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ABSTRACT 
With  increasing  popularity  of  QTL  mapping  in  economically  important  animals  and  experimental 

species,  the  need  for  statistical  methodology  for  fine-scale  QTL  mapping  becomes  increasingly  urgent. 
The  ability  to  disentangle  several  linked  QTL  depends  on  the  number  of  recombination  events. An 
obvious approach to  increase  the  recombination  events is to  increase  sample  size,  but this approach is 
often  constrained by resources.  Moreover,  increasing  the  sample  size  beyond a certain  point will not 
further  reduce  the  length of confidence  interval  for QTL  map  locations.  The  alternative  approach is to 
use historical recombinations. We  use  analytical  methods  to  examine the properties of fine  QTL  mapping 
using historical  recombinations  that  are  accumulated  through  repeated  intercrossing  from  an F2 popula- 
tion. We demonstrate that, using  the  historical  recombinations,  both  simple  and  multiple  regression 
models can reduce  significantly  the  lengths of support  intervals  for  estimated  QTL  map  locations  and 
the  variances  of  estimated  QTL map locutions. We also demonstrate that, while the  simple  regression 
model using historical  recombinations  does  not  reduce  the  variances of the  estimated  additive  and 
dominant  effects,  the  multiple  regression  model  does. We further determine  the power and  threshold 
values  for  both  the  simple  and  multiple  regression  models.  In addition, we calculate  the  Kullback-Leibler 
distance  and  Fisher  information  for  the  simple  regression  model,  in the hope  to further  understand 
the  advantages  and  disadvantages of using  historical  recombinations  relative  to F2 data. 

V IRTUALLY  every organ and function of any species 
in  nature exhibits continuous variations. It has 

been well documented  that many traits that vary contin- 
uously are  determined by a number of  loci (called quan- 
titative trait loci, or  QTL), each with  small effect, and 
working in  concert with environmental factors. 

The  mapping of QTL is important  not only in identi- 
fylng genes’ underlying traits of interest in economi- 
cally important species but also in gaining new insight 
into  gene  mapping  and identification, and the structure 
and function of the  human  genome.  Indeed,  the prog- 
ress of gene  mapping, identification, and characteriza- 
tion in humans  often  depends  on  the  development  and 
study of suitable animal models. For example,  the suc- 
cessful mapping of  new susceptibility loci for type I 
diabetes in mouse certainly shed new light into  the 
study of human type I diabetes (TODD 1989; RISCH et 
al. 1993; DAVIES et al. 1994; HASHIMOTO et al. 1994). 

The basic idea of mapping QTL has been known for 
over 30  years since THODAY’S seminal paper (THODAY 
1961).  The  idea was simple enough: if genetic markers 
are  scattered  throughout  the  genome of an organism 
of interest,  the segregation of these markers can be 
used to detect  and estimate the effects of linked QTL, 
making possible the  mapping  and characterization of 
underlying QTL (TANKSLEY 1993). 

Simple as it may be, however, putting  the idea into 
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practice had  been difficult, primarily due to the lack of 
appropriate  genetic maps. With the rapid development 
of genetic maps based on DNA markers in  the last de- 
cade,  coupled with the explosive development of  statis- 
tical methods (WELLER 1986; JENSEN 1989; LANDER and 
BOTSTEIN 1989; K N ~ P  et al. 1990; HALEY and KNOTT 

1992; DAFWASI et al. 1993; ZENG 1993,  1994; HALEY et al. 
1994), our ability to map QTL has been greatly en- 
hanced. 

In  general,  the  mapping and characterization of QTL 
consists of two different  but closely related problems: 
the localization of QTL and  the estimation of their 
effects on  the trait value. Clearly, the larger effect a 
QTL has on  the trait value, the easier it can be mapped. 
Conversely, if all  QTL locations were known, it would 
be relatively easier to estimate their individual and  joint 
effects. In practice, however, neither location nor effect 
of individual QTL is known. In fact, one does not even 
know  how  many contributing QTL there  are underlying 
the trait of interest. Relatively speaking, the estimation 
of individual QTL effect is much  more difficult than 
localization, since a precise estimate of the  genetic ef- 
fect for  a specific locus depends  not only on  the  mode 
of genetic  interaction between the locus of interest and 
other QTL, but also on  the specific environment in 
which the organism lives and  on possible gene-environ- 
ment interactions. 

A point  that  does  not seem to be well appreciated is 
that  the localization, or mapping, or positioning, of 
QTL has two  levels: one is low-resolution localization, 
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or coarse-scale mapping, with a resolution of - 1-5 cM 
or over (depending  on species, of course),  and  the 
other high-resolution localization, or fine-scale m a p  
ping, with a resolution of <1-5 cM. Low-resolution 
localization of QTL may only  have limited usefulness 
in identification and characterization of QTL, for two 
reasons. First, if several  QTL are clustered in a small 
chromosomal region, coarse-scale mapping will not  be 
able to distinguish them and to identify each QTL indi- 
vidually, even if these QTL are correctly mapped to a 
region. This would be of little use in selective breeding 
based on flanking markers and would cause enormous 
difficulties in estimating individual QTL effect. Second, 
despite rapid advances in DNA sequencing technology, 
the  cloning of QTL will still take years  of hard work if 
these QTL are  not  further zeroed-in to narrow chromo- 
somal regions. 

As more and  more empirical results have demon- 
strated (see below), and as we  will show later in this 
paper, these two different levels  of mapping  require 
entirely different  mapping strategies, experimental de- 
signs, and analytical methods. Most  statistical methods 
developed in  the past 7 or 8 years for  mapping QTL 
in experimental species are designed for coarse-scale 
mapping. 

The interval mapping  method (LANDER and BOT- 
STEIN 1989) has been shown to be a powerful tool for 
mapping QTL. The  method uses flanking markers to 
detect any QTL  lying in  the interval flanked by the 
two markers. Compared with methods using only single 
markers, interval mapping is more powerful and can 
provide much  more  accurate estimates of QTL effect 
and position when QTL are  unlinked, and is relatively 
robust (KNorr and HALEY 1992). However, it is still 
difficult for  the interval mapping  method to allow  si- 
multaneous analysis  of  several linked QTL, and to dis- 
tinguish multiple linked QTL  effects. When two or 
more QTL are located on  the same chromosome re- 
gion, they may be mapped to wrong positions by inter- 
val mapping (KNOTT and HALEY 1992; MARTINEZ and 
CURNOW 1992; WRIGHT 1994). 

To circumvent these problems, several authors pro- 
posed to map QTL by linear regression models ( JANSEN 

1993; RODOLPHE and LEFORT 1993; ZENG 1993, 1994; 
HALEY et al. 1994).  These  authors  demonstrated  that, 
using multiple markers, one can detect effects of QTL 
and distinguish multiple QTL using both  the flanking 
markers and  the markers in other regions. This ap- 
proach is sensible, because quantitative traits are  un- 
likely to be controlled by a single QTL, and because 
use of multiple markers in  different regions of chromo- 
somes would help  one  detect multiple QTL. While one 
can still  use the interval mapping  method to search 
multiple QTL simultaneously, the heavy computational 
burden makes this approach impractical. It is also  diffi- 
cult to establish proper  threshold values for  declaring 
the existence of QTL. In  contrast,  the multiple regres- 

sion method is computationally feasible, although an 
optimal mapping strategy does not exist  yet. 

One notion is that, with a  dense genetic map,  one 
can finely map QTL. Unfortunately, however,  this is not 
quite true. A dense map is necessary for fine-mapping 
of QTL, but it is not sufficient. A key, limiting factor is 
the  number of recombination events. One obvious way 
to ensure  enough  number of recombinations is to in- 
crease the sample size.  However,  besides practical con- 
straints on resource and time, this approach has  several 
drawbacks. RODOLPHE and LEFORT (1993) pointed out 
that  the variances of the estimated additive and domi- 
nant QTL  effects by the multiple regression model in- 
creases  with the density of the markers typed. This will 
increase the  chance of error in  statistical inference. 
Therefore,  the density of the genetic map  cannot be 
too  high.  Furthermore, even if one has infinite number 
of markers, DARVASI et al. (1993) showed that a QTL 
with a moderate effect can only  be  assigned to a  map 
location in a rather  broad chromosome region due to 
the lack  of sufficient recombinant events. HYNE et nl. 
(1995) also reported  that  the estimates of  QTL locations 
are unreliable even  with a large sample from an F2 popu- 
lation. Thus, unless one has enough  number of recombi- 
nations, an overly dense map would be  a waste. 

