tion is  very much  reduced, so that  the left-most bin does 
not even contain  the majority of selection coefficients, 
as it does in the 4 = 0.2 and  the 4 = 1 cases. The 
righthand  three panels show the  distribution of selec- 
tion coefficients within the  top bin (ie., these panels 
show the distribution of selection coefficients in the 
range  0 5 s < 0.01). Note that,  in  the sexual case (4  = 
1) there is a  trend such that alleles with  lower selection 
coefficients are  more  common  among top-bin alleles. 
A similar, but less pronounced  trend is present in the 
4 = 0.2  case.  However,  this trend  appears to be absent 
in  the  0 5 s < 0.01 range  in  the asexual case. 

The effects  of altering  the population size ( N ) :  The 
size  of a population is one of the most fundamental 
determinants of the  outcome of evolutionary  processes. 
This is particularly true for processes that  depend  on  the 
random fixation of genetic elements (CROW and K”RA 
1970). To study  how population size  affects i;lp and the 
other population statistics, we set 4 = 1 (obligate sexual- 
ity) and imposed four different values  of N. These were 
N = 50, N = 100, N = 200 and N = 400. 

Figure 5A shows  how Gg responds to changes in N 
when 4 = 1. Examination of Figure 5A suggests that 
fitness increases monotonically with N (see also Table 
1). This relationship is to be expected, as one-locus 
theory predicts that  deleterious mutations with rela- 
tively large selection coefficients will become fixed (or 
nearly fixed) more readily in small populations  than in 
large ones. This simple interpretation of the results is 
supported by an examination of Table 1, which  shows 
that, when 4 = I ,  the average selection coefficient (S)  
increases as N decreases. 

“ 

How do changes in N alter  the response of to 
changes in 4? To address this question, we must first 
deal with a  problem of data  presentation. As we can see 
from Figure 5A and Table 1, the value of N can have a 
very strong effect on Cg when 4 = 1. Indeed, as N 
changes from N = 50 to N = 400, the value of Gg when 
4 = 1 changes by more  than  four  orders of magnitude. 
This makes it difficult to plot all  of the  data on a single 
graph  in  a useful way unless some transformation is 
used. We decided to normalize the  data by dividing the 
Gg values obtained  for  each pair of 4 and N values by 
the average of the two Gg values obtained  for  the same 
value  of N, and with 4 = 1. Thus, all of the averaged 
and normalized 7ug values will be equal to 1.0 for 4 = 
1.0. The remaining normalized data points allow  com- 
parison of the way that  the Ggvalues respond to changes 
in 4 for  different values  of N. This procedure will be 
used repeatedly in this paper,  and it will be referred to 
as the  standard normalization procedure.  The  standard 
normalization procedure does not  change  the  shape of 
a curve when it is applied,  but it does ensure  that  the 
curve  gives a values  of 1 .O when 4 = 1. 

The standard normalization procedure was used to 
produce  the  data  for Figure 5B. The  four curves that 
appear in Figure 5B connect  the normalized Gg values 
that were obtained  for  the  four values of N. The shapes 
of each of these curves  would be exactly the same if 
the  standard normalization procedure  had  not  been 
applied. That is to say, the ratio of any two normalized 
f5g  values that  are  connected by one of the curves in 
Figure 5B would  have been exactly the same if we had 
plotted  the  data without normalization. 

Examination of Figure 5B reveals that  the curves for 
the larger values  of N rise more gently toward 1 .O as 4 
increases. For example,  the points for N = 400 are 
always the highest on  the  graph  for any  given  value  of 
4 (as long as 4 < 1 )  and  the points for N =  50 are always 
the lowest. This suggests that increasing 4 is likely  to 
increase the value of Gg more  (in  percentage  terms) 
when N is small, as compared to the case where N is 
large. In the limit as N goes to infinity, it may  well be 
that  changing 4 will have no effect on fitness at all. 
Although it is not  apparent from the figure, the differ- 
entiation of the normalized fitnesses becomes greater as 
4 becomes smaller. Thus,  for  example,  the normalized 
fitness for  the N = 400  case divided by the normalized 
fitness for  the N = 100 case is equal to 1.37 when 4 = 
0.8, but it increases to 41.6 when 4 = 0.2. When 4 = 

0, the ratio is much  larger,  at 66,263. Note that  a similar 
accentuation of differences as 4 declines characterizes 
most of  the  other comparisons of normalized fitnesses 
that will be described in the  next  three sections (wbch 
describe the effects  of manipulating Z, U and l l l z l ) .  
However, it seems that no such simple pattern charac- 
terizes the results on recom-bination rate, which  follows 
the sections on L, U and Iml. 

Next, let us consider  the effect of 4 on fitness after 
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FIGURE 4.-The distribution of selection coefficients  when the standard  parameter values  were  in force for c$ = 0, c$ = 0.2 
and c$ = 1. The values  given on the abscissas are the  center points for each of the “bins.” Thus, for example, the left-most bar 
in each of the lefthand three panels gives the frequency of selection coefficients that satisfy 0 5 s < 0.01. The next bar is for 
selection coefficients that satisfy 0.01 5 s < 0.02, and so forth.  The panels on the righthand give the distribution of selection 
coefficients in the range 0 5 s < 0.01 (ie., these panels give a detailed view  of the selection coefficients that lie  within the left- 
most bin in the lefthand panels). In all  cases, the frequencies have been normalized so that  the sum of the frequencies for all 
10  bins sums to 1.0. However, in  the case  of the lefthand three panels normalization produces no perceptible change in the 
height of the bars. This is because the absolute frequency of alleles  with  associated selection coefficients in  excess  of 0.1 is only 
0.0296, 0.000355 and 0.000185 for 4 = 0, 4 = 0.2 and 4 = 1, respectively. 

correction  for  the  cost of sex ( i .e . ,  on  the 3Jgc values). 3JgC values are monotonically  increasing  in  all cases,  ex- 
The  relevant  data  were  subjected  to  the  standard  nor- cept  where N = 400. With this relatively large  value  of 
malization  procedure,  and  then  they  were  plotted  as N, the 3Jg values  are  monotonically  increasing,  but  for 
shown  in Figure 5C. Note  that  the  plotted  normalized high  values  of C#I the  increase is too  gentle  to allow an  
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increase in the 5F values. Instead, when N = 400 and 
when the  other parameters take their  standard values, 
it appears  that  a species for which most, but  not all, of 
the offspring are  produced sexually (4 = 0.8) will  win 
any ecological competition. With the smaller values of 
N (ie., N = 50, N = 100 and N = 200) it appears  that 
obligate sex (4  = 1) is favored. 

The effects of altering  the  number of  sites (L): What 
effect does the  number of sites undergoing selection 
have on evolutionary outcomes? To answer  this ques- 
tion, we turned  once again to a  computer simulation 
study. 

It is  well appreciated  that  the  genomic  rate of muta- 
tion (U) is an  important  determinant of the  outcome of 
evolution (MULLER 1964; KONDRASHOV 1988; BULMER 
1989; BURGER et al. 1989; CHARLESWORTH 1990; 

B 

0 0.2 0 .4  0.6 0.8 1 

4) 

FIGURE !%-The effects of 4 and  Non fitness (4  represents 
the  proportion of offspring produced sexually, and N repre- 
sents  population  size). A shows the effect of N on 5K when 4 
= 1  (obligate sexuality). A log scale is used for this panel. B 
shows the effect of 4 upon  the normalized 51~values. 0 gives 
the data for N = 50, 0 is for N = 100 (the  standard  value), 
0 is for N = 200 and W is for N = 400. These symbols  have 
the same meanings in C;, which gives the normalized  5Kcvalues 
(ie., after  correction  for the cost of sex).  In this and all re- 
maining figures, each of the normalized and 5K, values 
shown are  the averages over two trials. Normalization was 
accomplished  in all  cases by using the  standard normalization 
procedure, which is described  in the text. 

