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ABSTRACT 
This  paper  derives the long-term  effective size, Ne, for a general  model of population  subdivision, 

allowing  for  differential  deme  fitness,  variable  emigration  and  immigration rates, extinction, coloniza- 
tion,  and  correlations across generations  in these processes. We show that  various  long-term  measures 
of N, are  equivalent.  The  effective size of a metapopulation can be  expressed  in a variety  of  ways. At a 
demographic  equilibrium, N, can  be  derived from the demography by combining  information  about 
the ultimate contribution of each  deme  to  the  future  genetic make-up of the  population  and  Wright's 
Fw's. The  effective  size is given  by N, = 1/( 1 + var (d))((l - b r t ) / N n ) ,  where n is the  number of 
demes, ~ 1 9 ,  is the  eventual  contribution of individuals in deme i to the whole  population  (scaled such 
that Z,d, = n) ,  and ( ) denotes  an average weighted by 0:. This  formula is applied  to a catastrophic 
extinction  model  (where  sites  are either empty or at carrying  capacity)  and  to a metapopulation  model 
with  explicit  dynamics, where extinction is caused by demographic  stochasticity  and by chaos.  Contrary 
to the  expectation  from the standard  island  model, the usual effect of population  subdivision is to 
decrease the  effective  size  relative to a panmictic population living on the same resource. 

M OST species are divided into local populations, 
to some degree.  These  populations do  not neces- 

sarily  follow the simple assumptions of the usual models 
of population  structure,  such as the island model; in- 
stead,  natural  populations vary through time and space 
in all of the  important  parameters, such as population 
size, fitness, and emigration and immigration rates. Fur- 
thermore,  demes can go extinct and recolonize. The 
complicated  population  structure  that results affects 
many aspects of a species' evolution (BARTON and 
WHITLOCK 1996).  In  particular,  the effects of  subdivi- 
sion on  the  maintenance of genetic variation are im- 
portant  both  for  understanding how natural  popula- 
tions evolve (WRIGHT 1931, 1939; PROVINE 1986) and 
for  designing efficient methods of artificial selection 
(ROBERTSON 1961; CABALLERO et al. 1991).  In this pa- 
per, we investigate the long-term effects of drift on neu- 
tral variability,  as described by the effective  size  of spe- 
cies, Ne. 

There  are many reasons to care  about  the effective 
population size. The loss  of neutral variability,  while in 
itself somewhat interesting, is often used as a  barometer 
for all  of the  genetic variation of a species, a metric 
often  applied in conservation biology (LANDE and BAR- 
ROWCLOUGH 1987). The effective population size is im- 
portant in determining  the  rate of allelic substitutions, 
for  neutral,  deleterious  and favorable mutations. While 
the effective  size does not predict all  of the behavior of 
the fixation of favorable alleles in subdivided popula- 

Corresponding author: Michael Whitlock,  Department of Zoology, 
University of British Columbia, 6270 University Blvd.,  Vancouver, BC 
V6T 124 Canada. E-mail: whitlock@zoology.ubc.ca 

Genetics 146: 427-441 (May, 1997) 

tions, it does serve  as a  good  first  approximation (BAR- 
TON 1993; CABALLERO 1994).  Furthermore,  the effective 
size  tells us about  the limits to natural  selection, as 
alleles whose advantage is such that NJ < 1 are very 
likely to be lost due to drift (MARUYAMA and KIMURA 
1980),  and  deleterious alleles are  more likely to be fixed 
in smaller populations (KONDRASHOV 1995;  LYNCH et al. 
1995). 

There is a large literature on  the effects of subdivision 
on  the long-term rate of drift  at  the  metapopulation 
level, for  both stepping-stone and island models (.g., 
MARUYAMA and KIMURA 1980; NAG- 1980, 1986; 
EWENS 1989). However, this is restricted to either fixed 
deme sizes (WRIGHT 1939),  random extinctions fol- 
lowed by immediate  return to a fixed size  (SLATKIN 
1977; EWENS 1989, Model l ) ,  or uncorrelated changes 
in  population size ( M A R U Y A M A  and KIMURA 1980). 
EWENS (1989, Model 2) also  discusses a  model with 
an explicit population growth of one individual per 
generation following a  founding event of one individ- 
ual, but without subsequent migration. 