What, then, can we increase the  number of recombi- 
nations without typing huge  number of subjects? As 
high-density genetic maps with  highly polymorphic 
markers are increasingly becoming available for experi- 
mental species (see,  for  example, DIETRICH et al. 1996), 
and as more  and  more genes are  mapped  at  a coarse 
scale, this  issue is becoming increasingly urgent in map- 
ping and identifying QTL. Without addressing this is- 
sue, it would be hard to imagine that  one can take full 
advantage of a dense  map. 

One alternative approach, which has not  been ap- 
preciated very much  until recently, is to use historical 
recombinations. The haplotypes of any individual in 
the  current  population is a result of recombinations of 
different genotypes from different ancestors, if we trace 
his lineage far enough. In other words,  given enough 
time, and barring  strong selection, an ancestor’s haplo- 
type will be eventually break up,  no matter how  close 
the two loci are.  Therefore, historical recombination 
events, if accumulated enough, will provide ample  op- 
portunities to observe recombinations between any two 
linked loci, and thus can be used for fine-scale mapping 
purpose. This phenomenon,  the decay of linkage dis- 
equilibrium, was first noted by JENNINGS (1917) and 
ROBBINS (1918),  and  later  studied extensively by LEW- 
ONTIN and KOJIMA (1960). It was the basis for BODMER 
(1986), apparently the first person, to argue  for  the 
use of linkage disequilibrium for fine-scale mapping in 
humans. 

PATERSON et al. (1990) proposed a fine-mapping 
method in which recombinant individuals are identi- 
fied in primary generations and selectively multipled in 
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subsequent  generations so that  the  recombinant classes 
occur  at  near  equal  frequency with the  nonrecombi- 
nant  ones. In the ideal situation,  a series of nearly iso- 
genic lines, differing in recombination in the QTL re- 
gions, would be compared  for  the quantitative trait of 
interest, allowing, potentially, the high-resolution local- 
ization of  QTL. CHURCHILL et al. (1993) discussed the 
use  of DNA pooling in high-resolution mapping. Re- 
cently, DARVASI and SOLLER (1995) proposed  a fine- 
mapping  method based on what  they called “advanced 
intercross line”,  or AIL.  An AIL is produced from an 
F2 population resulting from crossing two inbred lines 
assumed homozygous for  different alleles at all  loci. 
The subsequent  generations, F3, F4, . . . , are  sequen- 
tially produced by randomly intercrossing the previous 
generation. For mapping purposes, only individuals in 
the last generation  (F,)  are  phenotyped and genotyped. 
As long as  sizes  of breeding individuals in F,T ( s  5 t) 
generations  are > 100, and as long as there is no  strong 
selection, DARVASI and SOLLER (1995) convincingly 
demonstrated, by simulation,  that  a simple regression 
model using data  on an F, population can significantly 
reduce  the  length of the  support interval for estimated 
QTL map  location. 

Interesting as  they are,  the results of DARVASI and 
SOLLER (1995) actually prompt many more questions 
than they  have answered regarding  the use of  AIL for 
fine-scale mapping. Because of limitations in simulation 
studies, is it possible to demonstrate analytically the ad- 
vantages and disadvantages of using F, data? How to 
determine  the  threshold  for  the  corresponding test  sta- 
tistics?  How  to determine  the power of the test? What 
is the  relationship between the  generation t and power? 
“hat is the  relationship between the  generation t and 
the  threshold value? Is there any difference between 
data from F2 and F, ( t  > 2)? Since DARVASI and SOLLER 
(1995) only considered  a simple regression model, can 
one generalize their results to a multiple regression 
model? And how can one  determine  the power and 
the  threshold value? These questions are  not only of 
theoretical  importance  but also  of practical importance. 

In this paper, we will address these issues. Using an 
asymptotical analysis, we demonstrate  that  both simple 
and multiple regression models can reduce significantly 
the  lengths of support intervals for estimated QTL map 
locations and  the variances of estimated QTL map loca- 
tions using F, data. We also demonstrate  that, while the 
simple regression model using data  from an F, popula- 
tion does not reduce the variances of the estimated 
additive and  dominant effects, the multiple regression 
model does. We further  determine  the power and 
threshold values for  both the simple and multiple re- 
gression models. In  addition, we calculate the Kullback- 
Leibler distance and Fisher information  for  the simple 
regression model,  in  the hope to further  understand 
the advantages and disadvantages of using F, data rela- 
tive to F2 data. 

Due to the technical nature of this paper,  our treat- 
ment is unavoidably very mathematical. Less mathemat- 
ically inclined  readers can skip derivations and proofs 
and read  the  part on  the statement of the problem and 
our conclusions. For excellent discussions on the use 
of  AIL design, the readers should consult DARVASI and 
SOLLER (1995). 

A GENETIC  MODEL FOR AN F, POPULATION 

The haplotype frequencies of an experimental  popu- 
lation  change over time due to various evolutionary 
forces. Barring mutations and selections, the  change, 
on average, is a  function of two variables: the recombi- 
nation fraction between two linked loci and  the  number 
of generations. DARVASI and SOLLER (1995) derived a 
formula  for calculating the expectation of the fre- 
quency of the  recombinant haplotype for an F, popula- 
tion. Since in calculating the Fisher information and 
the Kullback-Leibler distance,  not only the  expectation 
but also the  higher  moments of the  frequencies of the 
recombinant haplotypes are  needed, we derive the gen- 
erator of a diffusion process that  approximates  a sto- 
chastic process that describes the evolution of change 
in haplotype frequencies. 

Consider two loci, A and B, each with  two alleles (A,  
and Bj, i, j = 1,2).  The recombination fraction between 
the two loci is assumed to be 8. Let P&t) denote  the 
frequency of  the gamete A,B, (i,  j = 1,2)  and N( t)  denote 
the size  of the F, population.  Denote r, = P12 ( t )  + PZ1 ( t )  . 
We can show that  the population process { X ( t )  = num- 
ber of recombinant haplotypes in the t generation] 
evolves  as a Markov chain  that can be approximated by 
a diffusion  process  with the following generator: 

Now, let Art) = r,. Then, by the Hille-Yosida theorem 
(ETHIER and KURTZ 1986), we obtain  (see APPENDIX A) 

Solving  it for E[r,] yields 

E[rJ = %(1 - e?). (1) 

If 8 is small, E[r,] = Bt/2, which agrees with  DARVASI 
and SOLLER (1995). 

THE CASE OF SIMPLE REGRESSION MODELS 

Assume that  there is no epistasis and  no interaction 
between the  environment and QTL. The simple linear 
regression model  for QTL mapping is 

yt = /I + ax ,  + 6zi + ei, i = 1, 2, . . . , n, (2) 

where n is the size  of the sample taken randomly from 
the F, population, y2 is the trait value of the ith individual 
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in  the  sample, p is the overall population  mean, a and 
6 are additive and dominance effects, respectively, e;s 
are  independently and identically distributed  random 
variables  with E[ e,] = 0 and Var (e?)  = D', and xi( d) and 
zi (d)  are dummy variables for  the ith individual with 
the following  values 

i 1 M, = AA 

xi(d) = -1 M8 = aa 

0 Mt = Aa 

1 Mi = An 

- 1 otherwise, 
44 = 

where A and a are two alleles of the  marker Mi at d. 
Since the vectors x2( d) and z i (d )  are asymptotically 

orthogonal, we can estimate the additive and  the domi- 
nance effects by (DUPUIS 1994) 

and 

respectively. 
The  estimated  additive  and  dominance effects of 

QTL: The use of historical recombinations increases 
the  recombinant events, which, in turn, effectively in- 
crease the  genetic distance between the markers and 
QTL. As a result, the estimated additive and dominance 
effects associated with markers will be reduced. Here, 
we evaluate the  amount of reduction, as a  function of 
t, in the estimated additive and dominance effects  asso- 
ciated with markers. 

Assume that  there  are k QTL  with kth QTL having 
additive effect ffk and dominance effect 6, along  the 
genome.  Denote  the  genetic distance between the 
marker M and  the kth QTL by Ak. Then, we can show 
(APPENDIX B) that, asymptotically, 

k= 1 

and 

k= 1 

To evaluate how much amount of additive and domi- 
nant effects at  particular markers are  reduced, we con- 
sider,  for simplicity, the case  of k = 1. Equations 3 and 
4 can then be written as 

and 

FIGURE 1.-The effect of ton  the asymptotic additive effects 
at  markers with the simple linear regression model. Two QTL, 
with the additive effects 0.6 and 1.0, respectively (a: = l ) ,  are 
located at 0.4 and 0.6 cM from the left end of the  chromo- 
some. -, the asymptotic additive effects using F2 data; ---, 
the asymptotic additive effects using F, data. 

where A is the  genetic distance between the  marker M 
and  the QTL.  Clearly, the additive and dominance ef- 
fects associated with the markers decrease exponen- 
tially  with the  generation t. 

