
Copyright 0 1997 by the  Genetics  Society of America 

Estimation of  Effects of Quantitative Trait Loci in Large Complex  Pedigrees 

T. H. E. Meuwissen and M. E. Goddard" 

Institute for Animal Science and Health, 8200 AB Lelystad, Netherlands and  *Animal Genetics and Breeding Unit, 
University of New England,  Armidale, NSW 2351, Australia 

Manuscript  received May 17,  1996 
Accepted for publication  January 13,  1997 

ABSTRACT 
A method was derived to estimate effects of quantitative trait loci  (QTL) using incomplete  genotype 

information  in  large  outbreeding  populations  with  complex  pedigrees.  The  method  accounts  for  back- 
ground  genes by estimating  polygenic  effects.  The  basic  equations  used  are  very  similar to the usual 
linear mixed  model equations  for  polygenic  models,  and  segregation  analysis was  used  to estimate the 
probabilities of the QTL  genotypes  for  each animal. Method R was used to estimate the  polygenic 
heritability  simultaneously with the QTL  effects.  Also,  initial allele frequencies  were  estimated.  The 
method was tested  in a simulated  data set of 10,000 animals  evenly distributed over 10 generations, 
where 0, 400 or 10,000 animals  were  genotyped for a candidate  gene. In the  absence  of selection,  the 
bias of the  QTL  estimates was <2%. Selection  biased  the  estimate of the Aa genotype  slightly,  when 
zero  animals  were  genotyped.  Estimates  of  the  polygenic  heritability  were 0.251 and 0.257, in absence 
and  presence of selection,  respectively,  while  the  simulated value was 0.25. Although not tested in this 
study,  marker  information  could  be  accommodated by adjusting the transmission  probabilities  of  the 
genotypes from parent to  offspring  according  to  the  marker  information.  This  renders a QTL mapping 
study in large  multi-generation  pedigrees  possible. 

.~ 

I N molecular biology two approaches  are used to de- 
tect quantitative trait loci (QTL): (1) the  candidate 

gene  approach (e.g., ROTHSCHILD et al. 1994) and (2) 
linkage to  molecular markers (e.g., ANDERSSON et al. 
1994). With both  approaches, the information on  the 
genotypes at  the QTL is  likely to be  incomplete, because 
of nongenotyped animals and, in  the case  of molecular 
markers, due to recombination between markers and 
QTL. Exclusion of many nongenotyped animals from 
the  data analysis results in poor estimates of correction 
factors (e.g., herds, seasons) and  poor  correction  for 
the effects of selection, which  may be strong in livestock 
populations  (HENDERSON  1984).  Furthermore,  the  non- 
genotyped animals will provide information on  the ef- 
fects of the QTL: segregation analysis can estimate QTL 
effects without any animal being genotyped (ELSTON 
and STEWART 1971). 

Methods for  the  detection of QTL by markers have 
been suggested in outbreeding  populations with a fixed 
family structure, mostly paternal half sib families (HA- 
LEY et UL.  1994; KNOTT et al. 1994) . The accuracy of 
the estimate of QTL effects and of their site increases 
substantially when more  generations with possible re- 
combinations  are  included  in the analysis ( DARVASI and 
SOLLER 1995) . This  requires estimation of QTL effects 
in large and complex  pedigree  structures. Segregation 
analysis methods  (ELSTON and STEWART 1971; HAS 
STEDT 1991; FERNANDO et al. 1993; STRICKER et al. 1995) 
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are computationally very demanding in large complex 
pedigrees with many loops, many unknown parameters, 
e.g., many herd effects, and with polygenic effects (the 
combined effect of many small background genes). 

Monte Carlo Markov chain  (MCMC)  methods have 
been  proposed  for large complex pedigrees while  ac- 
counting  for polygenic effects ( GUO and THOMPSON 
1992), but they are computationally very demanding 
and  the Markov chain may get stuck in  a subset of the 
sampling space, which hampers  routine usage. For the 
near  future it is expected  that many outbreeding  popu- 
lations and species will have markers and candidate 
genes genotyped for many characteristics and thus a 
data analysis for QTL effects will become  a  standard 
routine, which  calls for less computer-intensive and 
problem-free methods. 