CHARLESWORTH et al. 1993; PECK 1994). This observa- 
tion will be  confirmed in the  context of the  present 
model  in  the  next section. The effect of Uon evolution- 
ary outcomes means that, if  we are to understand  the 
effect of the  number of sites ( L ) ,  then it is important 
to keep Uconstant while changing L. This means chang- 
ing p, the allelic rate of mutation. In our study, we set 
the genomic rate of mutation to its standard value  of 
U = 2.0, and let L take on the values I, = 240, L = 500, 
I ,  = 1000, L = 2000.  With U = 2.0, these values of L 
correspond to allelic mutation rates of p = 0.00417, p 
= 0.002, p = 0.001 and p = 0.0005,  respectively. The 
standard  number of generations (100,000) was used for 
all  of these trials, except in the case  of L = 2000. Here, 
the low allelic mutation  rate means that it takes substan- 
tially longer to establish a stationary distribution, and 
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so we ran  the L = 2000 trials for 150,000 generations, 
instead of the  standard 100,000 generations. We col- 
lected the  data  for  the  output statistics during  the last 
50,000 generations, as usual. 

The  change in %, as a  function of L is illustrated in 
Figure 6A. All of the data shown in Figure 6A were 
collected with 4 = 1. As Figure 6A shows, i;)R falls dra- 
matically  as L increases. Table 1 shows that  the increase 
in L does not have much of an effect on vw. However, 
Sand  the average number of segregating alleles per site 
decrease as L increases. Note that  the decrease in S as 
L increases is insufficient in magnitude to reverse the 
inverse relation between L and EP which is seen in 
Figure 6A. 

In Figure 6B we can see how changes in L affect the 
response of Gg to changes in 4. The values plotted in 

0 . 8  'I 

/ '  

w I I I 
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4) 

FIGURE 6.-The effects of 4 and L on fitness ( L  represents 
the  number of sites within a  haplotype that  are subject to 
selection). Panel A shows the effect of L on when 4 = 1 
(obligate sexuality). A log scale is used for this panel.  Panel 
B shows the effect of 4 upon  the normalized values. W 
gives the  data  for L = 2000, 0 is for L = 1000 (the  standard 
value), 0 is for L = 500 and 0 is for L = 240. These symbols 
have the same  meanings  in C, which gives the normalized 

values. 

Figure 6B are  the Gg values after application of the 
standard normalization procedure. Figure 6B shows 
that, as L increases, i;lg rises more sharply with 4. Thus, 
it appears  that obligate sexuality is more likely  to  be 
favored when the  number of sites under selection is 
relatively large. Figure 6C lends  further  support  to this 
idea, as it shows the same data  after  correction  for  the 
cost of sex (the CgC values). Figure 6C shows that, for 
the values  of L tested, it appears  that obligate sex is 
favored when L z 1000. For L = 500 the i;lgc values are 
nearly equal  for 4 = 0.8 and 4 = 1. For L = 240, it 
appears  that  a species with 4 = 0.6 would be favored in 
a  competition with species with a species that  produced 
substantially more  or substantially less of its offspring 
by means of sexual reproduction. 

The effects of altering the genomic  rate of muta- 
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tion (v): Our next simulation study examined  the ef- 
fect of the  genomic  rate of mutation  upon Er Four 
values of Uwere  tested, and these were U = 1.0, U = 
2.0, U = 4.0 and U = 8.0. The  standard value  of L was 
used in these simulations ( L  = l O O O ) ,  and this means 
that these four values of U correspond to allelic muta- 
tion rates of p = 0.0005, p = 0.001, p = 0.002 and p 
= 0.004, respectively.  With low mutation rates it takes 
longer  for all the x = 0 alleles to be eliminated from 
the population and for an  apparent stationary distribu- 
tion to  be established. With this in  mind, we ran  the U 
= 1.0 trials for 100,000 generations  before we began 
the 50,000 generations  during which the  output statis- 
tics were calculated (thus, these trials ran for 150,000 
generations,  instead of the usual 100,000 generations). 

Figure 7A shows how changing U afTects Gg when 4 

0 0.2  0 .4 0.6 0.8 1 

0 

FIGURE 7.-The  effects of $J and Uon fitness (Urepresents 
the  genomic  rate  of mutation). Panel A shows the effect  of 
U on  when #J = 1 (obligate sexuality). A log scale is used 
for this  panel. Panel B shows the  effect of $J upon the normal- 
ized values. gives the  data  for U = 8, 0 is for U = 4, 0 
is for U = 2 (the standard value) and 0 is for U = 1. These 
symbols have the same  meanings in C, which gives the normal- 
ized ?'& values. 

= 1. As can be seen from Figure 7A, Gg undergoes  a 
considerable decline as U rises from U = 1.0 to U = 
8.0. Examination of Table 1 suggests that =S increases as 
U increases when 4 = 1. The decrease in fitness caused 
by higher Uvalues is apparently caused, in part, by a 
decrease in the quality  of common alleles. Note also 
from Table 1 that Vu increases as U rises. This result is 
in line with intuition  (more variation in fitness is to be 
expected as the  mutation  rate rises). It may also help 
to explain the effects of U on GAP This idea will be 
explored  further in the discussion section. 

Figure 7B shows  how the genomic rate of mutation 
affects the response of Gg to different values  of 4. As can 
be seen from Figure 7B, Gg seems  to  rise more sharply 
with 4 when Uis  relatively high, as compared to the cases 
where Uis  relatively  low. This same pattern is reflected in 
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Figure 7C, which  shows the 51.. values after application 
of the  standard normalization procedure. Examination 
of Figure 7C suggests that, when the parameters except 
for U are set to their  standard values, obligate (or  near 
obligate) sexuality will be favored in between-species con- 
tests if U 2 2, but not when U s  1. 
- The effects  of  altering  the  average effect  of mutations 

( Iml): Next, let us con4der what happens to 5, when 
we  change-the value of Iml . As stated above, our standard 
value of Iml is 0.0206, and this means that mutations to 
perfect alleles (for which x = 0) will lead to the imposi- 
tion of a selection coefficient with an average  value  of s 
= 0.02. In addition to the standard value  of Iml, we 
considered four other values of (ml , and these were (ml 
= 0.00201, Iml = 0.0102, Iml = 0.0425,and lml =0.281. 
When applied to perfect alleles,  these  values of lml lead 
to average selection coefficients of s = 0.002, s = 0.01, 
s = 0.04, and s = 0.2,  respectively. We found that the 
loss of all the x = 0 alleles and the establishment of an 
apparent statioKary distribution takes  substantially 
longer for  the (m( = 0.281 case, as compared to the 
other cases. This is not  surprisingdince it is reasonable 
to expect that  a large value of Iml will lead to fewer 
mutations thgare effectively neutral. With  this in mind, 
we ran the Iml = 0.281  trials for 200,000 generations 
before starting the 50,000 generations during which the 
output statistics  were calculated (thus,  the = 0.281 
trials ran for a total of 250,000 genzrations). 