When several QTL with comparable effects are 
closely linked, it may be difficult to separate  them and 
may even map them to wrong positions. The above 
results indicate that  at any  given marker locus linked 
with the QTL, the estimated genetic (additive and dom- 
inant) effects decrease with t. Furthermore,  the  rate of 
decrease in  the estimated genetic effects is exponential. 
This implies that, as one moves  away from  the QTL 
locus, the estimated genetic effects decrease exponen- 
tially, which, in turn, implies that  the estimated genetic 
effects due to linked QTL can be separated/disentan- 
gled provided t is large enough. Figure 1 illustrates this 
point graphically. It can be seen that two linked QTL 
are hardly separated if F, data  are used. However, the 
two loci can be distinguished very  well  if Flo data  are 
used. 

The  thresholds of the  test: To  implement  the fine- 
scale mapping of QTL using F, data, it is critical to 
determine  the  threshold  for  a given significance level, 
so that  one can reject or accept  the null hypothesis 
Ho:a # 0 or Ho:6 # 0 depending  on  whether  or  not 
the statistic exceeds the  threshold. Note that we simply 
cannot use the thresholds of the test for simple regres- 
sion models based on F2 data because some changes of 
the  threshold  are  needed. In this subsection, we  give 
procedures for computing  the thresholds. 

Under  the assumption that e,'s are normally distrib- 
uted with mean 0 and known variance o:, the log likeli- 
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FIGURE 2.-Thresholds of test statistic X,  at a significance 
level of 5% as a function of generation t. 

hood  ratio  for testing Ho:a = 0 us. Hl:a f 0 for  the 
presence of a QTL at d and known x,(& is 

[%I2. 
When d is unknown,  the log-likelihood ratio statistics 
becomes 

max ___ 
d {%i;r’ 

where the maximum is taken over all  loci d where xt( d) 
is known. The variable x,(d) is known when a  marker 
is  available at d. 

Now let 

x,=&-. G(d)  
d i g e  

Along the same line as that of LANDER and BOTSTEIN 
(1989), we can show that, under  the null hypothesis of 
Ho:a = 0, X ,  is a Gaussian process with mean 0 and 
covariance function R(u) = e-‘1u1 as n ”* m. Note that 
for F2 data, R(u) = e-n1u1. This limiting distribution 
holds even when the e,‘s are  not normally distributed 
(DUPUIS 1994).  Therefore, X d i s  still an Ornstein-Uhlen- 
beck process. 

Using the results of FEINCOLD et aZ. (1993), we have 

Po(max X,  > b) = 1 - @ ( b )  + tZb+(b), ( 5 )  

where Z is the  length of the chromosome, +(x) and 
@(x) are  the density and cumulative functions of the 
standard  normal  distribution, respectively. As an exam- 
ple, we calculated the  threshold as a  function of t for 
the test statistic X ,  at 5% level  with 1 = 100 cM. The 
results are shown in Figure 2.  

Thus, we can see that with a fixed significance level 
a,  increasing t will decrease 1 - @ ( b )  and  hence in- 

(1 

crease the  threshold b. This can be explained intuitively. 
The recombination is a  measure of genetic distance 
between the two linked loci. Increasing t corresponds 
effectively to increasing the  number of recombination 
events, which in turn, is equivalent to increasing the 
genetic distances, or the  length of the  genome. This 
implies that we would search a QTL in a  “longer” ge- 
nome.  Therefore, to maintain the same significance 
level a of the test  as in  the F2 case, we need to increase 
the  threshold of the test for F, data. 

When the  genetic  map is not  dense, ie. ,  markers are 
not available at some locations, it is  usually assumed 
that x,( d) is known at equispaced distances of A cM. For 
the case where the xt(d) are only  known at equispaced 
distance of A cM, (5) becomes 

Po(max X ,  > b) = 1 - @ ( b )  + tZb+(b)v(bJ2tA), (6) 

where v( x) = e-o.583s (FEINGOLD et al. 1993). Note that 
this equation is equivalent  to (5) when A = 0. Here, 
the  function v(x)  is a  discreteness  correction  factor 
to  account  for  the  fact  that we are  computing  the 
likelihood  ratio statistic at discrete  points on  the  chro- 
mosome  instead of continuously as  is the case for  a 
dense  map. 

Similarly, when d is unknown,  the log-likelihood ratio 
statistic for testing the  dominant effect is 

k 

max Z:, (7) 
d 

where 

The threshold of the test is determined by 

Po{max Zd > b] = 1 - @ ( b )  + 2tZb+(b), ( 8 )  
rl 

if the  genetic  map is dense, or 

Po{max zk, > bl = 1 - ~ ( b )  + 2tZb+(b)v(bJ4tA), (9) 

if the  map is equispaced  map with the distances of 
A cM. 

Next we address the issue of testing for  the  presence 
of either additive or dominance effect, which amounts 
to a  general hypothesis H,: a = 6 = 0 us. Hl:a f 0 or 
6 f 0. The corresponding log-likelihood ratio is 

d 

Thus, as n + 00, X ,  and Zd are Gaussian processes with 
mean 0 and covariance function e-t1u1 and e-2r1u‘,  respec- 
tively. Moreover, X ,  and Z, are asymptotically indepen- 
dent (DUPUIS 1994). 

Using the results of DUPUIS (1994), we can determine 
the  threshold of the test by solving the following in- 
equality for b 
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FIGURE 3.-Power of test with a significance level of 5% 
and an additive  effect a = 0.25 (0: is set to be 1). -, ---, . . . - . - . represent n = 100,200,300, and 500, respectively. 

Po(max[X2(kA) + Z2(kA)] 2 t?] = e-'/" 
k 

+ ~ 6 ~ t b ( f i ) e - 1 ' ~ p  5 a. (10) 

The power of the  test: The power of a test is the 
probability of detecting  the effect of the QTL when it 
exists. To give an approximation to the power of  the 
test, we need to calculate E [ X J  under Hl:a f 0. Assume 
that  there is a QTL, we can show in Appendix C that 

E [ X d ]  = (e"I"1, (11) 

where 5 = f i a / a ,  and I uI is the distance between 
the  marker and  the QTL. 

Again, using the results of FEINGOLD et al. (1993), we 
obtain  the following approximations: 

(1) for  a  dense  map 

P,,(max X ,  > 6) = 1 - @ ( b  - E )  
d 

+ + ( b  - 5)[2€" - ( b  + ' T l I ,  (12) 

(2) for an equispaced map 

P,,,(max > b) = 1 - @ ( b  - E )  
k 

+ + ( b  - <)[~E"v - ( b  + <)"v'], (13) 

where v = ~(6). 
Although the formula  for calculating the power of 

the test is the same in form for any  F, population,  the 
power of the test in F, population decreases with t be- 
cause increasing t means increasing the  threshold as  we 
have  shown in the previous section. 

Figure 3 shows the power of the test statistic X, for  a 
significance level of 0.05 and an additive effect a = 0.25. 
Note that  the power of the test in general decreases with 
increasing t, but  the decreases in power for  different 
sample sizes are  different. The powers of the test for n 
= 100, 200, 300, and 400 based on F,(, are 30%, 46%, 

82%,  and 98% as those based on F,, respectively. Thus, 
the  reduction  in power  with increasing t is smaller for 
larger sample size. 

Support  intervals for QTL locations: The construc- 
tion of a  support interval for  the QTL location on  the 
chromosome is a useful way to assess the uncertainty in 
QTL localization. It also helps to narrow down the 
search of QTL to a small chromosomal region. Com- 
pared with that in F2 population,  the  length of support 
interval of mapping QTL in F, population will be dra- 
matically reduced. 

To illustrate this, we use a lod-support interval. An 
a-lod  support interval includes all the loci s such that 

Zod( s) 2 max lod( d) - a ,  (14) 

where lod(s) is the base-10 logarithm of the likelihood 
ratio statistic at  the locus s. 

From the previous section, we know that  the asymp- 
totic log-likelihood ratio  for testing H": a = 6 = 0 us. 
Hl:a f 0 or 6 f 0 in the  presence of a QTL at d is 

ri 

LR(d) = X: + Zz .  