Mixed models have become widely used in animal 
breeding to estimate polygenic breeding values  of ani- 
mals (random  effect) in large complex data  structures 
while correcting for various fixed  effects (e.g., herds, 
seasons) ( HENDERSON 1984).  The aim of the  present 
study is to include  the estimation of  QTL  effects in  a 
mixed model  that also accounts  for  the effects of poly- 
genes and various fixed effects. The approach is similar 
to  that of HOFER and KENNEDY ( 1993)  and  the differ- 
ences between the  present and their  method  are de- 
scribed in DISCUSSION. The inclusion of the estimation 
of QTL effects in  the  current mixed models for  the 
estimation of polygenic breeding values makes routine 
estimation of QTL effects in large complex pedigrees 
possible and will facilitate marker-assisted selection. 
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MATERIALS AND  METHODS 

The model: The general  model  for  the  data is 
y = X b + Z u + Z Q q + e ,  

where y = ( n* 1 ) vector of data; b = ( p *  1 ) unknown 
vector of fixed effects (e .g . ,  herds) ; u = ( t* 1 ) unknown 
vector of polygenic effects (random; t = number of 
animals) ; q = ( 3  * 1 ) unknown vector of effects of the 
QTL genotypes (in the case  of three  genotypes) ; e = 
( n* 1 ) unknown vector of environmental effects; X = 
(n*p)  known incidence matrix linking fixed effects to 
records; Z = (n* t )  known incidence matrix linking 
animals to records; Q = ( t* 3 ) unknown incidence ma- 
trix with a one  at position ( j ,  k )  if animal j has genotype 
k and zeros elsewhere. The variance of the polygenic 
effects, u, is G = Aa f , where A = the matrix of relation- 
ships between the animals (HENDERSON 1984),  and 
Var ( e )  = R = Ia?. Extension to more  general R is 
straightforward, but  R is assumed diagonal. Further, 
define V = Var ( y )  = ZGZ ' + R. 
Estimation of QTL and polygenic effects: The log- 

likelihood of the  data is 

In L(y lq ,   b )  = const + In C p ( Q )  exp[-% 
{ Q  

X ( y  - ZQq - Xb)'V"(y - ZQq - = ) I  , ( 1 )  

where const is the constant  that does not  depend  on 
q ,   b ,  and u ,  2, denotes summation over  all  possible 
matrices Q ,  i.e., all  possible combinations of genotypes, 
and p ( Q )  is the  prior probability of the QTL genotypes 
as described by Q .  If animals are  unrelated and V is 
diagonal, the term  exp [ - 1/2(y - ZQq - X b )  'V-' (y  - 
ZQq - Xb ) ] can be written as the  product of individual 
likelihoods: n, exp [ -1/2(yi - ZiQq - X;b)'/Vii)], 
where Zi and X, denote  the  ith row of Z and X,  respec- 
tively, and Vii = the  ith diagonal element of V. In this 
case, the  contribution of animal  i does not  depend  on 
that of the  other animals, and likelihood (1 ) can be 
computed by segregation analysis algorithms (e.g. ,  ELS 
TON and STEWART  1971; or FERNANDO et al. 1993 for 
large data sets). Because the e effects are  independent, 
rewriting likelihood (1) in terms of 6 will render  the 
contributions of every animal as independent as possible, 
where superscript denotes  the estimate of the effects. 
Let C = ( Z  ' R"Z + G-') - I  and because V" = R" - 

R"ZCZ'R", likelihood ( 1 )  can be written as 

I 

In L ( y [ q ,   b )  = const + In Cp(Q)  
{ Q  

X exp[-'b2G'(R - ZCZ')-'G 1 

where 6 = RV p1 (y  - ZQq - Xb ) (from regression 
theory),  and u:  is the sth diagonal element of the ma- 
trix R - ZCZ '. The approximation in ( 2 )  holds when 
the off-diagonals of R - ZCZ ' are small and is exact if 
the animals are  unrelated. 

The derivative of In L ( y  1 q ,  b ) with respect to q k  is 

In L(y lq ,  b)/6qk = L(ylq,  b ) "  

x { c ~ ( Q )  c n exp[-1~2;:/a:1 
Q .s, I I 

X 6 - % e ^ : / U : / S q k =  L(ylq ,   b)"  
, 

x {  
C p ( Q )  n exp[-%e^?/a?l 

@ R ( i , k )  5 1 
x 6 - %z:/af/6qk= Xwk6 - %e^:/ f f : /bqk ,  ( 3 )  

2 

where denotes  summation over all records i of ani- 
mals that have genotype k denoted by Q, and X C C k K ( L , k )  
denotes  summation over  all possible matrices Q where 
record  i was produced by an animal with genotype k ;  
65; / 6qk  is assumed zero for animals that do  not have 
genotype k ,  and 

w k = L ( y l q , b ) -  
I {  

p ( Q )  n e x p [ - ' h ~ P / o ? l  , 
@ R ( i , k )  1 

which is the probability that animal j ,  which produced 
record i, has genotype k given G .  