Figure 8A  shows  how changing lml affects Gg when + 
= 1. Figure SA suggests that 5, tends to fall as rises. 
Table 1 shows that, as Iml rises, there  are substantial 
increases in S and yo. Thus, raising the value of 1m1 
increases the average selection coefficient and the nor- 
malized variation in fitness. - 

Figure 8B shows  how the value of Iml affects the re- 
sponse of %, to different values  of +. Figure 8B shows 
that 5, tends to rises more sharply  with + when Iml is 
relatively high, as compared to the cases where Fl is 
relatively  low.  Figure 8C shows the same data after correc- 
tion for the cost of sex (it?., it  shows the 5F values). 
Examination of Figure 8C suggests that, when the param- 
eters except for Iml are set to their standard values, 
obligate (or near obligate) sexuality will be favored in 
between-species contests if )m1 2 0.0206. When Iml = 
0.00201, it appears that  a speAes for which + = 0.6  would 
be favored, whereas, when lml = 0.0102, it appears that 
species  with + = 0.8 would be favored. 

The effects  of altering  the  rate  of  recombination 
(r): No recombination occurs when  individuals are pro- 
duced asexually. Thus, we might expect that changes in 
the between-site rate of recombination (r)  would  have 
an effect that is similar  to the effect of changing the 
value  of 4. Figure 9A confirms that this is the case. All 
of the points for Figure 9A were calculated with the 
standard  parameter values, except that values  of r rang- 
ing from 0.0 to 0.5  were used. The value of + was set to 

1.0 for the collection of  all the data points shown in 
Figure 9A. As can be seen from Figure 9A, Gg rises  very 
sharply as r increases toward the standard value  of r = 
0.016.  However,  it appears that very little additional in- 
crease in Cg can be achieved by raising r beyond the 
standard value.  Note that  the highest value of r tested ( Y 
= 0.5) is biologically unrealistic for a model in  which 
there  are 1000  sites. It was included to  see  what happens 
in the limit as linkage becomes loose. Table 1 shows that 
the values  of S also  follow the expected pattern, with the 
smallest  values for the highest rates of recombination. 
However, the difference in 'svalues  between the r =  0.016 
case and the r = 0.5 case is  very slight. 

What  effect does the rate of recombination have on 
the way that Gg responds to changes in +? To answer  this 
question, we ran simulations  using six  values  of + and 
four different values  of r. The  rvalues were r = 0, r = 
0.0002, r = 0.016 (the standard value) and r = 0.5. The 
data were normalized using the standard normalizing 
procedure, and they are plotted in Figure  9B.  Note that 
%, appears to be a monotonically increasing function of 
+ regardless  of the value  of r. However, there is no appar- 
ent monotonic relationship between r and  the effective- 
ness of increasing + as a way of enhancing fitness.  For 
example, the figure shows that, when + 2 0.6, increasing 
+ seems  to be least  effective  when r = 0 (the lowest  value 
of r considered) and most  effective  when r = 0.0002, 
which is the next-to-lowest  value  of r studied. The plots 
for the highest values  of r considered ( r  = 0.016 and r 
= 0.5) lie  between those for the lowest  values considered. 

Figure 9C  shows the 51gc points corresponding to the 
points that  appear in Figure 9B. The data for Figure 
9C were normalized using the  standard normalization 
procedure.  The figure suggests that, when r = 0 and 
the  other parameters  are set to their  standard values, a 
species for which + = 0.8 will be a  better  competitor 
than an obligately sexual species (+ = 1) after the cost 
of sex is taken into  account. For all other values  of r 
considered,  an obligately sexual species appears to be 
the best competitor. 

SYNERGISTIC  EPISTASIS 

Thus  far, we have considered  a strictly multiplicative 
model. The multiplicative model is conceptually conve- 
nient because a given allele will have the same effect 
on fitness (in  percentage  terms) without regard to the 
rest of the  genome in which it occurs. Although the 
multiplicative model is convenient, it may also be bio- 
logically unrealistic. An alternative to the multiplicative 
model is a  model  that  incorporates synergistic  epistasis. 
Under synergistic  epistasis, deleterious mutations have 
a smaller detrimental effect (in  percentage  terms)  in 
high-fitness genomes  than  in low-fitness genomes. 

There  are a variety  of reasons to think  that  a  model 
that  incorporates some sort of synergistic  epistasis is 
more realistic than  a multiplicative model (CROW 1970; 
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FIGURE &-The effects of 4 and  on fitness (Iml repre- 
sents the  average effect of mutations). Panel A shows the 
effect of Iml on Gg when 4 = 1 (obligate  sexuality). A log 
scale is used for this panel. Panel B shows the  effectAf 4 
upon  the normalized GE values. V gives the  data for Iml = 
0.281, W is for lml = 0.095,  0 is for lml = 0.0206Athe 
standard value), is for Iml = 0.0102 and 0 is for Iml = 
0.00201. These symbols  have the same meanings  in C, which 
gives the normalized TuF values. 
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KONDRASHOV 1988; SZATHMARY 1993; KONDRASHOV 
1995; DE VISSER et al. 1996; HURST and PECK 1996). We 
will not  attempt to provide an in-depth review  of the 
literature on synergistic  epistasis here,  but it may be 
worth noting several arguments  in favor of the view that 
this sort of  epistasis is common. First, there  appears to 
be  quite  a bit of redundancy  in  the  genome, with multi- 
ple genes fulfilling similar functions (TAUTZ 1992; 
THOMAS 1993).  It seems reasonable to expect  that fit- 
ness  would not decrease by much if the  function of one 
of several genes capable of fulfilling a given function 
was rendered inoperative or less efficient by a  mutation. 
However, if the  genome was highly degraded so that 
only one of the several genes that fulfil a given function 
is operational, then mutations of that  gene  might have 
a very large effect on fitness. 

A second reason to expect synergistic  epistasis  has  to 
do with the  idea of an enzymatic  “law of diminishing 
returns” such that, as a particular enzyme becomes 
more efficient, further  enhancements in efficiency  have 
a smaller effect on flux through  the biochemical path- 
way, and thus, they may produce smaller improvements 
in fitness ( S Z A T H M ~ Y  1993). Similar arguments can be 
formulated to support  the idea of synergistic  epistasis 
for genes that  do  not code  for enzymes, and  for  noncod- 
ing regions that  are  under selection. 

A final argument in favor  of the  idea of synergistic 
epistasis has to do with genetic load. A common defini- 
tion of genetic load (G) that  appears in CROW and 
KIMURA’S text (1970) is 

G =  wma, - 73 

W,,, 
(10) 
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where w,,, is the maximum possible  value of a. Thus, 
we have 0 5 G 5 1. In  the case of the models under 
study here we have w,,, = 1,  and so G = 1 - a. Immedi- 
ately we can see from Equation 10 (and from Table 
1) that,  under  the multiplicative model  that we have 
considered  thus  far,  genetic  load is close to its  maxi- 
mum value  of 1.0, at least for  the  parameter values 
considered above. Examination of Table 1 also suggests 
that  genetic  load can be lowered to a reasonable level 
by, for  example,  decreasing the  number of loci, or by 
increasing the population size. The first of these 
changes would make the  model less  biologically  realis- 
tic, but  the  latter  change would make it more so (very 
few populations of interest have  only a few hundred 
members). Nevertheless, it  is not  at all clear that biologi- 
cally reasonable population sizes  would  lower load sub- 

H s- 
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FIGURE 9.-The effects of 4 and r on fitness ( r  represents 
the rate of recombination between adjacent selected sites). A 
shows the effect of r on Gg when 4 = 1 (obligate  sexuality). 
A log scale is used for this panel. The lowest point gives the 
value of GE when r = 0. The second-lowest point gives when 
r = 0.0002. B shows the effect of 4 upon  the normalized ZK 
values. 0 gives the  data  for r = 0,0002, 0 is for r = 0.016 (the 
standard value). W gives the  data  for r = 0.5. 0 gives the  data 
for r = 0. These symbols have the same meanings in C ,  which 
gives the normalized values. 

stantially if the  number of  sites under selection was 
simultaneously increased to a reasonable level. 