In this paper, we present  methods  for calculating the 
effective population size  with variable deme size and 
migration rates, local extinction, and colonization. 
Since there is substantial disagreement in the literature, 
we begin by discussing alternative definitions of  "effec- 
tive  size".  We then lay out a  general framework and, 
by making a series of more restrictive assumptions, de- 
scribe specific population  structures. The effects of cata- 
strophic local extinction  are investigated explicitly in a 
two-state model, where patches  are  either  extinct or 
occupied at a  constant carrying capacity. For this model, 
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the effective  size can be calculated for  a variety of colo- 
nization patterns. We then  present another model  that 
follows explicit local population dynamics, in which  ex- 
tinction occurs through  demographic stochasticity, pos- 
sibly aided by chaotic fluctuations. For these models, 
the effective  size can be given in terms of &. and the 
distribution of deme size, quantities  that  are in princi- 
ple measurable. 

DEFINING EFFECTIVE POPULATION SIZE 

The “effective population size” is defined as the size 
of an idealized Wright-Fisher population, which  would 
give the same value for some specified property as in 
the  population in question (CROW and KIMURA 1970). 
(For simplicity, we allow selfing in this idealized popula- 
tion; sometimes, N, is defined with respect to a popula- 
tion with no selfing. See CBALLERO  1994, p. 659). 
There  are many effective population sizes, depending 
on which genetic  property is considered:  for  example, 
the increase in variance in allele frequency, the balance 
between mutation and drift,  degree of inbreeding, etc. 
In  general,  the relation between these various measures 
depends  on  the  model,  and so the  corresponding effec- 
tive  sizes can differ from each other (EWENS 1979; GRE- 
GORIUS 1991; CHESSER 1993; CABALLERO 1994). In struc- 
tured  populations,  for  example,  the homozygosity, the 
rate of change in the  genetic variance, or fixation rates 
can change  through time in different ways, even when 
the  demographic  structure is held  constant; this is be- 
cause the  partitioning of genetic variance within and 
among  populations can change  through time (EWENS 
1979, 1982; CHESSER et al. 1993). This can be under- 
stood by looking at  the rate at which lines of descent 
coalesce into  their  common ancestral lineage as one 
looks backward in time. In  a single panmictic popula- 
tion of Ndiploids, lineages coalesce with constant  prob- 
ability 1/2N per  generation. In a subdivided popula- 
tion, in contrast, lines of descent coalesce more rapidly 
while  they remain within the same deme,  and  more 
slowly thereafter  (NEI and TAKAHATA 1993; SLATKIN 
1991).  Thus,  the probability of fixation of favorable 
genes (BARTON 1993) and  the rate of shifts between 
adaptive peaks (BARTON and  ROUHANI 1991) depend 
on population  structure differently from neutral vari- 
ability. Nevertheless, the long-term effects of drift on 
neutral or weakly selected alleles can be summarized 
by a single effective  size. Moreover, if the  population is 
large enough  that  random  drift occurs much  more 
slowly than  migration, this long term state takes a partic- 
ularly simple form. 

We begin by considering, in a  general way,  how the 
probability of identity by descent changes through time. 
We then show that, in the  long  term, other properties 
of genetic  drift, which describe other kinds of  effective 
size, are described exactly by these changes  in  the  prob- 
ability of identity by descent, so that  the various mea- 

sures eventually become equivalent. The probability of 
identity by descent is defined as the  chance  that two 
genes are  descended from the same gene in some ances- 
tral population (MALECOT 1948; CROW and KIMURA 
1970); it is thus  defined relative to this arbitrarily cho- 
sen  reference  population.  It is important to distinguish 
identity by descent (which describes the  structure of 
the genealogy and is independent of mutations  that 
may change  the allelic state of the  genes) from identity 
in state (which describes the  chance  that two genes are 
in  the same allelic state and therefore  depends on  the 
mutation  process). Changes in identity by descent  are 
due to the coalescence of lineages, and the  rate of 
change  in probability of identity by descent gives the 
distribution of coalescence times. Thus,  once identity 
by descent is understood, identity in state can be de- 
rived from it by overlaying the  appropriate model of 
mutation on the genealogy (HUDSON 1991; SLATKIN 
1991). We denote identity by descent by F, and identity 
in state by J throughout. 

Consider now a  structured  population, in which 
genes can be in various different sites, labeled i. These 
“sites” might  refer to demes, habitats, sexes, genetic 
backgrounds, or whatever; we return to their  interpreta- 
tion below. Let I $ l  be the probability that  a  gene chosen 
at  random  at time t from site i is identical by descent 
to  a  gene from site j in  the same generation, relative to 
a  reference  population  at t = 0. Thus, El,” = 0, by defi- 
nition. If the two genes come from the same site ( i  = 
j ) ,  in any generation, they are taken to be distinct. We 
suppose that identity by descent changes according to 
a  linear  recursion, of the form 