The values  of wzk can be calculated by segregation 
analysis algorithms, e.g., ELSTON and STEWART ( 1971 ) , 
FERNANDO et al. (1993). These algorithms require  the 
probability that animal j has phenotype 6, conditional 
on having genotype k ,  for all genotypes k ,  which is 

~ ( j l k )  n, e x p [ - ' h z f / a ~ I ,  

where the  product is over the records i of animal j .  If 
animal j does not have a  record, P (  j l  k )  = 1, for all k .  
And if animaljis known to have genotype k ,  for instance 
from a DNA analysis, P ( j l  k )  = 1 and P ( j l  k ' )  = 0, for 
k' # k .  The segregation analysis algorithm of KERR and 
KINGHORN ( 1996) will be used because it can approxi- 
mate genotype probabilities, w ' k ,  in large pedigrees 
with loops [by making iterative use  of the algorithm of 
FERNANDO et al. ( 1993)  ] . 

The value of tr conditional on genotype k is 

zt = ( y j  - ijk - C ] ( k )  - Yb) 
* (1 - h') (yj - q k  - x j b ) ,  

where Gj( k )  = estimated polygenic effect of animal j 
that  produced  record  i  conditional  on having genotype 
k ,  and h2 = uE/ (a? + of )  is the polygenic heritability. 
The approximation holds strictly  only if the animals 
are  unrelated, which was already assumed previously. It 
follows that 
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x (1  - h 2 ) / O f =  ( y i  - (ik - 6 j ( k )  - xb)/OP, 
because af  = CT: - (a; + n i2 ) - l  = (1 - h')03 for 
unrelated animals. This assumption of unrelated ani- 
mals may seem rather  crude,  but  a similar cancelation 
occurs when the offdiagonals of ( R  - ZCZ ' ) are  not 
ignored, which is possible for known Q and results also 
in the division by 0 3 .  

Equating  formula ( 3 )  to zero yields an estimating 
equation  for q k :  

Estimation of b and u follows from similar derivations 
(see APPENDIX ) and  the equations  can  be  combined to 
yield the mixed model  equations: 

D W'X 0 
X ' W  X'X 
z'w z'x z'z + A-'A 

X'Z ][!I 
= [ - [ i] > ( 4 )  

where A = 0 3 / 0 2 , ,  W = ( n * 3 )  matrix of elements Kk, 

0 0 1 

and r is ( 3 *  1 ) vector with element k :  rk = C j  w k G j (  k )  , 
with j being the animal that  produced  record i. Equa- 
tions 4  are very similar to the  ordinary mixed model 
equations  (HENDERSON  1984)  that would result if each 
record yi was replicated  three times, where each repli- 
cate  obtains  a weight of w,k (for k = 1, 2, and 3 )  ( see 
also JANSEN, 1992).  The difference  being  that  the r 
vector in Equations 4 replaces the usual W'ZQ term in 
the  ordinary mixed model  equations. 

It may be noted  that Q in Equation 4 is the average 
estimate of the polygenic  effects, where averaging is over 
the  three genotypes weighted by the genotype probabili- 
ties. For the estimation of r and W, Gj( k )  is needed, 
i.e., the estimate of the polygenic  effect conditional on 
animal j having genotype k .  The values  of GI( k )  are a p  
proximated by assuming that  the  conditioning on geno- 
type k hardly affects the expectation of ui, of the  other 
animals j '  ( j '  # j )  . Then, using Equations 4, 

6 j ( k )  = 6, + q ( w i q  - qk)/(z'z + A"k) ( 5 )  

where ( Z  ' Z + A"A) j I  denotes  the ( j ,  j )  diagonal ele- 

ment of the matrix Z ' Z + A"A, and 4 = the  number 
of records  that animal j produced. 

Because estimation of, for instance, W depends  on 
estimates for q,  whose estimation involves W again, iter- 
ation is needed to solve for all the effects. The segrega- 
tion analysis algorithm requires  prior  frequencies, p,,,, 
of one of the two QTL alleles (the  other  one is ( 1 - 
p,) ) , which are  updated  in  Step  2 of the  iteration 
scheme if p, is unknown. The iteration  scheme  that is 
used here is as  follows: 

Step 1. Update W and D using the  current estimates 
of q ,  b ,  Q ,  p,,,, and  the iterative algorithm of KERR 
and KINGHORN ( 1996). Only one iteration of this 
algorithm is performed to save computer time. 