It is  well known that synergistic  epistasis can reduce 
the level  of genetic load experienced by a  population 
(KIMURA and "A 1966). This observation pro- 
vides our  third  and final motivation for studying a 
model  that  incorporates synergistic  epistasis. Some re- 
searchers believe that  a high level  of genetic load is 
no reason to dismiss a  model as unreasonable (e.g., 
GILLESPIE 1991). We do  not wish to take a position on 
this contentious issue, but we do believe that it is worth 
demonstrating  that load can be substantially reduced 
by introducing synergistic  epistasis. This is the  central 
purpose of the  present section. 

A modified  model: The multiplicative model consid- 
ered  thus  far is equivalent to an exponential  model, as 
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FIGURF 10.-The curves that relate  the value of 4 to the 
value of uk for various  values of E (the epistasis parameter). 
Note that, when E = 1, we have the strictly  multiplicative (ie., 
nonepistatic)  model. 

shown by Equations 1 and 2. To  introduce synergistic 
epistasis, we modify the multiplicative model by general- 
izing Equation 2 to read as  follows: 

wk = exp(-LQ. (11) 

Recall that Dk is a  measure of the distance from  the 
optimal genotype for  adult K. The variable E is the epis- 
tasis parameter,  and when E = 1, Equation 11 is equiva- 
lent to Equation 2, and  the  model is strictly multiplica- 
tive (ie., no synergistic epistasis). When E > 1, 
synergistic  epistasis is in force. Under synergistic epista- 
sis, mutations  tend to have a smaller effect than  in  the 
strictly multiplicative case so long as Dk is small.  How- 
ever, when Dk > l, mutations have a  greater effect than 
in the strictly multiplicative case, and  the  magnitude of 
the fitness  effects (in  percentage  terms) of a  deleterious 
mutation increases with Dk. In  particular, we have 

wk 

Results: Synergistic  epistasis introduces some com- 
plicated effects, and we  will not attempt  a  complete 
analysis here. Rather, we  will restrict ourselves  largely 
to a simple demonstration  that synergistic  epistasis can 
ameliorate  the  load  problem. 

For the purposes of this simple demonstration, we 
chose four  different levels  of E. These were E = 1, E = 
2, E = 4 and E = 8. Figure 10 shows the  shape of the 
curves that relate the value of D to fertility ( wk) for each 
of these values  of E. Note that E = 1 is identical to the 
multiplicative model  that was addressed  in  the forego- 
ing sections. 

Table 1 shows some of the values  of gKachieved when 
all the  parameters took their  standard values, and when 
the value of E was varied. The symbol N/A appears in 
the S column of Table 1 for those cases where E > 1. 
This is because, when E > 1 ,  the selection coefficient 

associated with a  particular allele depends on the rest 
of the genotype in which it occurs. Thus, S is not well 
defined when E > 1. 

Table 1 and Figure 11A  show that, as E increases, so 
does 5, for sexual populations. This is in accord with 
previously published results (KIMURA and MARLJYM 

1966). For 4 = 1 and E = 8, we have 5, 0.139,  which 
seems  like a very reasonable level  of fitness, in that  the 
fittest-possible  individual is only about seven  times more 
fertile than the average member of this population. Data 
in the table  also  suggest that, as E increases, so does q,,. 
This is not surprising, as the relationship between D and 
w is very different when E 9 1, as compared to the 
case where E = 1. In addition, examination of the table 
suggests that when E > 1, E,, tends to increase as 4 
decreases. This makes sense, as decreases in 4 tend to 
increase the level  of genetic deterioration (nk) and when 
E > 1, the relative  size  of the effect on wk of a particular 
FAM increases as Dk increases (see Equation 12). 

In Figure 11B, we see the values  of 5 ,  for various 
levels of E and 4, after application of the  standard nor- 
malization procedure.  There  appears to be no clear 
and monotonic relationship between the value  of Land 
the effectiveness of sexuality  as an enhancer of fitness. 
However, for all the values of E that were examined, 
5, increased monotonically with 4. Furthermore, in  all 
of these cases, the increase in Zg with 4 was sufficiently 
large to compensate for  the cost of sex, and thus,  for 
each value of E, an obligately sexual population (4  = 
1) was fitter than  the partially sexual or asexual alterna- 
tives,  even after taking the cost  of  sex into  account (see 
Figure 1 1 C) . 

The elevated values of q,, for E > 1 make comparison 
with the E = 1 results difficult, and they  also compro- 
mise the biological realism  of the  model, as such high 
values  of v,, may not be common (CHARLESWORTH 
1987). For this reason, we-reran the simulations, and 
we changed  the value of ( m (  from its standard value of 
0.0206 to a new  value  of  0.005. When Q, = 1 and E = 
2, this reduces the value of E,, to a level that is similar 
to  the levels observed in  the nonepistatic model  (see 
Table 1). However,  still increases as E increases 
(though  the levels remain  far below the levels seen 
when the  standard value of Ft was used). - 

Figure 12A  shows the levels  of Z, obtained with Iml 
= 0.005, 4 = 1, and with various levels  of E. As can be 
seen from the figure (and from Table 1) increasing the 
value of E increases mean fitness when 4 = 1, just as 
in the previous case, where lm( was equal to 0.0206. 
The maximum level  of fitness observed was achieved 
with E = 8,  and this was 5, = 0.318,  which is nearly 
one-third of the maximum-possible level of fitness. 
Thus, with E = 8, load seems to be a  nonproblem,  at 
least for sexual populations. 

In Figure 12B, we see the values  of 5, for various 
levels of E and 4, after application of the  standard  nor- 
malization procedure. For each of the values  of E stud- 
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FIGURE ll.-The effects of $ and E on fitness when 1 = 
0.0206 ( E  determines  the  degree of synergistic epistasis). A 
shows the effect of E on when $ = 1 (obligate sexuality). A 
log scale is used for this panel. B shows the effect of E upon 
the normalized values. 0 gives the data for E = 1, W is for 
E = 2, 0 is for E = 4 and 0 is for E = 8. These symbols have 
the same meanings in C ,  which gives the normalized E J ~  values. 
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ied, Gg rises monotonically with 4. Once again, there is 
no clear and monotonic  relationship between E and 
the effectiveness of sex, although,  in  general, sex seems 
to be least effective when E = 1, and it is also  relatively 
ineffective when E = 8. Sex seems to be more effective 
as an  enhancer of fitness when E = 2 and E = 4. 