The lod score can be written as 

lod(d) = '/2(log  lOe)LR(d).  (15) 

Assuming there  are k QTL, we know from the previ- 
ous section that, provided n is larger enough, 

As we have  shown in the previous section, the esti- 
mated  genetic effects & (d) and 8( d) decrease exponen- 
tially  with t as  well  as the distance between the  marker 
and  the QTL. As a result, the  length of support interval 
of the QTL position will be reduced exponentially as t 
increases. Figure 4 illustrates the  expected  length of 
the  support interval using F, data.  It can be seen that 
the expected lengths of the  support interval decreases 
exponentially. The lengths of support interval using F, 
data  are  reduced by fivefold if Flo data  are used. How- 
ever, there is a  diminished  return: only a  further 1.8- 
fold reduction is achieved after another 10 generations. 
This agrees with  what DARVASI and SOL.L.ER (1995) 
found  in  their simulations. 

Kullback-Leibler (KL) distance  and  Fisher  informa- 
tion: To  further characterize the gain in fine-scale 
mapping of  QTL using the historical recombinations, 
we compute  the KL distance between the probability 
distributions with true  and estimated QTL locations. 
We also compute  the Fisher information  for  the likeli- 
hood ratio. 

The JiL distance measures the  mean  information  for 
discrimination in favor of one hypothesis, say, A, against 
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FIGURE 4.-Expected lengths of the  support intervals of 
the estimated QTL locations using F, data. -, the case of n 
= 100, LY = 0.5, 6 = 0.25; ---, the case of n = 1000, LY = 0.25, 
6 = 0.1; * * e ,  the case of n = 500, LY = 0.25, 6 = 0.1. In all 
cases, a: is set to be 1. 

another when A is true (KULLBACK 1983a). Let y n  be 
an estimated QTL map location and y* the  true QTL 
map location. We can show (APPENDIX D) that,  for  a 
dense  map,  the KL distance between the likelihood 
functions L ( y n )  and L ( y * ) ,  defined as K,(L(y*) ,  L ( y n ) )  
= E,*(log[L(r*)/L(r,)l), is given by 

K(L(?.*) 3 U Y n )  1 

where Or,,* is the frequency of the  recombinant haplo- 
types between the locations y n  and y*. 

If 6 = 0, i.e., there is no  dominant effect, 

where 0, is the  recombination  fraction between y n  
and y*. 

Thus,  the KL distance K,(L(y*) ,  L(y , ) )  for F, data is 
approximately t/2 times greater  than  that  for F2 data. 
In  other words, the information  for discriminating y* 
against y n  is increased by t/2-fold. 

KONG and WRIGHT (1994) showed that above result 
implies that 

as n (  y n  - y* I + co with the  rate  proportional to the 
KL distance. Hence, with a large enough sample size 
and a  dense  map,  the likelihood function will be con- 
centrated  in intervals encompassing the  true locations 

QTL y* ,  with  widths of the intervals in  the order of 2/ 
nt in F, population, which is t/2 times narrower than 
that in F2 population.  This  further confirms that the 
widths of support intervals of the QTL location in F, 
population would be reduced by t/2 times. 

If 6 f 0, we can show that (APPENDIX E) 

-A: U T ) d T  

EIOeny*] = be (19) 

where 

1 
2N(t) ' 

X ( t )  = 28, + - 

Thus, K,(L(y*) ,  L(y , ) )  can be evaluated in principle 
by substituting E[B,,,*] = 1/2[1 - e?mf] and  (19)  into 
(17). Of course,  the expression for K,(L(y*) ,  L ( y n ) )  
will become  more complicated. 

The generalized Fisher information of the likelihood 
ratio measures the  amount of information supplied by 
the  data  about  the unknown parameter, e.g., the QTL 
location y* (KULLBACK 1983b). However, the typical 
formula of Fisher information  requires  that  the log- 
likelihood function  be differentiable. Here, however, 
the log-likelihood ratio  function is a  function of the 
distance between yn and 7". Therefore, this  log-likeli- 
hood  ratio  function is not differentiable at  the  true 
QTL map location y*. Thus,  the formula for calculating 
the Fisher information  cannot simply be applied to our 
case. KONC (A. KONG, personal communication) modi- 
fied the formula of Fisher information to allow a nondif- 
ferentiable log-likelihood function  at  the  true parame- 
ter as follows. 

Suppose that  a  random variable X is distributed with 
density p(  x, e) and 6 is an estimator of g(6). Further- 
more, assume that 

Here, we can show that (APPENDIX F ) ,  in our case, 

The Fisher information Z(e) is defined as 

Now, applying the definition (21) to our  problem, 
we can define  the Fisher information I,( y* )  for measur- 
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FIGURE 5.-The  Fisher  information as a function of  popula- 
tion size. -, ---, * * , - * - * are  Fisher  informations for n = 
100,  500,  1000  and  10000,  respectively. 

ing  the difficulty of estimating the  true QTL location 
y* in fi  population as 

For the ease of exposition, we use the first-order of 
approximate  to  the likelihood ratio. In APPENDIX G, we 
show that 

U Y " )  = - [2(26 - a)4  + 2(26 + a)4 
( a  - 6)' 
8a4 

+ 46(26 - a)'(2S + a )  + 2(46' - a2)'] 

+ b(a - b)a' 
2a4 

[(26 - a)' + 3(26 + a)*] 

@a4 ( a  - b)2 

2a4 2a2 
+-+- (86' + 5a2 - 8a6) 

+ b(a  - 6) 
a2 

a(a  + 2 4 ,  

where 

t a = - -  
2 '  

If  we assume N(t)  = N, then b = - (?/16N). To see 
how the Fisher information increases as generation t 
increases, we calculated the Fisher information  for a = 
6 = 0.5, and a* = 1 (Figure 5 ) .  We can see that  the 
Fisher information increases as the  generation t in- 
creases, which implies that  the observed data sampled 
from an F, population  contain  more  information  about 
the  true QTL location than  that  in F2 population.  It 

also can be seen from the figure that,  for t 5 12,  the 
Fisher information  for  data sampled from populations 
with different sizes (100, 500, 1000, and 10000) are 
practically identical. After 12 generations,  the Fisher 
information  for  data sampled from populations of 
>500 are indistinguishable. However, the difference in 
Fisher information increases as t increases for N = 100 
and N = 500. These observations suggest that  for t 5 
12, an effective population size  of 100 should be 
enough. This seems to agree with DARVASI and SOLLER 
(1995). For t > 12, however, a  population size  of >lo0 
is recommended. This is because that, while a popula- 
tion of  100 individuals may be large enough to avoid 
genetic fixation for t 5 12, it may not be large enough 
if further intercrossing is required. 

EXTENSION TO THE  MULTIPLE 
REGRESSION  MODEL 

The previous analysis can be extended to the multiple 
regression model  for fine-scale mapping of QTL using 
F, data. Assume n individuals are sampled at random 
from an F, population. For the zth individual ( i  = 1, . . . , 
n), denote  the corresponding quantitative trait value  as x, and marker genotype (codominant)  at  jth locus as 
Mi( I ]  ( j  = 1, . . . , m). Assuming no epistasis and  no 
interaction between environment and QTL, the multi- 
ple regression can be written as  follows: 

1 +a, - 6, M , ( j  = AA 

Y , = p + c  6, Mt( J )  = AB + t, for an F,, (22) ,= 1 
-a, - b] Mt(J = BB 

where a] and 6, are additive and  dominant effects associ- 
ated with thejth marker, et's are  independent  and iden- 
tically distributed  random variables  with E[€,] = 0 and 
Var(e,) = 2 .  

Let X ,  be  a row vector containing  the coefficient of 
the  parameters p, a and 6 in (22) and X = [X:; . . . , 
X;]? In matrix notations,  (22) can be rewritten as 

Y = + E, E[&] = 0 ,  V(E) = a21, (23) 

where p = [p,  a,,  . . . , am, SI, . . . , dm].  It is a classical 
result that  the least square estimate of 0: 

/j = ( X T X ) " X T y .  

By the  strong law  of large numbers (RODOLPHE and 
LEFORT 1993), 

- xrx = - XFX, + E[X:jr,] = u, 1 ,  1 "  d . S  

n 2 = 1  

where 
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... ... 

... ... 
1 0 0 0 0 0 
0 A1 0 0 0 0 
0 0 A2 0 0 0 0 

0 0 0 ... A, 0 0 ... 
0 0 0 ... 0 B1 0 ... 0 
0 0 0 ... 0 0 & ... 

0 0 0 ... 0 0 0 ... 

... ... 
. . . . . . . . . . . . . . .  

........................... 

where A, and B, denote  the matrices of additive and 
dominance effects in  the zth chromosome respectively. 
We can show (APPENDIX H) that  for F, data 

A, = [&-fA1l,] and B, = [e-'"a,,<], 

where A,,' is the  genetic distance between the markers 
j and j ' .  