Step 2. If prior allele frequencies of the QTL are un- 
known, they are  updated by jPr = &&rp( l4$ + 
' /?w2) / nbase = number of  base animals (ani- 
mals  with no parents in pedigree) , and summation 
is over the base animals. 

Step 3. Solve for b and Q using the  current estimates 
of Wq in  Equation 4. Calculate also Q(k) for all geno- 
types k using Equation 5 and calculate r .  

Step 4. Solve for q in Equation  4, using current esti- 
mates of D,  W, r ,  b and Q .  If the  subsequent 
estimates q have converged,  stop; otherwise go to 
step 1. 
Estimation of polygenic  heritability: Estimation of 

the polygenic heritability, h2,  is difficult in situations 
with little information  on  the genotypes, because the 
pattern of covariances between relatives due to the QTL 
effects is similar to those due to the polygenic effects. 
The likelihood surface will be very flat, which means 
that  the  approximation of the likelihood in Equation 
2  needs to be very good to estimate the polygenic h2. 
Otherwise, a biased h2 will be  found. 

Heritability estimation by method R (REVERTER et al. 
1994) avoids calculation of the likelihood or its  deriva- 
tives and is thus useful in data sets that  are  too large 
for  direct calculation of the likelihood, as  is the case 
here. Let G, be the estimate of the polygenic effects 
from Equation 4 when at  random 50% of the  data  are 
discarded,  then  the regression of u on Q,r, R = Q' 
A ~ ' G y / Q ~ A ~ ' Q y ,  is on average 1 if the  correct heritabil- 
ity  is used. This is because the  expected  change of  BLUP 
(best linear unbiased prediction) estimates is zero as 
more  information becomes available. If E (  R )  < 1, the 
heritability used to calculate G and Q, was too high and 
vice  versa. 

The algorithm that was used is as  follows: 
Step 0. Start with a (good) guess of the heritability h' 

and set h: = h: = h2 ,  where h;- and h't, are lower 
and  upper  bounds for  the heritability, respectively. 

Step I .  Estimate Q using the  current heritability h' from 
Equation 4. 

Step 2. Generate 50 subsamples of the  data set by dis- 
carding  at  random 50% of the  data. 
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Step 3. Estimate i i X i  and R, for every subsample i = 1, 
. . . , 50. Let NR<, be the  number of R, < 1. If 
> 32, heritability needs to be decreased: go to Step 
4a. If NH<l < 18, heritability needs to be increased, 
go to Step 4b. Otherwise, 18 5 NK<I 5 32, which 
is approximately a  95% confidence interval for a 
binomial variable  with 50 samples and 50% success 
rate. Hence,  Prob ( R , .  < 1 ) is not significantly  differ- 
ent from SO%, which  is the probability at the  true 
heritability value. Thus, h2 is found  and iteration is 
stopped. 

Step 4a. If h' = h2, decrease h' and h;, by lo%, other- 
wise set h$ = h' and  then h' = y2 (h:, + h;) . Go to 
Step 1. 

Step 4b. If h' = h$, increase h2 and h$ by lo%, other- 
wise set h:, = h' and  then h' = y2 (h:, + h:) . Go to 
Step 1. 

Computer time can be saved by generating fewer sub- 
samples (adjusting  the 95% confidence interval accord- 
ingly) and, after the algorithm stops, restarting it with 
a larger number of subsamples. 

Simulation: To test whether the previously described 
method can estimate QTL  effects, a simulation study 
was conducted. Fifty data sets  were simulated of 10,000 
animals each, which came from 10 discrete generations. 
Each generation consisted of 1000 animals that were 
the offspring of  50 sires that were mated to five dams 
each, except for generation 1 that consisted of unre- 
lated base animals. The sires and dams were either se- 
lected on phenotype or randomly selected. The QTL 
genotypes, AI  Al , A1 A', and AQAP, of the base animals 
were sampled at  random with probabilities: p$l, 2p,,( 1 
- p,) , and ( 1 - p,) ' , where p, was 0.5 and 0.1, respec- 
tively,  with random and with phenotypic selection. An 
initial frequency of 0.1 was used in the situation with 
phenotypic selection, because, if an initial frequency of 
0.5 was used, the positive allele reached fixation around 
generation  5 and the last five generations of the simula- 
tion would not contribute anymore. The genotypes of 
the animals of later  generations were sampled ac- 
cording to the Mendelian segregation probabilities. In 
the base population,  the effects  of the polygenes  were 
sampled from N(0,  0.25), i.e., 02, = 0.25, and in later 
generations u, was sampled from N (  u, + u d )  ; 
'/'a:) , where u, ( ud) denotes  the polygenic effect of the 
sire (dam) of animal i. The effect of inbreeding on 
the within  family variance was neglected because the 
effective population size  was quite large (4* 50* 250,' 
( 50 + 250) = 166 animals per  generation) . In situa- 
tions where inbreeding is important, its effect is  easily 
included in the additive relationship matrix A (HEN- 
DERSON, 1984). All animals had records from 