Comparison of Figures 11B and 12B sugEsts that sex 
is less  effective at improving fitness when Iml = 0.005, 
compared to when Iml takes the  standard value of 
0.0206. This impression is supported by the data shown 
in Figure 12C, which  shows &e Tug,. data  (after normal- 
ization)  for  the case where Iml = 0.005. For this value 
of Iml, Gg( reaches its maximum when 4 = 0.8 in the 
case where E = 8. When E = 1, the maximum value of 
Ggc is achieved when 4 = 0.6. Only when E = 2 and 

when E = 4 does obligate sex appear to be the best 
strategy, after accounting  for  the cost  of sex. 

DISCUSSION 

In this paper we have developed a  model in which 
fitness-altering mutations arise in a finite population. 
The model  includes  a  mutation scheme that is inspired 
by the ideas of R. A. FISHER (1930). This mutation 
scheme allows for  the establishment of  what is appar- 
ently a stationary distribution  in which mean fitness 
fluctuates, but does not  undergo  a steady increase or 
decrease. This is an improvement over  many previous 
finite-population models, as  they often assume that only 
deleterious  mutations  are possible, and thus, they lead 
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to a steady decline  in fitness as mutations become fixed 
(see CHARLESWORTH 1993 and references therein). 

Our study of the  model focused on understanding 
the  determinants of mean fitness over the  long  term. 
This sort of analysis is appropriate if one wishes to pre- 
dict the outcome of ecological contests between species, 
where the species involved  have  evolved in isolation 
for long  enough so that they approach evolutionary 
equilibria. In the case of our hypothetical species, mean 
fitness corresponds to average fertility (seed output) 
and,  other things being  equal, we can expect  that  the 
species with the highest fertility will  win any ecological 
contest. However, it is important to recognize that 
“other things” may not be equal  at all. It may be,  for 
example,  that  the species that has the lower fertility 
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FIGURE 12.-The effects of C#J and E on fitness when I l s i l  
= 0.005. A shows the effect of E on 5g when 4 = 1 (obligate 
sexuality). A log scale is used for this panel. B shows the effect 
of E upon  the normalized values. 0 gives the data for E = 
1 ,  is for E = 2, 0 is for E = 4 and 0 is for E = 8. These 
symbols have the same meanings  in C, which gives the normal- 
ized GK, values. 

when the two species are isolated from each other will, 
nevertheless, prove to be  the  more  adept  competitor 
when the two species are  brought  together. This might 
be the case, for  example, if some members of the less- 
fertile species carry a disease organism to which it is 
resistant, but which is debilitating for its competitor. 
Thus, calculations of mean fitness in isolated popula- 
tions, like those studied  here,  are useful, but they are 
incomplete as predictors of the  outcome of real compe- 
titions. A similar caveat applies to most evolution-of-sex 
models. 

Our results show that, regardless of the value  of the 
other parameters, increases in the  proportion of  off- 
spring  produced sexually (+) always tended to produce 
an increase in 5,? which is a measure of mean fitness 



Imperfect  Genes and Sex 1193 

that is uncorrected  for  the cost of sex. In  general,  the 
increases in  tended to be largest as 4 increased  from 
low values (e.g., from # = 0 to # = 0.2), and smallest 
as 4 increased from high values (e.g., from 4 = 0.8 to 

The rise in mean fitness produced by increasing levels 
of sexual reproduction was apparently due largely to 
the fact that  the  magnitudes of selection coefficients 
tended to decrease as c,b increased. All alleles for which 
I X I  f 0 (and thus,  for which s > 0) are  deleterious in 
comparison with a perfect allele (for which x = 0 and 
s = 0). The programs  are initialized with  all perfect 
alleles. These have  all become  extinct by the time a 
stationary distribution is established, and typically they 
have been  replaced largely by imperfect alleles that 
have drifted to a high frequency. The mutation scheme 
used allows nearly perfect alleles ( I x1 0) to appear 
from time to time after  the stationary distribution has 
been established. The fact that these nearly perfect al- 
leles do  not take over the  population suggests that al- 
leles found  at a high frequency in the  population  are 
effectively neutral when compared with perfect (or 
near-perfect) alleles. 

The decrease in mean fitness that occurs as c,b de- 
creases can be attributed to the so-called Hill-Robertson 
effect (HIL~L and ROBERTSON 1966). The Hill-Robertson 
effect refers to the  interference in the response to selec- 
tion between alleles that  occur  at  different loci. The 
Hill-Robertson effect operates because of linkage dis- 
equilibrium between alleles that  are  under selection, 
and  that  occur at different sites. In the case  of the 
model under study here, linkage disequilibrium is gen- 
erated by stochastic forces, which are  due to the finite 
population size. 

The interference described by the Hill-Robertson ef- 
fect can be seen as a  decrease in  effective population 
size (N,) (CABALLERO 1994).  This  decrease is accentu- 
ated when there is a high degree of correlation between 
the fitness  of parents  and  the fitness of their offspring 
(NEI and MURATA 1966; CABALLERO 1994). This is be- 
cause, if the  correlation is  very high,  then only individu- 
als that have a relatively high fitness have a substantial 
chance of having descendants in the  distant  future. If 
the correlation is weak, then even a low-fitness  individ- 
ual can have descendants  in  the  distant  future, because 
they  have a nonnegligible  chance of producing descen- 
dants with average or above-average fitness. Thus, a 
high level  of correlation between parental fitness and 
the fitness of offspring tends to decrease effective popu- 
lation size. 

The correlation in fitness between parents and off- 
spring  should be much larger under asexuality than 
under sexuality. When offspring are  produced asexu- 
ally, their genetically determined fitness is identical to 
that of their  parent,  except  for  the effects of new muta- 
tions. Thus, as 4 declines,  the  range of alleles that  are 
effectively neutral,  and  that can thus  drift to a high 

4 = 1.0). 

frequency, is widened. [Effectively neutral alleles are 
generally considered to be those with selection coeffi- 
cients in the  range 0 < s < 1/(2N,) ( K ” R A  1983)]. 

A similar explanation can account for the observed 
decline in  Ggwith r (the rate of recombination between 
adjacent  sites). Consider a particular site  within the 
genome. The smaller the value of r, the  more likely  it 
is that alleles at this site will be passed to offspring along 
with the alleles that were adjacent to the site in  the 
parent.  Thus,  the  correlation between parents and off- 
spring in the average selection coefficient for alleles 
near to the site is enhanced by a decline in r. To  put 
this another way, the Hill-Robertson effect is strongest 
when alleles at  different sites tend to stick together, and 
this tends to happen when r is small. 

The magnitude of N, does not  depend only on  the 
correlation in fitness between parents and their off- 
spring. It also depends, of course, on N, the actual size 
of the  population. As one would expect,  the results 
show that a decrease in N produces  an increase in S, 
and thus a decrease in GAP 

Theory predicts that  the  magnitude of N, will de- 
pends  on V,,,, the coefficient of variation in fitness (NEI 
and MURATA 1966; CABALLERO 1994). In particular, the- 
ory  suggests that N, should fall as E,, rises. As we have 
seen,  there are two variables that are strongly and di- 
rectly related toJ,,. These are U (the genomic rate of 
mutation)  and Iml (the average effect of mutations). 
The results show that an increase in either of these 
variables can produce an increase in 5, and a decrease 
in Gr - 

The effect of l r n l  on average fitness may be surprising, 
at least at first glanceLWe found  the lowest  levels  of 
average fitness when Iml was largest ( i e . ,  when muta- 
tions had  their largest effects). In contrast, studies of 
finite populations in which  all mutations  are assumed 
to be deleterious have generally found  that mutations 
have their most devastating effect when  they are  inter- 
mediate in magnitude, and that large-effect mutations 
are less damaging (CHARLESWORTH et al. 1993; GABRIEL 
et al. 1993; LANDE 1994; LYNCH et al. 1995). However, 
this difference is more  apparent  than real. 