It can be seen  that  the matrix U, for  the F, data has 
the same structure as that  for  the F2 data. If all genetic 
distances A,j8 increase by t /2  fold,  the matrix U, for  the 
F2 data  become  identical to U,. 

Since 
a. 5 

n Var(0) = n o2(xT4-' --t Q'U" 

by the  Central Limit Theorem, we  have 

& ( f i n  - 0) - N(0,  a'u-l). 

Hence, , b n  is an unbiased  and  consistent  estimator 

Asymptotic  variance of the  estimated  genetic ef- 
fects: As we mentioned  before,  the matrix U, has the 
same structure of the matrix Uin F, population.  There- 
fore, using similar arguments as that of RODOLPHE and 
LEFORT (1993), we have 

of p. 

2 
t 

= - V(&J 

and 

2 
t 

= - V( 6J , 

where V(&J and V(6,) are  the variances of &j  and 8,, 
estimated by multiple regression using F2 data (Ro? 
DOLPHE and LEFORT 1993).  It can be seen from the 
above equation  that, as the distance between adjacent 

markers get smaller, i e . ,  the  marker density increases, 
both V(&J and V(6]) increase, which  makes it difficult 
to increase the resolution of mapping QTL. 

We can see from above that one way to effectively 
use dense  map and retain small variances of estimated 
genetic effects is to map QTL by F, data.  Indeed,  the 
variances of the estimated additive and dominance ef- 
fects by multiple regression for F, data are  reduced ap- 
proximately by t /2 times as compared with F2 data. 
Thus,  the use  of F, data will be more effective in separat- 
ing individual QTL when they are  linked, and provide 
greater precision of the estimated genetic effects. 

Note that for the simple regression, since 

u,= 

0 %I 0 ... 0 0 0 ... 0 
0 0 gz * * *  0 0 0 * * -  0 

0 0 0 ... %I 0 0 ... 0 i 
1 0 0 * * .  0 0 0 .*. 0 

. . . . . . . . . . . . . . .  0 0 * * *  0 

0 0 0 ... 0 I 0 ... 0 
0 0 0 ... 0 0 z ... 0 

0 0 0 ... 0 0 0 ... I 
.......................... 

we have 

V(s i ( t ) )  = V(&j) and V(d,(t))  = V(6,). 

This suggests that  for  the simple regression model, 
increasing t has no effect on variances of the estimated 
genetic effects. 

Effects  of QTL: By the same argument as that of 
RODOLPHE and LEFORT (1993), we can show that using 
F, data to map QTL does not destroy the most important 
property of multiple regression model  for  mapping 
QTL: the  genetic effects associated with the markers 
depends  on only those QTL that  are located on the 
interval flanked by the two neighboring markers, and 
is independent of the effects  of QTL located on  other 
intervals. Therefore, to calculate the effects of QTL as- 
sociated with the  marker, we need to consider only 
those QTL located in the interval flanked by neigh- 
boring markers. 

The increase of recombination events, as a result of 
the use  of historical recombinations, effectively in- 
creases genetic distances between the markers and 
QTL. Therefore, as in the case  of the simple regression, 
the estimated additive and dominance effects due to 
QTL will be reduced quickly when moving away from 
QTL. In this subsection, we evaluate the  amount of the 
reduction as a function of t. 

Using the same argument as that of RODOLPHE and 
LEFORT (1993), we can show that (APPENDIX I )  

and 
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where K is the  number of QTL located between marker 
j - 1 and marker j ,  bk and ck are additive and dominance 
effects of the kth QTL, respectively. 

To quantify how much  the additive and dominance 
effects, associated with the markers, in Ff population 
are  reduced, we assume, for simplicity, that only a single 
QTL is located between markers j - 1 and j .  This as- 
sumption holds when the genetic  map is dense  enough. 
Then, after some algebra, we have 

and 

where Ai, is the  genetic distance between the  marker j 
and  the QTL and a j ( 2 )  and 6,(2) are  the additive and 
dominance effects estimated from F2 data. Thus,  the 
estimated genetic effects decrease exponentially as one 
moves away from QTL, with the  dominant effect de- 
creasing faster than  the additive effect. 

Recall that - N ( p ,  a2U"), and that variances of 
the additive and  dominance effects based on F, data 
decrease linearly with t as compared with those based 
on F2 data.  Taken  together, it is  easy to visualize that 
ej(t) and Aj(t) will be  concentrated  on  the increasingly 
narrow region surrounding  the QTL. Consequently, the 
"ghost locus" and  other problems associated with using 
F2 data in mapping QTL will be alleviated significantly 
using F, data. 

Support intervals for QTL locations: Suppose that 
we have estimated the location of QTL, which  is flanked 
by the markers M, and Mc+l. Now  we want  to consider 
the confidence interval for the estimated location of 
QTL q. From classical regression theory (GFWBIL 1976),  
it is well-known that  the likelihood ratio statistic for 
testing Ho:a = S = 0 us. H l : a  # 0 or 6 # 0 is given by 

LR = 
Y r ( x x -  - &X,-) Y 

a' 

where XX- = X(X 'x ) - 'XT  and X, = [ 1 1 *  - 11': 
The lod score can be written as 

lod = & log,, eLR 

which can be  approximated asymptotically by 

L .  I =  I I =  1 

where a] and Sj are  the statistic additive and dominance 
effects at  the  marker j defined in the previous section. 
If A j k  is the  genetic distance between the  marker Mj 
and  the kth QTL in  the interval flanked by the markers 

M, and  and bk and ck are  the  corresponding addi- 
tive and dominance effects of the kth QTL, respectively, 

k= I 

k= 1 

where 4 is the  number of QTL in the  jth interval. 
For simplicity, suppose that we have a  dense  map and 

the  marker M,, located at locus d in  the i interval [Mi,  
M 2 + 1 ] ,  is used to detect  the location of QTL. Adding 
this marker to the set of the original markers, and re- 
gressing the phenotypic value Yon this augmented set 
of the markers yields an  approximation to the asymp- 
totic likelihood ratio statistic: 

LR(d) = - + + a, n 
2 

where 
kd 

k= 1 

k= 1 

n m n 
a = 0 C upl + n u,6,, 

,=I  I= 1 

and kd is the  number of QTL in  the interval flanked by 
the markers [Mt,   Md] . 

Recall that  an x-lod support interval is an interval 
including all the loci s such that 

lod(s) 2 max lod( d) - x. ( 2 6 )  

To  determine  the  support interval, we need to calcu- 
late maxd lod(d) .  For simplicity, assuming that  there is 
only a single QTL, indexed as q, in  that interval. Then, 

d 

Substitute this into ( 2 6 ) ,  and find a  marker located at 
d, such that 

where Adt4 denotes  the  genetic  distance between the 
marker  located  at dl and  the QTL q or half a-lod 
support interval in F, population,  denotes  the 
genetic  distance  between  the  marker  located  at d, and 
the  marker M,, 
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and 

To see how much  the  length of the  support interval 
for a QTL map location is reduced by multiple regres- 
sion model using F, data, we assume cq = 0, i.e., there 
is no  dominant effect. After some algebra, we have 

e-2A +4tAd = @ 9 P , 
63 

where Adtq and A&, are half of the  length of the a-lod 
support interval for a QTL map location by multiple 
regression using F, and F2 data, respectively. It is easy 
to see that,  for t > 2, 

- > 1. gz 
gt 

Hence, 

That is 

which means that  the  length of an  a-lod  support inter- 
val for  a QTL map location by multiple regression using 
F, data will be reduced by more  than t/2 fold. 

Threshold and power: For a particular chromosomal 
interval flanked by  two markers, the statistic genetic 
effects estimated through  the multiple regression de- 
pend only on those QTL located within the interval. It 
is thus  natural  to test whether or not  there exists a QTL 
in a given interval. Suppose that we want to test the 
interval [Mj-,, Mj] .  Similar to the simple regression 
model, we let 

and 

where &(d) and 6(d) are associated  with a marker lo- 
cated  at locus d in the interval [MI-,,  Mj] and are esti- 
mated by the multiple regression method. 

It can be shown that under  the null hypothesis of 
Ho:bq = 0 and cq = 0, X,  and Z, are asymptotically 
Gaussian processes with mean 0 and a complicated co- 
variance function, which can be  approximated by the 

function R( u) = e- f1u1.  Therefore, x d  and z d  can be 
approximated by an Ornstein-Uhlenbeck process. 

To determine  the thresholds of the test, we can use 
formulae similar to (5), ( 6 ) ,  (8), (9), and ( lo) ,  but with 
the  length of genome replaced by the  length of the 
interval. Consequently, for fixed t, the threshold of the 
test becomes lower. 