yz = q(  genotype of i )  + u, + e , ,  

where e, was sampled from N ( 0 ,  0.75), i.e., a: = 0.75; 
q ( A I A 1 )  = 1; q(A,A,)  = 0; and q(A2A2) = -1. Hence, 

no fixed  effects  were simulated nor included in the 
analysis  of the data. 

The genotypes of 0, 400, or all  10,000 animals were 
known, when the QTL  effects  were estimated, i.e., the 
effect of a  candidate  gene is estimated. With  400  known 
genotypes, each generation  had at random 40 animals 
genotyped. The situation with  all genotypes unknown 
is a worst  case scenario to test whether the information 
from  the nongenotyped animals yields unbiased infor- 
mation, i.e., whether the  approximated genotype proba- 
bilities are sufficiently accurate. Also, because the effect 
of the QTL is large, the records provide a substantial 
amount of information about  the genotype probabili- 
ties. 

RESULTS 

Table 1 shows the results of the  parameter estimates 
in the absence of selection. The variance components 
02, and a: were assumed known here, which is approxi- 
mately the case when the effect of the QTL  is small 
relative to  that of the polygenes. This was not  the case 
in these simulations, but otherwise the effects  of the 
QTL could not have been estimated in the case of all 
genotypes unknown. With 0 or 400  known genotypes, 
the effects  of the AI  AI and A2A2 genotypes were  slightly 
underestimated. This bias seems insignificant in view  of 
the size of the effect. When only 400 and zero animals 
are genotyped, the  standard  errors of the estimates in- 
creased only by -20 and  40%, respectively,  relative to 
the situation with  all animals typed, which  suggests that 
the nongenotyped animals provide a significant amount 
of information. This information probably reduces as 
the effects of the QTL genotypes are smaller. Estima- 
tion of the prior frequency of the AI allele was accurate. 

Table 2 shows the same results  with phenotypic selec- 
tion of the  parents. In the absence of genotyped ani- 
mals, the estimate of the AIA2 genotype was highly un- 
derestimated. In the early generations many animals 
have genotype A2A2, which  results  in accurate informa- 
tion about q(A2A2) ,  while in the late generations  the 
frequency of the Al allele was high, which provided 
accurate information about q (  AIAl ) . The analysis  re- 
covered information from differences between genera- 
tion means because no fixed  effects (e.g., generation 
effects) were included in the model. In the intermedi- 
ate generations where AIAP genotypes were  most  com- 
mon,  the analysis underestimated the frequency of the 
AI allele and  hence biased the estimate of the A ~ A Q  
genotype effect. With  400 genotyped animals, the bias 
of q( A1A2) has almost disappeared. This selection bias 
seems to reduce markedly if some genotype informa- 
tion is available. 

Table 3 shows the results of the  method R polygenic 
heritability estimates. In  the absence of selection, the 
heritability estimate seems unbiased. With selection 
there seems to be  a slight bias, but it is small  relative 
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TABLE 1 

Estimates of QTL effects, q, and  prior allele frequency, &., when selection is at  random (50 replicated data sets) 

No. of known 
genotypes  AIAI AI) & A d z )  q(A2Az) PP 

0 0.980 2 0.007 -0.005 ? 0.008 -0.985 ? 0.007 0.500 
400 0.975 2 0.006 -0.002 ? 0.006 -0.980 ? 0.007 0.500 
10000 (all) 0.997 2 0.005 -0.003 ? 0.005 -1.001 2 0.005 0.500 
Simulated value 1 0 -1 0.5 

Values are S E .  

to the size  of the heritability. The estimates of the effects 
of the QTL were similar to those with  known heritability 
and their  standard  errors were  slightly increased  (com- 
pare to Tables 1 and 2 )  . 