1 - F,,,, = Gil.kl(l - Fk/,,). (1) 
k, / 

The use  of such matrices was introduced by HILL (1972; 
see also CHARL.ESWORTH 1994). For this representation 
to give a  complete recursion for  the dynamics, the genes 
must be assigned to sites such that all the genes within 
each site are equivalent to each other.  Here, Gtl,kl is the 
chance  that  a  gene in i is descended from a  gene in k, 
and that  a  gene in j is descended from a distinct gene 
in I;  these two probabilities may not be independent. 
G can be thought of  as a two-dimensional matrix with 
all  of the  combinations of ij on  one axis and all  of the 
combinations of kl  on  the  other. For the Wright-Fisher 
model,  there is only one site; G = (1 - 1/2N). In gen- 
eral,  depends  on  the  deme sizes and migration 
rates (see Equations 3 and 4 below) and may  vary 
through time. 

Under what circumstances can the complex dynamics 
of identity by descent, as  given by Equation 1, be de- 
scribed by a single effective  size? If the matrix G is fixed, 
then in the  long  term, lineages will coalesce at a  rate 
given by the  leading eigenvalue of G, A I .  (We consider 
ways  of dealing with  varying G in the  next  section). This 
long  term  rate of coalescence (or  inbreeding) defines 
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a  natural  measure of the effective  size, through X1 = (1 
- 1/2N,). Note that hl is the  leading eigenvalue of the 
matrix G, which determines  the increase in identity by 
descent. We  will argue  that this is  necessarily equal to 
the  leading nonunit eigenvalue of the transition matrix 
that gives the  change  in  the  distribution of allelic states. 
Therefore,  the  corresponding Ne is the eigenvalue effec- 
tive size defined by EWENS (1979, 1982). 

The probabilities of identity among  the various genes 
will converge to = 1 - where yil,l is the 
leading eigenvector of G (see APPENDIX). Thus,  the 
probabilities of identity depend  on  the locations of the 
genes. However, an asymptotic “effective size” can still 
be  defined  through Aej = (Z$,+l - E1,,)/(l - I$,), 
which will converge to (1 - X1 ) = 1/2N, for arbitrary 
i , j  (see the APPENDIX). This is equivalent to the effective 
size  of  WRIGHT (1931), the “effective number  for ran- 
dom  extinction”  introduced by HALDANE (1939), the 
“inbreeding effective size” used by CABALLERO (1994, 
p. 658), and  the “asymptotic effective size” of  CHESSER 
et al. (1993). It is also equivalent to the effective  sizes 
derived by considering  the long-term contribution of 
individuals to a  structured  population (ROBERTSON 
1961; HILL 1972,1979; CHARLESWORTH 1994; SANTIAGO 
and CABALLERO 1994). However, the  inbreeding effec- 
tive  size  is usually defined  through the probability of 
identity by descent  through  a  common  ancestor  in  the 
previous generation (e.g., WRIGHT, 1939; CROW and E- 
MUM 1970; EWENS 1979). This can be quite  different in 
a subdivided population and is not  further considered 
here. 

The mutation effective  size is defined  through  the 
probability of identity in  state, J1, under  the infinite 
alleles model with mutation  rate p. In  the  long  term, 
J, approaches yy,l (1 - A l ) / ( l  - X 1 ( l  - p ) ‘ ) ,  and so 
varies depending  on  the locations of the  genes (APPEN- 

DIX). If one identifies the average identity in state in 
the Wright-Fisher model with that calculated by taking 
the average of J1 across all pairs of genes, this yields 
an effective  size  which in general will differ from  the 
inbreeding effective  size defined above. 

Next, consider  the  rate of increase of variance in 
allele frequency, V A simple argument shows the exact 
relationship with identity by descent.  Suppose  that  each 
gene is labeled by X = 1 if it carries allele P, and 0 
otherwise. The allele frequency is given by the average 
of the X’s, and so the variance in allele frequency is the 
sum of covariances between all pairs of X‘s (including 
each X paired with itselo.  The covariance contributed 
by a  pair of genes is p(l - p )  if they are  identical by 
descent, and zero otherwise; p is the allele frequency 
in the ancestral generation.  Hence,  the variance is 
equal to p (  1 - $I)&, where F is the average of E, across 
all pairs of genes. The long-term rate of increase in 
variance (AV= (V,,, - V,)/(p(l - p )  - V,)) is necessar- 
ily the same as the long-term rate of increase of identity 
and would define  the same effective size. 