Assume that in the interval [Mj-,, M,] there exists 
only one QTL  with  additive and dominance effects bk 
and ck, respectively. Under H,:bk f 0 or ck f 0, we have 

The coefficient of e-"dk depends in general on the 
genetic distance between the marker and  the QTL and 
do  not have the form of (1 1). However, if Adk is small, 
E[& (d) ] can be approximated by 

E[&(d)]  bke-lA,k. 

In this  case, letting ( = d E ( b k / a , ) ,  (12) and (13) 
can still be used for calculating the power. Note that 
[ is independent of the time and the  length of the 
interval. 
As we discussed before, increasing the  number of 

recombinant events is  effectively equivalent to increas- 
ing the genetic distance between loci, and  hence to 
decreasing the genetic effects  of  QTL. Therefore, to 
maintain a prespecified type I error, we need to increase 
the threshold of the test, which, in turn, will decrease 
the power of detecting QTL. To increase the power of 
detecting QTL  in the particular interval, we can reduce 
the  length of the interval. If the  product t l i s  kept con- 
stant,  then we know from (5) that  the threshold of the 
test will remain constant, as  will the power. 

DISCUSSION 

With increasing popularity of  QTL mapping in  eco- 
nomically important animals and in experimental spe- 
cies, the  need for statistical methodology for fine-scale 
QTL mapping becomes increasingly urgent. An obvious 
approach is to increase sample size to increase the re- 
combination events.  However, this approach is often 
constrained by resources. Moreover, as  shown by HYNE 
et al. (1995), increasing the sample size beyond a certain 
point will not  further  reduce  the  length of confidence 
interval for QTL map locations. 

Intrigued by the work  of DAVASI and SOLLER (1995), 
we have carried out  a theoretical analysis of  QTL map- 
ping using historical recombinations. We have demon- 
strated that  both simple and multiple regression models 
can reduce significantly the lengths of support intervals 
for estimated QTL map locations and the variances  of 
estimated QTL map locations using F, data. We also  have 
demonstrated  that, while the simple regression model 
using data from an F, population does not  reduce  the 
variances of the estimated additive and  dominant ef- 
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fects, the multiple regression model does. To  further 
understand  the advantages and disadvantages of using 
F, data relative to F2 data, we have calculated the Kull- 
back-Leibler distance and Fisher information  for  the 
simple regression model. In  addition, to help imple- 
ment fine-mapping methods, we have derived the for- 
mula to compute  the power and threshold values for 
both  the simple and multiple regression models. 

The idea behind  the work  of DAVASI and SOLLER 
(1995) is to  use historical recombinations  for fine-scale 
mapping. This idea has been known in human genetics 
for  about 10  years, although it has recently been shown 
to be quite successful  in locating disease genes in fine 
scale (HASTBACKA et al. 1994).  The idea is simple in- 
deed: in the absence of selection, the linkage disequilib- 
rium between any QTL and marker loci, however 
closely linked they are, will gradually dissipate as the 
population  continues intercrossing. Hence,  the evolu- 
tion of haplotype frequencies in the  population reflects 
the action of recombination  through past generations, 
making it possible to disentangle and finely map closely 
linked QTL. 

It should be pointed out that,  although  the popula- 
tion model  that we considered is for  the F, population, 
or, in DAVASI and SOLLER’S terms, the AIL design, the 
model and subsequent analysis can be modified easily 
to allow for other features such as selection or particular 
design. 

The analytical techniques  that we used in this paper 
enable us to discover much  more  interesting  features of 
fine-scale mapping via historical recombinations  than 
found by simulation studies. We have demonstrated 
that, since the estimated additive and dominance effects 
based on F, data decrease exponentially as one moves 
away from QTL, the  length of the  support interval for 
the estimated QTL map location also decreases expo- 
nentially with t and by approximately t / 2  fold. We also 
have demonstrated  that,  for  the simple regression 
model  that was investigated by DAVASI and SOLLER 
(1995),  the variance of estimated genetic effects using 
F, data is the same as that in F2 population.  In other 
words, there is no gain in precision in estimation of the 
genetic effects using the simple regression even F, data 
are used. If, however, a multiple regression model is 
used, that variance will be reduced approximately by 
t / 2  times as compared with F2 data. 

By extending  the  definition of the Fisher information 
to the case  of nondifferentiable likelihood functions, 
we have showed that,  for  the simple regression model, 
the Fisher information evaluated at  the  true QTL  loca- 
tion with F, data is much larger than  that  for F2 data. 
We also  have used Kullback-Leibler distance to measure 
the  rate of convergence of the estimated QTL map 
location to the  true QTL location. We found  that  that 
Kullback-Leibler distance between the likelihood func- 
tion evaluated at estimated QTL map location and  at 
the  true QTL location using F, data is approximately 

t/2 times as large as that using F2 data.  Thus,  for  the 
simple regression model,  the  information on QTL  loca- 
tions using F, data is much  higher  than  that  for F2 data. 

To  help  implement fine-scale mapping of QTL using 
F, data, we have evaluated the  thresholds of the test for 
both simple and multiple regression models. Intuitively, 
increasing t means more accumulated recombinant 
events, which is effectively equivalent to increasing the 
genetic distances, or the  length of the  genome  on which 
QTL are being searched. Consequently, the thresholds 
of the test for F, data should be higher. We have  showed 
that  the thresholds for  the test of QTL for  a  genome 
segment of length I with F, data  are roughly equal to 
those for a  genome  segment of length tl with  F2 data. 
As a result, the power of detecting QTL for a giuen 
marker will be reduced. This seems to contradict with 
the  common  perception  that  experimental  parameter 
values that  increase/decrease  the power  also tend to 
decrease/increase  the  lengths of support  (or confi- 
dence) intervals for QTL map locations. This apparent 
contradiction can be easily  resolved by noting  that  here 
the power refers to the power of the test for  whether 
or  not there exists a QTL for  a given marker,  not  the 
power  of testing the QTL locations. In  addition, be- 
cause the genetic effects decrease exponentially as one 
moves  away from the QTL, the  length of support  inter- 
val for QTL location also decreases exponentially, thus 
increasing the precision of estimation of QTL map loca- 
tion. This point has been made by DAVASI and SOLLER 
(1995) using a simple argument. Based on  our analysis, 
the  point can be illuminated more clearly. 

We point out, however, that  the use  of historical re- 
combinations in fine-mapping QTLs is not without 
limit. In fact, as  shown in Figure 4, there is a diminished 
return with increasing tin terms of increasing the preci- 
sion of the estimation of QTL map location. The great- 
est gain in precision seems to be achieved in the first 
eight to 10 generations after FB. This suggests that  for 
t 2 10, the use of F, data may not  be very cost-efficient. 

Since increasing the  mapping resolution by using his- 
torical recombinations will result in decrease in power 
of detecting QTL, one might want to use a  denser ge- 
netic  map to detect QTL. However, increasing the  den- 
sity of the  map will increase the variances of the esti- 
mated genetic effects at  the markers, which will cause 
difficulty in increasing mapping  resolution. To main- 
tain the power of detecting QTL  while improving the 
accuracy of estimated QTL map  location, it may be 
appropriate to use a two-stage mapping strategy. First, 
use a sample of moderate size taken from  the F:! popula- 
tion and a  map with moderate density to detect QTL. 
Second,  once  the existence of QTL in some regions is 
detected,  one can proceeding by fine-scale mapping 
using F, data. 

Fine-scale mapping of QTL using historical recombi- 
nations is particularly applicable to species with a  short 
generation cycle that can be easily reproduced by inter- 
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crossing and  for which inbred lines exist. As DARVASI 
and SOLLER (1995) pointed  out,  inbred lines of mice, 
chicken,  corn and cultivars as  well as accession lines of 
most annual selfing plant species are good candidates 
for F, population.  Furthermore,  the time scale required 
for  production of a F, population applies only to the 
first time that such a  population is produced. In plant 
species, an F,, once  produced, can be  stored in the 
form of seeds, and constitute  a  permanent  mapping 
population.  In mice, or  other animals, once  an  Flo, say, 
has been  produced, it can be maintained by reproduc- 
ing  at  a  much slower rate.  Hence,  for  a relative small 
investment, such  produced  population can be used as 
resource  population  for  fine  mapping. 

This  research was supported by the National  Institutes of Health 
grants R29-GM-52205 and ROl-GM-56515. 

LITERATURE CITED 

BODMER, W. F., 1986 Human genetics: the molecular  challenge. 
Cold Spring  Harbor Symp. Quant. Biol. Lk 1-13. 