DISCUSSION 

Properties of the QTL estimation method: A 
method was derived to estimate the effects of QTL in 
large data  structures with incomplete genotype infor- 
mation, by solving Equations 4. Solving Equations 4 is 
computationally equivalent to solving the usual mixed 
model  equations,  but these equations have to be solved 
within each iteration because the matrix of weights W 
depends  on  the solutions of ( 4 ) .  The  number of itera- 
tions needed was typically -25, which  makes the 
method roughly 25 times slower than  the usual mixed 
model  breeding value estimation methods. 

In  the  absence of selection,  the  presented  method 
yielded virtually unbiased  results. With the  strong se- 
lection  that was simulated  in  Table 2, the estimate of 
the effect of the  intermediate  genotype was somewhat 
biased.  In QTL effect  estimation  experiments, selec- 
tion will be less strong  and a higher  proportion of 
the animals will be  genotyped. Also, the  method-R 
estimates of the polygenic heritability  seemed  unbi- 
ased  in the  absence of selection and showed an insig- 
nificant bias when  selection was present.  The esti- 
mates of QTL effects, heritability and genotype 
probabilities  assumed known environmental vari- 
ance, 0 ; .  In  practice,  the  data  or similar data have 
often  been analyzed by a  complete polygenic model 
yielding  a REML (residual maximum likelihood) vari- 
ance  component estimate for c;, that is,  with the QTL 

effect pooled  together with the polygenic effects. In 
the  present  data sets with random  and  phenotypic 
selection, average estimates of a: of 0.742 5 0.0035 
and 0.742 -+ 0.0016, respectively, were obtained  from 
the  standard  computer package VCE (GROENEVEL.D 
1994).  The simulated value was 0.75. 

Simultaneous estimation of polygenic heritability and 
QTL effects increased the  computing time substantially, 
because it  involves  many repeated estimations of the 
QTL effects. However, the variance due to the QTL is 
often small relative to the polygenic variance and  the 
heritability estimate of a  pure polygenic model will be 
appropriate.  The total genetic variance is relatively easy 
to estimate, but it is difficult to distinguish between 
QTL and polygenic variance, which implies that  a  too 
high estimate of h' will result in underestimates of the 
QTL effects and vice  versa. In the case  of a QTL map- 
ping  experiment, many estimations of the QTL effects 
are  needed, each with a slightly different  map position 
of the putative QTL, which  makes that  a single estimate 
of heritability seems sufficient. 

We also derived formulas to estimate the  standard 
error of the estimates of the QTL effects, but these 
resulted in underestimates because they only approxi- 
mately accounted  for  the  uncertainty  about  the  geno- 
types  of the animals ( results not  shown) . However, stan- 
dard  errors can be obtained  from replicated Monte 
Carlo simulations of the  data using the estimated QTL 
effects as the true effects, using the same pedigree struc- 
ture as in  the real data with the same animals being 
genotyped (genotypes differ and  are sampled because 
they are  unknown).  The variance of the estimates from 
the simulated data reflects the  error variance of the 
estimates from the real data. Because estimation of QTL 

TABLE 2 

Estimates of QTL effects, q, and  prior allele  frequency, pp ,  with phenotypic selection (50 replicated data sets) 

No. of known 
genotypes  AIAI AI)  AIAI AI) #A.Ad 

P,Jr 

0 0.994 ? 0.009 -0.146 ? 0.015 -0.987 ? 0.005 0.106 

1.001 2 0.000 -0.001 ? 0.002 -1.000 2 0.002 0.100 
400 
10,000 (all) 
Simulated value 1 0 -1 0.1 

0.969 2 0.009 -0.044 5 0.010 -0.986 5 0.006 0.101 

Values are ?SE. 
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TABLE 3 

Estimates of polygenic  heritability, h2, QTL effects, q, and 
prior de le  frequency, pp, when no animals 

are  genotyped (50 replicated  data sets) 

Selection of parents 

at random On phenotype 

h' 0.251 5 0.003 0.257 ? 0.002 
#AIAI) 0.976 ? 0.008 0.978 t 0.009 
~ ( A I A Z )  -0.011 ? 0.009 -0.137 ? 0.014 
~ ( A Z A Z )  -0.974 ? 0.009 -0.983 ? 0.005 

Values are 5SE. 

effects is reasonably fast, despite of the  iterations involv- 
ing  updating of W, this will not take too  much  comput- 
ing time and standard  errors may only be needed  for 
promising QTL. Under  the usual assumptions of  asymp- 
totic normality of the estimates, these error variances 
can be used for significance testing. If the Monte Carlo 
estimates seem nonnormal,  the  permutation test, which 
requires analysis  of reshuffled data, is a  robust  method 
to test whether QTL effects are significant ( CHURCHILL 
and DOERGE, 1994). 