Finally, consider  the eigenvalue effective  size. This is 
defined by the largest nonunit eigenvalue, X?, of the 
transition matrix, which gves  the  chance  that  the popu- 
lation will change  from one configuration of  allelic 
states to another.  In  a panmictic population with 2N 
genes and two alleles, there  are (2N + 1) states; how- 
ever, in a  structured  population with n demes  each of 
2N biallelic genes, there  are (2N + 1) states. Denote 
each state by a,  and let  the probability distribution  at 
time t be $a,,. In the  long  term, this approaches $a,, = 
yaATg + u ~ $ ~ ,  + u,$,, where y a  is the eigenvector corre- 
sponding to X?, u,, and u1 are  the probabilities of global 
loss and fixation, and qo, are  the  corresponding ulti- 
mate probability distributions. (We assume that  the 
nonunit eigenvalues are distinct and that ultimately 
only global loss or fixation are  stable). Now, the  proba- 
bilities of identity by descent between pairs of genes (or 
indeed, any set of genes) is determined by the distribu- 
tion of states, By reversing the  argument of the 
previous paragraph, we have that F , , ,  is the covariance 
between allelic states, divided by p(l - p ) .  Since the 
covariance is a  linear  function of $a, l ,  the long-term 
increase in inbreeding is therefore given by the  leading 
nonunit eigenvalue of the transition matrix. The eigen- 
value  effective  size defined by the full transition matrix 
is therefore  equal to that  defined by the  much simpler 
matrix GrI,kl, which  only accounts  for pairwise identities. 

We have  shown that  for  an arbitrarily structured p o p  
ulation,  a single effective  size  gives the asymptotic rate 
of increase in inbreeding  and  gene frequency variance. 
The mutation effective  size will differ, unless there  are 
no correlations across generations in reproductive suc- 
cess.  However, we concentrate  attention  on  the case in 
which the  population consists  of so many demes  that 
drift acts slowly relative to migration. In this case, we 
show that  the probability of identity between genes 
from  different  demes converges to a  constant,  indepen- 
dent of location. This is because lineages typically trace 
back through very  many demes  before coalescing, so 
that  the  chance of i.b.d. becomes independent ofwhich 
demes  are involved. Therefore,  mutation effective  size 
becomes independent of  how identity in state is 
weighted and equivalent to the  other long-term mea- 
sures. 

We have  shown that  the  change in the probability of 
identity by descent gives enough  information to define 
the variance, inbreeding,  and eigenvalue effective pop- 
ulation sizes. In an ideal population,  the  change in iden- 
tity by descent in one generation is given by 

A F =  (1 - F)/2Np.  (2) 

In  more complicated models, the asymptotic value  of 
this quantity defines the effective population size. 

Correlations in reproductive  success  across  genera- 
tions: The key difficulty in deriving effective popula- 
tion size estimates for  structured  populations is that 
variation in  the qualities of a  deme may persist, so that 
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the reproductive success of alleles is correlated across 
generations: alleles that happen to be found in demes 
that  are increasing in size will increase in  frequency 
and will tend to continue to increase. Therefore,  the 
rate of drift will be greater in the  long run than ex- 
pected from simple extrapolation of single generation 
effects, and  the long-term effective  size will be smaller, 
in  a way that  depends  on  just how reproduction  and 
migration are  correlated across generations. 

These correlations could be dealt with in two ways. 
First, the matrix G in  Equation 1 may be taken as  fluc- 
tuating  through time. If these fluctuations are cyclic, 
then G can be replaced by its product across a  complete 
cycle; the long-term change in identity by descent, and 
hence  the effective  size, is given by the  leading eigen- 
value of this matrix. If fluctuations are stochastic, it is 
still  possible  to find  the long-term rate of change by 
taking expectations of the asymptotic rate of change of 
identity across the  distribution of demographies (as- 
suming  that this is stationary). The next few sections of 
this paper will use recursions of the probability of iden- 
tity to give general  formulae  for effective  size. Calcula- 
tions can be simplified by reclassifying  sites so as to 
allow a fixed recursion from one generation to the  next. 
For example, we  will consider  a  model where the fate 
of a  deme  depends solely on its present size. Then, 
probabilities of identity also depend  on the sizes  of the 
demes involved, and so a fixed recursion is found if 
identities are classified according to deme size, rather 
than  referring to particular pairs of demes. This ap- 
proach could be extended to more complex structures, 
for  example, where population dynamics vary  with the 
amount of some limiting resource. 

THE EFFECTIVE SIZE OF METAPOPULATIONS 
WITH VARIABLE LOCAL POPULATION SIZE 

AND MIGRATION RATES 

We  will describe a  general  model with  few assump- 
tions and gradually increase the  number of assumptions 
to allow further analysis.  We begin by deriving the effec- 
tive population size for  a  general  model  in two ways: 
first, by considering the increase in  the average identity 
as a  function of  all  of the events that  occur in a  genera- 
tion, and second, by considering  the ultimate contribu- 
tion to the  gene pool of any event changing allele 
frequency within a  deme. Finally, we consider  a  general- 
ized island model, in which migration is  via a single 
gene pool. In the following sections, we apply these 
results to two examples. 