CHURCHIIL., G. A., J. J. GIOVANNONI and S .  D.  TANKSLEIY, 1993 
Pooled-sampling makes high-resolution mapping practical with 
DNA markers.  Proc. Natl. Acad. Sci. USA 90: 16-20. 

DARVASI, A,, and M. SOLLER, 1995 Advanced intercross  lines, an 
experimental  population  for fine  genetic  mapping. Genetics 141: 
1199-1207. 

DARVASI, A., V. WEINREB, J. MINKE, I. WELLER and M. SOLLER, 1993 
Detecting  marker-QTL  linkage and estimating  QTL gene effect 
and  map location using a saturated genetic  map. Genetics 134: 

DAVIES, J. L., Y. KAWAGUCHI, S. T. BENNETT, J. B. COPEMAN, H. J. COR- 
DELL et al., 1994  A genome-wide search for  human type 1  diabe- 
tes susceptibility genes.  Nature 371: 130-136. 

DIETRICH, W. F., J. MILLER, R. STEEN, M.  A. MERCHANT,  D. DAMRON- 
BOLES et al., 1996 A  comprehensive  genetic map of the mouse 
genome.  Nature 380: 149-152. 

DUPUIS, J. 1994 Statistical problems associated with mapping com- 
plex and quantitative traits from  genomic mismatch scanning 
data. Technical Report No. 2. Department of Statistics, Stanford 
University, Stanford, CA. 

ETHIER, S., and T. G. KURTZ, 1986 Markov Processes: Characterization 
and Convergence. Wiley,  New York. 

FEINGOLD, E., 0. P. BROWN and D. SIECMUND,  1993 Guassian mod- 
els for  genetic linkage analysis using complete high-resolution 
maps of identity by descent. Am. J. Hum.  Genet. 53: 234-251. 

GRA~II-I,, F. A,, 1976 Themy and Application of the Linear Model. 
Wordsworth & Books/Cole Advanced Books & Software, Pacific 
Grove, CA. 

WEY, C. S . ,  and S .  A. KNorr, 1992 A  simple regression method 
for  mapping quantitative  trait loci in line crosses using  flanking 
markers.  Heredity 69: 315-324. 

W E Y ,  C. S., S. A. KNOTT and  J. M. ELSEN, 1994 Mapping  quantita- 
tive trait loci in crosses between outbred lines  using least squares. 
Genetics 136: 1195-1207. 

HASHIMOTO, L., C. HABITA, J. P.  BERESSI.,  M. DELEPINE, C. BESSE et 
al., 1994 Genetic mapping of a susceptibility locus for insulin- 
dependent diabetes mellitus on  chromosome llq. Nature 371: 

WTBACKA, J., A.  DE IA CHAPELLE, M.  M. MAHTANI, G. CLINES, M.  P. 
REEVE-DALY et al., 1994 The diastrophic dysplasia gene  encodes 
a novel sulfate transporter: positional cloining by fine-structure 
linkage  disequilibrium  mapping. Cell 78: 1078-1087. 

HYNE, V., M. J. KEARSEY, D. J. PIKE and J. W. SNAPE, 1995 QTL analy- 
sis-unrealiability and bias in estimation  procedures. Mol. Breed. 
1: 273-282. 

JANSEN, R.  C., 1989 Estimation of recombination parameters be- 
tween a  quantitative  trait locus (QTL) and two marker loci. 
Theor. Appl. Genet. 78: 613-618. 

943-951. 

161-164. 

JANSEN, R. C., 1993 Interval mapping of multiple  quantitative traits. 
Genetics 136: 205-214. 

JENNINGS,  H. S., 1917 The numerical results of diverse systems of 
breedingh special relation  to the effects of linkage. Genetics 2: 
97-154. 

KARLIN, S., and H. M. TAYLOR, 1981 A Second Coursr in Stochastir 
Processes. Academic Press, Inc. New York. 

KNAPP, S .  J., W. C. BRIDGES and D. BIRKES, 1990 Mapping  quantita- 
tive trait loci using molecular marker linkage map.  Theor. Appl. 
Genet. 79: 583-592. 

KNOTT, S .  A,, and C. S .  HALEY, 1992 Maximum likelihood mapping 
of quantitative trait loci using full-sib families. Genetics 132: 
1211-1222. 

KONG, A,, and F. WRIGHT, 1994 Asymptotic theory for  gene m a p  
ping. Proc. Natl. Acad. Sci. USA. 91: 9705-9709. 

KULLBACK, S., 1983a Fisher information, pp. 115-118 in Encyclopedia 
of Statistics, Vol. 3, edited by S. KOTZ and N. L. JOHNSON. John 
Wiley,  New  York. 

KULLRACK, S., 1983b Kullback information, pp. 421-425 In Encyclo- 
pedia of Statistics, Vol. 4, edited by S .  KOTZ and N. L. JOHNSON. 
John Wiley, New York. 

LANDER, E. S . ,  and D. BOTSTEIN, 1989 Mapping  Mendelian factors 
underlying  quantitative traits using RFLP linkage maps. Genetics 
121: 185-199. 

LANGE, R,  L. KUNKEI., J. ALDRIDGE and S .  A. LATT, 1985 Accurate 
and  superaccurate  gene mapping. Am. J. Hum. Genet. 37: 853- 
867. 

LEWONTIN, R. C., and K. KOJIMA, 1960 The evolutionary dynamics 
of complex polymorphisms. Evolution 1 4  450-472. 

MARTINEZ, O., and R. N. CURNOW, 1992 Estimating the locations 
and  the sizes  of the effects of  quantitative trait loci using flanking 
markers. Theor. Appl. Genet. 85: 480-488. 

PATERSON, A. H., J. W. DEVERNA, B. LANINI and S. D. TANKSLEY, 1990 
Fine mapping of quantitative trait loci using selected  overlapping 
recombinant chromosomes in an interspecies cross of tomato. 
Genetics 124: 735-742. 

RISCH, N., S. GHOSH and J. A. TODD,  1993 Statistical evaluation of 
multiple-locus linkage data in experimental species and its rele- 
vance to human studies: application to nonobese diabetic (NOD) 
mouse and  human  insulindependent diabetes mellitus (IDDM). 
Am. J. Hum.  Genet. 53: 702-714. 

ROBRINS, R. B., 1918 Some  applications of mathematics  to breeding 
problems. 111. Genetics 3: 375-389. 

RODOLPHE,  F., and M. LEFORT, 1993  A multi-marker model for  de- 
tecting  chromosomal  segments displaying QTL activity. Genetics 

TANKSIXY, S .  D., 1993  Mapping polygenes. Annu. Rev. Genet. 27: 

THODAY, J. M., 1961 Location of polygenes. Nature 191: 368-370. 
TODD, J. A., C. MIJOVIC, J. FLETCHER, D. JENKINS, A.  R. BRADW,LL et al., 

1989 Identification of susceptibility loci for  insdindependent 
diabetes mellitus by trans-racial gene mapping.  Nature 338: 587- 
589. 

WELIER, J. I., 1986 Maximum likelihood  techniques for  the map- 
ping  and analysis of  quantitative trait loci with the aid of genetic 
markers. Biometrics 42: 627-640. 

WRIGHT, F., 1994 Asymptotics and Robustness fw  Genetic Linkage M a p  
ping. Ph.D. thesis, University of Chicago. 

ZENG, Z. B., 1993  Theoretical basis for separation of multiple  linked 
gene effects in  mapping quantitative  trait loci. Proc. Natl. Acad. 
Sci. USA 90: 10972-10976. 

ZENG, Z.  B., 1994 Precision mapping ofquantitative trait loci. Genet- 
ics 136: 1457-1468. 

134: 1277-1288. 

205-233. 

Communicating  editor: W. J. EWENS 

APPENDIX A 

Assume that  the  recombination between loci 1 and 
2, if any, occurs before  reproduction.  Denote the fre- 
quency of the  gamete Ail$( i, j = 1, 2) after recombina- 
tion by P $  ( t )  . Then, in general, we have 
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where 

6,= { 1 i f i = j  

0 otherwise. 