In  the  presented simulations, both  the  model  that 
was used to simulate and to analyze the  data  contained 
only one QTL. Real data may comprise the effects of 
several QTL. When marker  information is available, the 
effects  of the  other QTL  may be  accounted  for by fitting 
marker effects for  them (JANSEN 1994; ZENG 1994). 
With the  candidate  gene  approach,  the  information 
from the  ungenotyped animals may be  biased by a sec- 
ond QTL that affects the genotype probabilities. This 
bias can be avoided by estimating genotype probabili- 
ties without using the  data, i e . ,  using only the known 
genotypes, following KINGHORN and KERR ( 1995 ) . This 
may increase the  standard  error of estimates of the QTL 
effects substantially, but  a check whether these esti- 
mates are  not very different  from  the  ones where data 
are used to  help estimate the genotype probabilities is 
reassuring. 

Alternative  methods: In  the large data sets that  are 
needed to estimate QTL effects in outbreeding  popula- 
tions, Gibbs sampling methods ( GUO and THOMPSON 
1992) provide the only alternative to the  methods  pre- 
sented  here. Segregation analysis based methods (e .g . ,  
HASSTEDT 1991; FERNANDO et al. 1993) maximize the 
likelihood directly and computations will soon  become 
prohibitive when there  are many loops in  the  data  and 
the  number of parameters  for which the likelihood 
function  needs to be maximized becomes large as is 
usually the case in large data sets (e .g . ,  many herds 
involved). Gibbs sampling methods may get stuck in 
a  part of the  parameter  space, which requires careful 
examination of the Gibbs chains, and  are very computer 
intensive. This prevents a quick evaluation of the effect 
of a  marker or a  candidate  gene in a  data set. 

The presented  method has similarities with the 
method of KINGHORN et al. ( 1993)  in  that  both  methods 
iterate between a set of mixed model  equations and a 
segregation analysis to update genotype probabilities. 
The difference is that KINGHORN et al. regressed directly 
on  the genotype probabilities while here  the genotype 
probabilities act as  weights for  the replicated records 
(see MATERIALS AND METHODS section Equations 4 ) .  
The direct regression on  the genotype probabilities 
does not fully account  for  the  uncertainty  about  an 
animal having a  particular genotype, which was partly 
accounted  for by a  correction of components in the 
mixed model  equations. If an animal has genotypes 1 
and 2 with probabilities 0.5 and 0.5, respectively,  its 
record, yi, is assumed distributed as N (  1/2q1 + 
0') by direct regression, while in  the  present  method 
y L  is distributed as N (  ql; u ' )  with probability (weight) 
1/2, and N (  *; 0') with probability (weight)  (ignor- 
ing  other fixed and  random  effects). KINGHORN et al. 
( 1993)  found biased genotype estimates for which  they 
proposed  a  correction  method  that was satisfactory in 
some situations but  not in others. 

The present  approach is similar to that of HOFER and 
KENNEDY (1993).  The differences are  in  the way the 
summations over  all  possible combinations of geno- 
types are  approximated. When calculating genotype 
probabilities, the  method of HOFER and KENNEDY uses 
exp ( - v2 Zt / a: ) as probability that animal i has EL con- 
ditional on having genotype k ,  while the  present 
method uses exp ( - v2 Zt / a:) , where u is the predic- 
tion error variance of ti. The  former neglects the effect 
of the genotype of the animal on  the probability density 
of its polygenic breeding value, i e . ,  the probability den- 
sity  of the polygenic breeding value is assumed constant 
across all genotypes. Further, HOFER and KENNEDY as- 
sume that animals are  independent, A = I ,  when calcu- 
lating the D matrix in Equation 4. Here, it was assumed 
that  the genotype probability of animals i and j having 
genotypes r and s, respectively, equals the probability 
of animal i having genotype r times that of animal ,j 
having genotype s that results in D being diagonal, i .e.,  
the  dependencies between the genotype probabilities 
are neglected. The last difference between the  methods 
is that HOFER and KENNEDY approximate  the expecta- 
tion EQ( Q' Z h )  = W'ZQ in the  equations  for  the QTL 
effects in ( 4 )  , while here this expectation was approxi- 
mated by r with r, = xz Wzkzl1( k )  (see Equation 4 )  , 
which accounts  for  the effect of animal i having geno- 
type k on its estimate for  the polygenic effect. These 
improvements of the  approximations  made  the esti- 
mates of the  present  method approximately unbiased 
(Table 1 ) while that of HOFER and KENNEDY were up 
to 14% biased in unselected populations. 