A general  model of population  structure: Consider 
a set of n sites: we  will refer to these as demes,  but  the 
same analysis  would apply to alternative genetic back- 
grounds.  Their overall number, n, is fixed, but since we 
allow empty sites, this is not restrictive. Reproduction 
(including  density-dependent growth and decline) is 
followed by migration. In this and all subsequent sec- 

tions, reproduction within demes follows the Wright- 
Fisher model. Identities by descent  at  the  beginning of 
the generation are  denoted by el; after reproduction, 
by l$ ; and after  migration, by E,. We choose to count 
the  population immediately after  migration, because in 
the  model of explicit population dynamics it is conve- 
nient to combine  the two stochastic processes of repro- 
duction and migration. The generations  are nonover- 
lapping, and  the various events in each deme  occur 
synchronously. With these assumptions, it is  easy to 
write recursions for  the probabilities of identity of  al- 
leles chosen at  random  from within any  given deme or 
from any two demes. 

The recursion for the probability of identity by de- 
scent is straightforward. Letting i, j ,  and k represent 
different  demes  in  the  metapopulation, we can define 
the probability of identity of an allele chosen  at  random 
from deme i and  deme j as E,. The immigration rate 
from deme j to deme i is m,;  mi = ( 1  - m,i) = Ej., m, 
is the total rate of immigration into i, measured  at  the 
end of the life  cycle. The migration matrix m is defined 
as having elements m,. 

The probability of identity by descent  for alleles cho- 
sen  at  random from different  demes is 

FI, = mtkmj f i  = mF*m"; 
k ,  I 

where 

= 6, for i f j .  (4b) 

Note that in these equations  the immigration rate is 
allowed to  equal 1, which is equivalent to extinction 
and recolonization of a  deme. Each  of the  parameters 
in Equation 3 (and what is to follow) can be written 
with a subscript t to indicate  the specific  value for  that 
parameter in the tth generation. The overall average 
probability of identity for alleles chosen at  random from 
the  metapopulation, E is 

where n is the  number of demes in the  metapopulation 
and is the  mean number of individuals per  deme. 
Consider the increase in average identity. The average 
identity after one generation, F ,  is found by substitut- 
ing Equation 3 into Equation 5: 

The analysis is simplified by defining  the  number of 
individuals produced by deme  kin  the next  generation, 

= E, N:mih. This includes the  genes  that  remained 
in k, plus all those genes  that emigrated successfully to 
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other demes. Notice that  for all  of the M descendants 
of a  deme,  the  distribution of identity is the same. The 
change in Pis thus 

The first term on the  right gives the increase in identity 
due to drift within demes, while the  second gives the 
increase due to the variation in reproductive success 
across demes. Generalizing Wright’s F F T  coefficient, we 
can write the correlation of allele frequency within and 
among  demes as pil = (el - F)/(l - F )  (where p i z  = 
Frris Wright’s Fsrfor the ith deme). From the  definition 
of C j  CJ pii = 0. Define wi = X / N ,  a measure of the 
relative contribution of deme i to the  next  generation; 
since we assume demographic  equilibrium, Cj w,N, = 
C, N,. Then 

Since the  definition of effective  size is given by A F  = 
( 1  - F)/2N,  (Equation 2 ) ,  Equation 8 gives N,, such 
that 

Nn 
N, = . ( 9 )  

c N d ( 1  - Frr,i) WtW,NA$Pg 
+ 2 c c  nN 

L nN Z J  

Note that  the derivation of this equation makes no as- 
sumptions  about  the  nature of migration. In the  short 
term, when the dynamic equilibrium of genetic correla- 
tions and demography has not  been  reached,  the effec- 
tive  size defined by Equation 9 may  vary. However,  as 
argued above, it will eventually converge to a steady 
value. 

This formulation of the solution has one major ad- 
vantage: all  of the  parameters of this model  are measur- 
able in a single generation.  The pq’s can be measured 
from  the same genetic  data as Fs,.’s, and  the reproduc- 
tive success  values are  for  a single generation’s transi- 
tion.  Thus  Equation 9 can be used to estimate Ne for  a 
population  in  nature, if enough demographic  data and 
genetic  data are taken from a single generation. 