In studies of finite populations where only deleteri- 
ous mutations  are allowed, average fitness declines for- 
ever (or until  the  population goes extinct). As a result, 
reports of these studies tend to focus on  the  rate of 
decline in fitness. Small-effect mutations have little ef- 
fect on fitness, and large-effect mutations rarely go to 
high frequency. Thus,  the fastest rate of decline in fit- 
ness (or the  shortest time to population  extinction) 
occurs for  intermediate  mutational effects. 

On the other  hand, in our study, we allowed for  both 
beneficial and deleterious mutations, and so the  popu- 
lation can come to a stationary distribution where mean 
fitness does not increase or decrease over the  long  term. 
We focused on  measuring  the average fitness at this 
stationary distribution,  rather  than on the rate of de- 
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cline. Thus,  the main dependent variables reported  are 
different in our study, as compared to studies where 
only deleterious  mutations  are allowed, and this ac- 
counts  for  the  apparent difference in findings regard- 
ing  the effects of increasing the  magnitude of muta- 
tions. Furthermore,  there is evidence that suggests 
comparable results when comparable measures are 
taken. Recall  &at, when we used the largest value  of 

l r n l  studied ( Iml = 0.281) it was necessary to run an 
unusually large number of generations before a station- 
ary distribution was achieved. This shows that,  in  our 
study, large-effect mutations slow the rate of decline in 
fitness, just as  in the studies that allow  only deleterious 
mutations. However,  while  large-effect mutations do 
slow the  decline in fitness, our results show that they 
also lead to a relatively low level  of fitness, once  a sta- 
tionary distribution is finally achieved. 

The results presented here suggest that, when the 
parameters  are  changed in a way that increases Kt,, sex 
becomes more effective at improving mean fitness. This 
appears to be  true,  for  example, when q,, increases be- 
cause of increases in U or increases in I 77i j . In addition, 
the results suggest that sex becomes more effective 
when the  population size (N) decreases. Thus, it is 
tempting to suggest that  anything  that decreases N, will 
make sex more effective at improving fitness. Such a 
relationship seems to make sense. If N, is extremely 
large even when the  population is asexual (4  = 0), 
then even if a transition to obligate sexuality  would 
produce  a large increase in N,, the increase in  fitness 
(?$) would not be very large, because fitness  would  al- 
ready be too close to its maximum possible  value under 
asexuality. 

A problem for  the  foregoing  interpretation has to do 
with the results from the set of simulations in which 
the rate of recombination was manipulated. Decreasing 
the  rate of recombination ( r )  might be expected to 
decrease N, and this idea is supported by the observa- 
tion that  a decrease in r was seen to increase the value 
of T. Nevertheless, there is no clear and  apparent  trend 
in the effectiveness of sex  as an  enhancer of fitness as 
a  function of r. Perhaps this is because a decrease in r 
makes  sex  less  effective as a mechanism for reassort- 
ment of genes, and this  makes it less  effective  as an 
enhancer of fitness. This effect might counteract any 
enhancement in the effectiveness of sex produced by 
the decreased value of N,, that results from a decrease 
in r. 

Qualitatively speaking, increasing the  number of sites 
under selection (L) has a similar effect on as increas- 
ing U or I mi, or decreasing N. In particular,  the effect 
is to decrease 77~~  when 4 = 1, and to increase the effec- 
tiveness of  sex  as an  enhancer of fitness. Nevertheless, 
we feel that  a different mechanism is at work than in 
the case of U, Iml and N. 

To  understand  the effects of changing  the value of 
LA, it is useful to consider,  once again, KIMURA’S idea 

about effectively neutral alleles (KIMURA 1983). KI- 
MURA’S results lead to the expectation that mutations 
that have drifted to a high frequency will  have  associ- 
ated selection coefficients in  the  range 0 < s < 1/ (2N,,). 
If fitness is largely determined by the effects of alleles 
that have drifted to high frequency, then KIMURA’S re- 
sults can be used to explain the effects of L. 

To make the  foregoing  more clear, it helps to con- 
sider a highly contrived situation. Let us ignore alleles 
that have recently arisen as a result of mutation, and 
let us also ignore all variation among alleles that have 
drifted to high frequencies. Say that, when 4 = 1, all 
alleles segregating in the  population have a selection 
coefficient given by sl. Thus,  the fitness of this popula- 
tion (denoted by  is given by r ~ , , ~ )  = (1 - s,)~‘ , .  
Assume further  that, if 4 is decreased to 0.8, then  the 
resulting decline in effective population size will cause 
an increase in the value of the selection coefficient asso- 
ciated with segregating alleles to s, (where si, > s,). 
Thus,  the average fitness of this  partially sexual popula- 
tion (denoted by 710.H) is given by @,,,x = (1 - s2)“,. 
The ratio of @values in the sexual population and the 
partially asexual population is given by 

- 1 - 2’. :=[=I . (13) 

Thus, if an increase in L has no effect at all on sI and 
s2, it will still produce  an increase in the ratio of the 
fitness of the sexual species over the fitness of the par- 
tially asexual species. Furthermore, this effect can be 
quite  dramatic. If, for  example, s 1  = 0.0038 and s2 = 
0.0040 (figures drawn from the results of the trials using 
the  standard  parameter values) then  the ratio of a val- 
ues for L = 1000 is 1.5, but raising L to 2000 gives a 
ratio of 2.2. 

Of course, this explanation for the effects of L de- 
pends  on N, being small enough so that alleles that 
have drifted to a high frequency will have associated 
selection coefficients that  are sufficiently large to have 
major effects upon fitness. If N, is sufficiently large, 
then this will not be the case, and fitness will be largely 
determined by the effects of alleles that have recently 
arisen as a result of mutation, and  that have a negligible 
chance of ever drifting to high frequency. 

We believe that  the process illustrated by Equation 
13 constitutes the main reason for the effect of I, upon 
the effectiveness  of sex as an  enhancer of fitness.  How- 
ever, there  are clearly other things going on. For exam- 
ple, increasing L decreases the between-site rate of re- 
combination, as more loci are packed onto each 
chromosome.  Perhaps  more importantly, an increase 
in L decreases the allelic mutation  rate, because the 
number of loci increases while the genomic mutation 
rate stays the same. It seems likely that this explains the 
small increase in =S that occurs as L is decreased from LA 
= 2000 to I ,  = 1000, and  the larger increase that occurs 
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as L is decreased  from L = 1000 to L = 240 (see Table 
1). The increase in the allelic mutation  rate  that is  asso- 
ciated with a  decrease  in L can be expected to lead to 
more  segregating alleles that have recently arisen from 
mutation,  and thus to fewer segregating alleles that 
have drifted to high frequency over a relatively long 
period of time. These recently arisen alleles can be 
expected to be associated with larger selection coeffi- 
cients (on average) than alleles that have drifted to high 
frequency,  despite  the rigours of selection. Support  for 
this explanation  for the relationship between L and 7 
comes from the observation that  the average number 
of segregating alleles per locus increases as L decreases 
(see Table 1). This is just what one would expect if, 
when L is relatively small, more recently arisen alleles 
are segregating. 