In particular, applying (28 )  for P& and P& ( t)  yields 

P&(t)  = %&(t - 1)  + % P d t  - 1)  + %Pll(t - 1)PH 

x ( t  - 1) + %R2*(t - 1)Pl2(t - 1 )  

8 
2 

x P22(t-  1) + - P11(t-  1)P22(t-  1) 

Since we are mainly concerned with recombinant  hap- 
lotypes r, = P12 ( t )  + Pz1 ( t ) ,  we obtain, by summarizing 
(28 )  and (29), 

ry = P&(t)  + P*21(t) = ?--I + 2 8 [ P , , ( t -  1 )  

X P22(t - 1 )  - P12(t - 1)P21(t - I ) ] .  (30 )  

Since the  population F, are  produced by randomly mat- 
ing from an F2 population,  the expectation of frequen- 
cies PI ( t )  and P2* ( t )  will be identical. The same is true 
for P12(t)  and ( t ) .  Thus, 

PIl(t - 1)  = Pz*(t - 1 )  = %(1  - 7 - , - 1 ) ,  

PI*( t - 1)  = P21(t - 1)  = X q - 1 .  ( 31 )  

It follows from (30 )  and (31 )  that 

0 7-* - - + (1 - O)rt-l 
- 2  (32 )  

or 

Thus,  the  population process { X (  t )  = number of recom- 
bination haplotypes at  the tth generation} evolves as a 
Markov chain with the transition probability 

which can be approximated by the diffusion process 
with a  generator given by (KARLIN and TAYLOR 1981) 

L = 
r,( 1 - 7-J 8 

2N(t )  a?? (: ) R", - + - - ort - .  ( 3 3 )  

APPENDIX B 

Suppose that  there  are K QTL  with the kth QTL, 
located at dk, having additive effect ( Y k  and dominance 
effect 6,. Then,  the  true model is 

K K 

yi = /I. + (Y&( dk) + 6kZE( dk) + e,, 2 = 1 ,  2, . . . , n, 
k= 1 k= 1 

where xj(dk)  and zi (dk)  are  indicator variables  with the 
values 

and 

where Q and q are two alleles of the QTL. Recall that 
in the text we assumed the following simple linear re- 
gression model: 

yz = p + a x ,  + Sz, + ei, i = 1, 2 ,  . . . , n, (34)  

where x, and zi are dummy variables representing  the 
genotype at  the marker M,. 

It is  easy to see that 

E[x1 - F12 = ( 1  - ; )E[$ ,  = ( 1  - ;) 
By the  strong law of large numbers, we obtain 

1 "  
- 2 [x, - $1' "t l / 2 .  

a. r 

, = I  

( 3 5 )  

Now  we calculate E[x i (  dk) x i ) ] .  Let P k (  t )  be the expecta- 
tion of the  recombinant haplotype at the  marker M and 
the k h  QTL. It can be shown that 

P k ( t )  = % ( I  - e- lAk),  
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and 

we have 

Let 
q n  . n  

Then, 

Thus, 

Therefore,  combining (35) and (36) yields 

1 
n n. c 

1 
n 

- Z I  [yt - $xt K 

& ( t )  = x ffke-"k. 
-x:=, [xi  - $ 2  k=I 

Similarly, by noting  that 

E[zi( dk) &'] = %e-2ak, 

E[xi(dk)zil = 0,  

k= 1 

APPENDIX C 

Suppose a QTL  is located at s. Then, from standard 
regression analysis, we have 

Recall that in APPENDIX B, we showed that 

Clearly, 

By the strong law  of large numbers, we have 

APPENDIX D 

Assume that  the  map is dense. Given  observed pheno- 
types y = [yl, . . . , yn] Tand the genotypes of the markers 
M( y* )  = [Ml ( y * ) ,  . . . , M,( y* )  3 ' under the true QTL 
map location y* as  well  as M ( y n )  = [MI (yn), . . . , 
M n ( y n ) l T  under  an alternative yn, the log likelihood 
ratio log(L(y, y*)/L(y,  yn)) can be expressed as 

where 

and y is the assumed QTL map location. After some 
calculations, we have we can show that 



1216 M. Xiong and S.-W. Guo 

Thus. 

where O,*,, denotes  the frequency of the  recombinant 
haplotype at  the markers M (  y* )  and M( yn)  . Combining 
(37) and (39)  yields 

= ~ {2E[8pym] (46' + a') - 8E[ I 8;*,n]6'}. (40)  n 
2 2  

By definition, the KL distance between two distributions 
L( Y, y* )  and L( Y, yn) is defined as (KONG and WRIGHT 
1995) 

= - {2E[8.pvn] (46' + a') - 8E[8;*,n]62}, 
n 

2a2 

where the subscript t indicates that KL distance is mea- 
sured for the likelihood functions L( Y,  y * )  and L( Y, 
yn) in F, population. 

APPENDIX E 

= -A(t)E[O&,J + b[l  - e-'*'], (41)  

where 

1 
2N(  t) ' 

A(t) = 28, + - 

and 8, is the  recombination  fraction  between y* 
and y,. 

Note that 

[ l  - e p H n f ]  by (41)  = bh(t) ,   (42) 

where h( t )  is defined as in the text. Integrating both 
sides of (42)  yields 

Thus, 

The proof is complete. 

APPENDIX F 

From LEHMANN (1983, p. 116),  we know that 

Let f = 8;*,*( t ) .  Then by the Hille-Yosida theorem, 
we obtain Thus, 



Fine-Scale Mapping of QTL 1217 

by (6) in LEHMANN (1983, p. 106) 

APPENDIX G 

Note that 

Since 

E[8 Y Y  * ]  = g( l  - ep'lypy*I), 

it is  easy to see that 

(44) 

Recall that 

Thus, 

and 

h(7)  I?: = 0. 

After some lengthy, but straightforward calculations, we 
obtain 

dE[ e,,.] t 1 -&fT/ZN(T) 
4 .  

To calculate the Fisher information, we use the follow- 
ing  notations: 

and 

(45) 

Then,  the Fisher information can be calculated by con- 
ditioning  on the markers M ( y * )  and M ( y ) :  

= - 6)(26 - a )  (26 - a - 2 4  
4 2  

+ (a - 6)(26 - a )  h (26 - a + 2 4  + 7 
40' 4a 

tu x (2a + Ze,) + 7 (20 - 2eJ + ( U  - b)(26 + CY) 
4a 4 2  

X (26 + a + 2eJ + ( U  - 6)(26 + a )  
40' 

(26 + a - 2 4  I 
- - 

( U  - 6)' 
sa4 

[2(26 - a)' + 2(26 + a)4 + 4b(26 - 0 1 ) ~  

X (26 + CY) + 2(46' - d)'] + 6(a - b)a' 
2a4 

x [ (26 - a)' + 3(26 + a)'] + - + - @a4 ( a  - b)' 
2a4 2 2  

X + 5 2  - Hab) + - b(n - b) 
U' 

f f f a  + 26). 

APPENDIX H 

The proof is similar to that of RODOLPHE and LEFORT 
(1993) for  the F2 population. 

In  an F, population,  the allele frequencies of the 
markers remain unchanged, only the haplotype fre- 
quencies change with time t. Therefore,  for additive 
effects, 

ErxiJxtJI = 0,  E [ 4  = x, 
and for  dominance effects 

E[xt,~x,,l E 0,  E[&] = 1, 

which are  the same as that in F2 population. 
Now,  we modify the formulas for  the F2 population 

involving haplotype frequencies. 
First, we consider j and j '  as indexes for additive 

effects. Let py = ' / 2 (1  - epfall,), the  recombination 
fraction between two markers j and j ' .  Then, 

4 X q  = 1, X$, = l} = qM,($ 
= AA, M j ( j ' )  = BB] = x(1 - p f j * ( t ) ) ' ,  

f ixLI  = -1 ,  Xf = -11 = d M z ( J ]  

= nu, Mt(j') = bb} = %(1 - p,,(t))? 

Thus, 

q x . x  L I t l  = 1)  = X( 1 - pl1 , ( t ) )?  

4 X , X , .  = -1) = %p,, ( t ) .  2 

Similarly, 

Therefore, 
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E[x,jx,.] = qx,x,j. = 1) - flX,i.Xa3' = -1) 

= %[I - 2pJj,(t)] = %e-%. (47) 

Note that for t = 2, plj,( t )  = 1/2(1 - e"A,,), which is 
the recombination fraction between the two markers j 
and j ' .  In this  case, (47) is reduced to the formula of 
RODOLPHE and LEFORT (1993) for  an F2 population. 

Now  we consider j and j f  as indexes for  dominance 
effects. It is not  hard to see that 

APPENDIX I 

We use jas  an  index for additive  effects.  First we show 
K 

E[X;jX] = bke-"a.", 
k= 1 

where Kis  the  number of QTL, bk is the additive  effects 
of the kth  QTL and A,, is the genetic distance between 
the marker MI and the k h  QTL. To see this, letting 
Gi(k) denote the genotype of the kth QTL of the i indi- 

where al = e-"rlJ, a, = e-4.1 
Similarly, we can show 