Use of marker information: Thus  far, little attention 
has been paid to the use  of marker  information  for  the 
estimation of QTL effects. Due to marker  information 
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the transmission probability of the genotypes from par- 
ents  to offspring will deviate from the Mendelian proba- 
bilities. For instance, let a sire have haplotypes MI AI / 
M2A2, where MI ( M2) denotes  marker alleles and AI 
( A2) QTL alleles and MIAl ( M2A2) is the paternally 
(maternally)  inherited haplotype. An offspring that in- 
herits marker Ml of  this sire will have inherited QTL 
allele AI with probability ( 1 - r )  and A2 with probability 
r ,  where r is the recombination rate between M and 
A .  This example shows that paternally and maternally 
inherited QTL alleles need to be distinguished, which 
leads to four genotypes: A I   / A l ,   A l  / A2, AP / A I ,  and A2 / 
A2. The genotype probabilities of these four genotypes 
are calculated by the segregation analysis algorithm us- 
ing  the genotype transmission probabilities that follow 
from the  marker  information. 

Equations 4 are  a simple extension of the usual mixed 
model equations that  are used to estimate polygenic 
breeding values  of animals. The total breeding value of 
animal j with record i is EBT/; = dl + W! $. In the case 
where Wi and q are estimated with the aid of markers, 
selection for E B y  will constitute a  marker assisted  selec- 
tion scheme. FERNANDO and GROSSMAN (1989) sug- 
gested a  method for the estimation of EBY, where QTL 
effects  were assumed random with each base animal 
taken as carrying two unique QTL  alleles. In cases  with 
few real QTL alleles, this leads to a very nonnormal 
distribution of estimated QTL effects,  which results in 
biased EBV estimates. But, assuming that  there  are two 
QTL alleles while there  are in fact three  or  four will 
probably also  bias EBV estimates. Research is needed 
to investigate the effect of the assumed number of  QTL 
alleles on the bias and accuracy  of the EBV. 

In conclusion, a  method was presented  that can esti- 
mate QTL  effects  in large pedigrees of  any complexity 
with incomplete genotype or marker information, 
which will be useful for the  screening of candidate 
genes and marker maps for QTL, and for breeding 
value estimation in  marker-assisted selection schemes. 
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APPENDIX 

Estimation of b: Estimation of b is  very similar to the 
estimation q with Equation 3 replaced by 

6 In U y l q ,  b)/Sb = c c L(ylq,  b)- l  
k i  

X C nexp[-1/2$/g:I 
@ R ( i , k )  s 

where 2, = y, - & w&qk - - X,&, i.e., the value  of 2i 
averaged  over the  three genotypes (note that x k  Wik = 
1 ) . Further, 

6 - %i:/a;/Sb 

which  yields, when Equation A1 is set to zero, 
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X ' S  = X ' ( y  - w q  - Z U ) .  

&hation of u: For the estimation of u, likelihood 
( 1 ) is not  appropriate because u is integrated of 
this likelihood. The  joint density of y and u is 

In p(y ,   u lq ,   b )  = const - % ~ ' G " u  

exp[-1/2(y - ZQq - Xb - Zu)' 

X R"(y - ZQq - Xb - ZU)I 

and taking derivatives  with respect to u yields 

6 1n p(y ,   u lq ,   b ) /bu  = -X p(Q)  
Q 

x exp [ - yz ( y  - ZQq - Xb - Zu) 'R-' 

X (y  - ZQq - Xb - ZU) ] *Z 'R-' 

X ( y  - ZQq - Xb - Zu)/p(y ,  UIq, b )  - G"u 
= -Z 'R-'(y - Wq - Xb - ZU) - G"u. 

Setting this derivative to zero and multiplying by a: ( R  
= Ia 5 )  gives the estimate for u: 

( Z ' Z  + A"X)O = Z ' ( y  - Wq - X b ) ,  

with X = a;/ a:. The estimating equations are com- 
bined in Equation 4 in the text. 