Some  special  cases: We can now  use these equations 
to investigate several special cases. For the  standard is- 
land  model with constant  population size, = N, = 
m for all i, and pzI = -eyl{( n - 1) for all i # j .  Thus 
the effective  size for an island model is N, = Rn/ (1 - 
&), as has been shown previously (WRIGHT 1939). This 
also holds  for  the  standard  one- or two-dimensional 
stepping  stone  models, provided that  deme size is con- 
stant in space and time; since E,,, pii = -Fyr, the effec- 
tive  size  is also N, = En/ (1 - &). 

A simple value for N, can be derived for  the case 
where each  deme has exactly the same size, but  contri- 
butes unequally to  the next  generation via migration. 
In this  case  all N ,  = but  there is variance in the W’s. 
Let the variance among  demes  in allelic fitness be t! 
Then, for the simplified case where there is no correla- 
tion between w and &, pq = -Fs7./( n - l ) ,  for i f j .  
We can then write 

N, = (10) 

which reduces to the island model result above. If one 
works in terms of the variance of allele frequency, 
rather  than  the  rate of increase in identity by descent, 
then  one can show that  Equation 10 gives the variance 
of the  change  in  mean allele frequency from one gener- 
ation to the  next, provided that  the allele frequency 
fluctuations are  uncorrelated  through time, as is  as- 
sumed in Equation 10. 

If the level  of population  differentiation has reached 
its maximum, with Fyr = 1 ,  then  Equation 10 reduces 
to N, = ( n  - 1 ) / 2  T/: This is equivalent to the value of 
N, for haploids with the  number of demes taking the 
place of the  number of individuals (with a variance 
in number of gametes produced of 2V). This is to be 
expected, because a  deme with complete identity is no 
different from a colony of haplotypes acting as a single 
haploid individual. If  all demes  contribute exactly the 
same number of gametes to the next  generation, with 
no genetic variation within demes,  then  there is effec- 
tively no drift and  the effective  size is infinite. 

It is also instructive to examine  the case in which 
the variance in  deme fitness is equal to the  expected 
variance of a collection of individuals of that  population 
size. It can be seen from Equation 10, for n large,  that 
subdivision will decrease  the effective  size (relative to 
an undivided population) if V >  Fs,/ ( 1  - Fyr + 2NFsr). 
For appreciable values  of F S T ,  this is approximately the 
same as that  the variance among  populations be greater 
than 1/2N. If the distribution of reproductive success 
of individuals is approximately Poisson, then Vwill be 
approximately 1/2N. If there is more variance in repro- 
ductive success than  expected by this sum over individu- 
als, however, then  the effective  size  of the  metapopula- 
tion will be  reduced, sometimes drastically, as we shall 
see in the  next  section. 

Using  the  genetic  correlations  among  populations: 
In  principle,  Equation 9 offers the advantage that all 
of the  parameters of this model  are measurable in  a 
single generation. The p2jls could be  measured from 
the same genetic  data as & i s ,  and  the reproductive 
values (w)  are  for  a single generation’s transition. For 
i # j ,  pii can be calculated with an analysis  of covariance, 
extending  the ANOVA approach  for F,,.. For the value 
of pii for  a given pair of populations,  the analysis must 
be done across loci, comparing deviations of gene fre- 
quency products  from  the  expectation. The power to 

Nn 
(1 + V ) ( I  - fFT) + 2 h r ~ ; , . ~ n / ( n  - 1 )  ’ 
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obtain reliable estimates of p i s  (including  the FsTi)s) 
for any  given pair of populations will be small, at least 
until genetic technology makes it possible to score very 
large numbers of loci and statistical methods  are devel- 
oped to allow for linkage among these loci. 

The power to estimate p ’ s  increases substantially if 
we look at  the  expected genetic correlation within and 
among classes  of populations. These classes  may be de- 
fined in a variety of  ways: geographically, for example, 
as clusters of demes; temporally, for example, age 
classes  of demes; by size; by quality, for example, sources 
and sinks; or by any combination of these or other 
qualities. If pertinent factors can be identified, then  a 
hierarchical ANCOVA, finding not only the Fsr within 
a class  (call this Fsc), but also the covariance among 
particular classes, can be used to  approximate p’s  with 
much  more power. In  the case  of a geographical hierar- 
chy, when demes are clustered and migration is more 
common within clusters and migration among clusters 
follows an island model,  then approximately p t l  = Fvr, 
p v  = FCrr for demes within clusters, and 

Fsr + ( d  - 1)Fs:sc 
n -  d P - =  ?l - 

for demes in different clusters, where d is the  number 
of demes  per cluster. 