If the  decrease in S with increases in L was fast 
enough,  then sex might be more effective at  enhancing 
fitness when L is small.  However, the decrease in ’s with 
increases in Z, is apparently not fast enough  for this  to 
happen,  and  indeed,  the rate of decrease in S seems to 
fall  off  as L becomes large. This suggests that increasing 
L to biologically realistic levels  would greatly increase 
the effectiveness of  sex  as a fitness enhancer. However, 
no decisive comment can be made on this issue until 
further studies are carried  out. 

One characteristic of the results that makes their ap- 
plicability to real-world populations somewhat doubtful 
is the high level  of genetic load observed in most of the 
simulations. A quick examination of Table 1 reveals that 
load is close to 1 .O (its maximum value) for all  of the 
simulation results presented here for which there was 
no synergistic  epistasis. Some authors claim that high 
load is not necessarily a substantial problem so long as 
the within-population variance in fitness observed is not 
too large (see GILLESPIE 1991 and references therein). 
However, the  more conventional view  is that models 
that  produce  a high level  of load  are unrealistic (KI- 
MURA 1983). 

A traditional way to deal with  excessive load is to 
introduce synergistic  epistasis (KIMURA and MARWAMA 

1966). We showed that synergistic  epistasis does de- 
crease load in  the  context of our model, and that this 
reduction can be quite dramatic. However,  synergistic 
epistasis  also introduces  a variety of complex phenom- 
ena to the dynamics of the  model, and we have not 
attempted  a  complete analysis here. 

Our results do  not show any simple relationship be- 
tween the  degree of  synergistic  epistasis and  the effec- 
tiveness  of sex as an  enhancer of fitness. It seems likely 
that this is because synergistic  epistasis  has multiple 
impacts on the effectiveness of sex, and these do  not 
all act in the same direction. For example,  the results 
show that increasing the level  of  synergistic  epistasis 
tends to increase qo, and, as noted above, this can be 
expected to increase the effectiveness of sex  as an  en- 
hancer of fitness. Synergistic  epistasis should also in- 

crease the effectiveness of sex because of the  determin- 
istic processes described by KONDRASHOV and others 
(KIMURA and MARWAMA 1966; KONDRASHOV 1988; 
CHARLESWORTH 1990). However, because synergistic 
epistasis reduces  load, it may also introduce  a “ceiling 
effect.” In particular, under synergistic epistasis, a given 
reduction in the level  of genetic  deterioration ( 4 )  has 
a smaller proportional effect on fitness for  a relatively 
fit individual, as compared to an unfit individual (see 
Equation 12). Thus, it is not surprising to note  that, 
under synergistic epistasis, the improvement in fitness 
caused by increasing the  rate of sexual reproduction 
can be less than what is observed in a strictly multiplica- 
tive model. 

With I ml set to its standard value of 0.0206, we found 
that,  for all  values  of E (the epistasis parameter)  studied, 
obligate sexual reproduction  produces  the fittest popu- 
lations, even after taking the cost of sex into  account. 
This was so even though, as E increased,  genetic load 
became relatively  low, at leasfin  the obligately sexual 
populations. However,  with Iml = 0.0206, the coeffi- 
cient of variation in fitness ( qt,) can be very large, and 
probably unrealisticallyso,  at least for E + 1. We also 
studied  the case where Iml = 0.005. This leads to much 
more reasonable values of q,,, and genetic loads were 
still much  reduced in comparison to a strictly multipli- 
cative model. However, after taking the cost-of-sex into 
account, obligately sexual populations were the most 
fit only for E = 2 and E = 4. For the other values  of E 
tested ( E  = 1 and E = 8) the fittest populations still 
had high levels  of sexual reproduction,  but they  also 
engaged in some asexual reproduction. 

As a result of computational limitations, the simula- 
tion studies were confined to a biologically unrealistic 
range of parameters. In the real world, genome sizes 
( L  values) are generally much larger than  the 1000  sites 
used in  most of the studies presented  herein.  Further- 
more,  population sizes ( N  values) are typically larger, 
and allelic mutation rates are lower than assumed here. 
While faster computers would certainly help to amelio- 
rate this problem, it seems likely that  the only way to 
approach  a realistic region of parameter space in the 
forseeable future is by the application of purely analytic 
methods, or by analysis in combination with computer- 
oriented  methods. 

Because  of the unrealistic parameter values, it is dif- 
ficult to  know whether  the results of our simulation 
studies can explain the success of obligate sexual repro- 
duction  in  natural  environments. For example, our re- 
sults on the  consequences of manipulating N suggest 
that, with the  other parameters set to their  standard 
values, an obligately sexual species is unlikely to prevail 
in ecological competitions when populations have more 
than 400 individuals apiece. However, we have  also seen 
that increasing L (the  number of sites) above the  unre- 
alistically low value  of 1000 can cause a large increase 
in the efficacy  of  sex  as a fitness enhancer.  Thus, it may 
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well be  that if both  Nand L are increased to biologically 
realistic levels, obligate sexuality  would be favored in 
many  cases (although this speculation is entirely un- 
proved). Note that, if the value  of U is biologically rea- 
sonable,  then increasing L to a biologically realistic level 
would automatically decrease the allelic mutation  rate 
to a realistic value. 

It seems likely that, if  we were able to increase popula- 
tion size ( N )  to an extremely large value without doing 
the same to L, then fij would come to approximate e“’ 
(WMURA and MARWAMA 1966;  CROW 1970). However, 
this relation depends  on multiplicative fitness relations, 
and we do  not expect it to hold in the case of the 
synergistic  epistasis model. 

Despite the preliminary nature of the results, it may 
be worthwhile to consider  whether they might help us 
to understand  the  distribution of sexuality in natural 
environments. The results suggest that asexuality 
should be more  common in large populations. The 
largest populations on  earth consist of microorganisms 
such as bacteria, viruses, and yeast. In  general,  there is 
very little sexual reproduction within these populations 
[though this may be due to a low rate of mutation in 
these organisms (DRAKE 1991a,b; KIBOTA and LYNCH 
1996)l.  On  the  other  hand, organisms that usually  live 
in fairly  small populations (e.g., mammals, birds and 
trees) typically produce most or all  of their offspring 
sexually.  Of course,  there  are some exceptions to these 
trends, notably among  the animals, where, for  example, 
there  are some insects, some lizards and some fish that 
apparently reproduce by entirely asexual means (SUO- 
MALAINEN 1950). Asexuality has also arisen many times 
among  the plants, although  there seems to be a ten- 
dency for this to occur  in plants that have a large range, 
and thus, plausibly, a large population size (BIERZYCHU- 
DEK 1985; STEBBINS 1985). Interestingly, it appears  that 
macroscopic asexual species tend to go extinct relatively 
quickly (MAYNARD SMITH 1978; BELL 1982).  Thus,  per- 
haps the  population sizes  of nearly all macroscopic or- 
ganisms are  too small to support  complete asexuality 
over the  long  term. The results also suggest that asexu- 
ality should be more  common  among organisms with 
small genome sizes. Unfortunately, the smallest ge- 
nomes occur in microbes, and thus there is some con- 
founding between the  predictions based on population 
size, predictions based on mutation  rate, and predic- 
tions based on  the  number of loci. Both population-size 
considerations and genome-size considerations suggest 
that asexuality should be most common  among mi- 
crobes. 