Weighting  by ultimate contribution: In all but  the 
simplest cases, the  demographic history  of a  deme is 
correlated with its future prospects. It is therefore im- 
plausible that  the genetic correlations within and be- 
tween demes (pliin Equation 9 )  should be independent 
of reproductive output (a). Calculation of  effective  size 
from Equation 9 then requires knowledge of the full 
matrix of relative identities, essentially the same task  as 
solving the recursions of Equations 3 and 4 directly. In 
this section, we show that effective  size can be  repre- 
sented compactly  in terms of a measure of the ultimate 
contribution of each deme  to  future generations. This 
is essentially an extension of the  approach of HILL 
(1972) and NAGYLAKI (1980) to fluctuating deme sizes. 

The change in the probability of identities occurs 
through  the variance in reproductive success of alleles 
within demes and the amplification of that variation by 
the  differential growth and migration of demes. Any 
change in the probability of identity within a  deme 
changes overall allele frequencies in proportion to the 
ultimate reproductive success  of  alleles from that  deme. 
Thus  the cumulative change in identity, due to the 
within deme changes in one generation, is the average 
of  the  change  in identity, & - Fkb weighted by the ulti- 
mate contribution of those demes  to  the whole popula- 
tion, 6g?; 

This formulation requires that, regardless of the actual 

sequence of migration matrices, any initial fluctuation 
in allele frequencies will eventually spread  through  the 
population to give the same contribution to every deme. 
That is, (mt-, * * m7)aT converges to  a uniform value, 
which we write  as (E] 6j,Tal,r)/n. 

The ultimate contributions can be derived easily from 
the migration matrix. Let 6j,T be the expected contribu- 
tion of a  gene in demejat time T to  the metapopulation 
in the distant future. For a fixed matrix, it is the left 
eigenvector of m. It is defined by the recursion 

n 

gj,r = C 6i,7+lmv, (12 )  
i= 1 

where EE1 6,, = n. Here, it is assumed that  there  are 
no subsets of demes that  are compietely isolated from 
other subsets of demes, and that at least some individu- 
als may  stay in the same deme.  In  other words, the 
matrix m is not reducible or periodic (see NACYLAKI 
1980). If the matrices are reducible, then  the rate of 
loss of genetic material is ultimately zero, and the effec- 
tive  size  is infinite. 

Substituting ( 1  - F )  ( 1  - F&) for ( I  - F k k )  into 
Equation 1 1  gives the effective population size 

Since the  spread of identity through  the  population is 
determined by the same migration matrix as are allele 
frequencies, any identity I& introduced  at time T will 
ultimately lead to a uniform increase in identity 
throughout  the whole population of (E, 6,,T61,T~l,r)/n2. 
Because identity is generated in each generation by 
terms (1 - FYrk)/2Nk within each deme (Equation 4a), 
Equation 13 follows. 

Equation 13 can be rewritten as 

where ( ) denotes  an average  over demes, weighted by 
6‘. This form makes clear how  effective  size is decreased 
by variance in long-term contribution and increased 
by differentiation between demes, F y T .  Equation 14 is 
equivalent to Equation 10 with the same assumptions; 
this can be seen by remembering  that 2Nm(2 - rn)FyT 
= ( 1  - FST) ( 1  - m)* for  the island model. 

The  effective  size of a generalized  island  model: To 
investigate the model further, we  will make a  set  of 
sequentially more restrictive assumptions. We assume 
that  the whole metapopulation is at a  demographic 
equilibrium. The probabilities of identity by descent 
within and between particular demes may fluctuate as 
the  demographic states  of those demes changes, but 
the distribution of states and identities across the popu- 
lation as a whole remains constant. We further assume 
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that  though  emigration  and  immigration rates vary, 
there is no correlation between where migrants come 
from and  go to. Emigrants, by this assumption,  form  a 
migrant  pool,  from which immigrants are chosen at 
random without replacement. This requires  that m, = 
mgj ,  where qj is the  contribution of deme j to the 
migrant  pool, and mi the rate of migration into  deme 
i. Necessarily, 'pi = 1; since the qI are O( l /n) ,  
factors such as (1 - vi) can be  ignored,  and so we can 
take Cj 'p, = 1. 

Under these assumptions, the ultimate contributions 
of each  deme can be written more simply. Define 8 as 
the ultimate  contribution to the population by the al- 
leles in the migrant pool. This implies that 

8 = 6imji = 6jqtml.  (15) 
I p i  L Jfi 

Since all migrants have an equal probability of success, 

29;mji = q@. (16) 
If 2 

We can therefore  reexamine  Equation 12, 

6, = drm.. I I' = &(I  - mi) + 6jmJ, 
J j #  i 

= 6:(1 - m,) + p i e .  (17) 

This gives the following: 
a k- 1 

6.t = 8 C p i , t+k  n (1 - mi,t+T). (18) 
k=O T = O  

Substituting Equation 18 into Equation 13 gives the 
effective population size. The results in this paper using 
this derivation are  exact,  but an approximation to 8 
can  be  obtained from Equation 18 and  the equation 
zj dl = n; 8 can be roughly approximated by the har- 
monic  mean of mn. 