Although there appears to  be a prima-facie  case in 
favor  of the theory on  the basis  of existing data, a great 
deal more work needs to  be done. Fortunately, because 
the theory allows for consideration of the case  of inter- 
mediate sexuality (0 < + < l ) ,  it is possible  to imagme 
tests that could be carried out within a species, and thus 
avoid some of the problems of confounding  mentioned 

above.  For example, it  would be interesting to compare 
systematically longestablished plant populations that  are 
relatively  small  with large and long-established popula- 
tions of the same species. If the theory is correct,  then 
the large populations should be more  prone to  vegeta- 
tive (i.e., asexual) reproduction. It would  also  be interest- 
ing to test the theory in the microbial laboratory, perhaps 
using a yeast  species that is competent to reproduce 
either sexually or asexually. One could then manipulate 
parameters such as population size and mutation rate to 
see if the rate of sexual reproduction responds in accord 
with predictions based on the theory. 

The modeling efforts presented  here  are mostly  rele- 
vant for  predicting  the  outcome of competitions be- 
tween species. However, it would be worthwhile to con- 
sider whether  the evolutionary processes we have 
described might also account  for  the evolution and 
maintenance of obligate sexuality  within some species. 
In particular, it would be  interesting to  study a so-called 
“modifier  model” in which a  gene  that alters the proba- 
bility  of producing offspring sexually is introduced  into 
a  population. Despite the  strong effects of altering + 
observed in the simulation studies, it is entirely possible 
that investigation of modifier models would lead to the 
conclusion that individual selection in a  homogeneous 
environment  cannot lead to the evolution and mainte- 
nance of obligate sexual reproduction. If this is the 
outcome,  then it might be useful to consider  heteroge- 
neous environments, since these could slow the  spread 
of asexuality and  enhance correlations within the meta- 
population between modifier alleles and selected al- 
leles. It might also be worthwhile to study a multiple- 
species model  that allows for variation in the tendency 
to produce sexually both within species and between 
species. It appears  that such models may  allow for  the 
evolution and persistence of obligate sexuality, even 
when  this is not possible  with a single-species model 
(NUNNEY 1989; WILLIAMS 1992). 

Our study is related to various pieces of previously 
published work on the evolution of sex. For example, 
a similar process to the one we have described is in 
operation in Muller’s Ratchet models. Like our own 
model, Muller’s Ratchet models operate in finite popu- 
lations, and they incorporate FAMs. However, unlike 
our model, Muller’s Ratchet models typically assume 
that all FAMs are  deleterious, and that they are all equal 
in effect (MUL.LER 1964; HAICH 1978; CHARLESWORTH 
et al. 1993).  The results from these models suggest that, 
under asexuality, deleterious mutations with a substan- 
tial effect can become effectively neutral, and thus can 
rise  to a high frequency. Unfortunately, because only 
deleterious  mutations  are allowed in  the traditional 
Muller’s Ratchet models, these models lead to the ge- 
netic degeneration of sexual populations as  well  as  asex- 
ual populations,  although  much larger amounts of time 
are typically required  for  degeneration under obligate 
sexuality (CHARLESWORTH et al. 1993).  Another  prob- 
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lem with traditional Muller’s Ratchet models as expla- 
nations  for obligate sexuality is that it appears  that  a 
small amount of recombination (and thus, by implica- 
tion, sexuality) is  all that is required to slow the  rate of 
genetic  degradation to a level that is close to what is 
achieved under free  recombination and obligate sex 
(CHARLESWORTH et al. 1993).  It seems likely that this is 
due to the fact that  traditional Muller’s Ratchet models 
do  not allow for  the  occurrence of a  continuous  range 
of effects of FAMs, with some of them having only a 
very small effect on fitness [although  a  paper by 
BUTCHER (1995) is an exception]. 

Of all the work on  the evolution of sex, the  model 
that seems to be closest to our own was studied by 
WAGNER and GABRIEL (1990). They examined an asex- 
ual species with stabilizing selection acting  indepen- 
dently on C different characters. Their  model was not 
explicitly genetic, and they assumed that mutations af- 
fect all characters  at  once. Mutations to each  character 
were normally distributed around  the  current value  of 
the  character. 

Like the  model  studied  here, WAGNER and GABRIEL’S 
model allows for  the  occurrence of  very-small-effect mu- 
tations. Thus,  one might  expect  that  their results would 
be similar to our own, at least for  the case  of asexuality. 
However, at first reading, this does not  appear to be 
the case. In  their abstract, WAGNER and GABRIEL seem to 
imply that  for some choices of parameters,  the optimal 
phenotype can persist forever. However, a close reading 
of their  paper suggests that they  know  this cannot be 
the case, as they cite previously published work that 
calculates the  number of generations  required  for ex- 
tinction of the  optimal genotype. They publish two fig- 
ures that  appear to show stable persistence of the opti- 
mal phenotype,  but in these two cases the average 
mutation to an  optimal individual produces decreases 
in fitness of ~ 1 8 %  and  =32%, respectively. Further- 
more,  the  normal  distribution used for  mutant effects, 
along with the fact that all characters  mutate  at  once, 
means  that very-small-effect mutants, while possible, are 
very rare. WAGNER and GABRIEL only carry out 300 gen- 
erations of evolution in the simulations that show  persis- 
tence of the  optimal  phenotype, and this, along with 
the  other factors just  mentioned, probably accounts  for 
their results. We feel certain  that, if they had  run  their 
simulations for  a  much  longer  period, they  would  have 
observed extinction of the  optimal  phenotype in all 
cases. 

WAGNER and GABRIEL also report  one case where the 
optimal phenotype went extinct. In  agreement with our 
results, they show that  the fitness of the  population 
appears to reach  a stationary distribution in this case. 
However, they claim that,  once  the stationary distribu- 
tion is reached,  the average “distance” of individuals’ 
phenotypes  from  the  optimum is the similar to the case 
of a sexual population. Unfortunately, the only support 
they produce  for this claim is a comparison with a  paper 

by LANDE (1976).  The  model  studied by LANDE is  very 
different from the  one studied by WAGNER and GABRIEL. 
For example, LANDE does not explicitly incorporate mu- 
tation into his model. Furthermore, WAGNER and GA- 
BRIEL do  not make it clear how  they made  their compar- 
ison. For these reasons we feel that WAGNER and 
GABRIEL’S claim that  their  model  produces similar re- 
sults for sexuals and asexuals must be viewed  with  ex- 
treme circumspection, at least until  a sexual version of 
their  model has been  constructed. 

In this paper we have seen that,  in some circum- 
stances, sexual reproduction can produce very large 
enhancements in fitness. It  appears  that this occurs be- 
cause sex increases effective population size (NJ . With 
this in mind, it is worth considering the very  wide range 
of traits other than sexual reproduction  that can also 
alter effective population size (CROW and EMURA 1970; 
CABALLERO 1994). Any trait that  enhances variance in 
reproductive success will decrease N,. Such traits in- 
clude  mating  preferences and competition  among 
same-sex individuals for mates. The value  of Ne is also 
under  the control of behavioral preferences  for life in 
small or large subpopulations, migratory behavior, 
tendencies to produce biased sex ratios among off- 
spring, and many other traits. The effects  of drift load 
have not  been widely considered in discussions of N, 
affecting traits. However, the results we have presented 
suggest that even traits that have a small effect on N, 
may have large effects on fitness. Thus,  consideration 
of the  impact of drift load on  the  outcome of evolution 
may help us to understand  the evolution of a wide  vari- 
ety of different phenotypic characters. 
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