Fyr can be determined directly, either by empirical 
observation or by analysis  of the migration matrices. If 
the  number of demes is large,  then to leading order in 
l /n :  

Thus,  the identity within demes, relative to that between 
demes, is independent of changes in the population as 
a whole, and  depends only on  the sequence of immigra- 
tion rates (mi) and sizes ( N z )  of the  deme  in  question. 

Under  the migrant pool assumptions of this section, 
the same result can also be written as a  function of the 
coalescent, by solving the  recursion  for FYlK explicitly in 
terms of contributions from drift  in  generations T' < 
t. Substituting this, and Equation 18 into  Equation 13 
gives 

r . r - ~  1 

where 6, = 1 if t = T ,  and 0 otherwise. All quantities 
in the sum refer to deme k the  index has been sup- 
pressed for clarity. The sum is over contributions from 
an initial coalescence, in  generation T' (with probability 
1/2NTt), followed by emigration events that  occur s u b  
sequently, in generations t, T (with probability q,, 9,). 
The factor (2 - 6,) arises from the  need to avoid count- 
ing  simultaneous emigrations ( t  = T )  twice. Tracing 
back from the  second emigration at 7 ,  back to the first 
emigration event at t, introduces  the  second  product, 
since the  chance  that  the single lineage remaining in 
the  deme is not replaced by an immigrant as we trace 
back is (1 - m,) per  generation. Between generations 
t and T ' ,  both lineages are in the same deme without 
coalescing, and so the probability must be discounted 
by a further factor (1 - 1 / 2 4 )  in the first product. 
Equation 3 could be derived directly by equating  the 
long-term rate of drift with the ultimate increase in 
identity due to coalescence in some particular  genera- 
tion, T' .  This is given by the probability of a coalescence 
in some deme k at time T ' ,  multiplied by the probability 
that  the ancestral lineages did not leave that deme,  or 
coalesce within it, at some previous time. 

As a simple check,  consider  the  standard island 
model. There, mi = m for all demes, and qz = l /n.  
From Equation 18, dt = 1, and 8 = mn. Substituting 
into Equation 13 gives 1/2N, = (1 - Fsr)/2nN, as  ex- 
pected. Now, suppose  that  demes have constant demog- 
raphy over time, but  that N, q, and m vary between 
demes such that  emigration and immigration balance 
for each deme (cp2 = m,Ni/(Z, m,Ni)). Then, 6, = N,/ 
m, and  the effective  size is just 2nN/(  1 - I$,), where 
Fsr is the average weighted by deme size, divided by the 
total number in the population (MARWAMA, 1972). 

In general, deme sizes and migration rates may  vary 
through time and may be correlated across generations. 
Then, Equation 13 still holds, but evaluation of the 
covariance between 6, (which depends  on  the  future 
success  of genes now in deme k )  and &'k (which de- 
pends on their past history) is nontrivial. In the follow- 
ing sections, we illustrate such calculations using two 
explicit models. 

EFFECTIVE SIZE: THE  CATASTROPHIC 
EXTINCTION MODEL 

As a special case, we  wish to know the effective  size 
of a  metapopulation  that is subdivided into  demes  that 
undergo  extinction and recolonization. In this section 
we  will generalize previous results to include  a  more 
general mode of colonization. Imagine (following SLAT- 
KIN 1977; WHITLOCK and MCCAULEY 1990; WHITL.OCK 
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FIGURE 1.-Increasing  local  extinction rates decreases the 

effective population size of the species. N = 50, k = 2, and m 
= 0.1. 

1992; see these papers  for  the details of the basic 
model)  that all n  demes have Ndiploid individuals that 
have a probability m of migrating to a  deme  chosen  at 
random. Each of these demes go extinct with probabil- 
ity e per  generation, Each colonized deme consists of 
2k gametes in which each pair has a probability 4 of 
having come from the same source  population. For sim- 
plicity, each newly colonized deme grows to N individu- 
als before the  next  generation. 

For this case the value  of Fv. has been given by WHIT- 
LOCK and MCCAULEY (1990): 

( 1  +?) 
FST . (21) 

( 1  + 4Nm + 2Ne( 1 - 4( 1 - A))) 
With 4 = 0, the  contribution to the  next  generation 
(Nx ) is either 0 with probability e or N/ (1 - e) with 
probability (1  - e ) .  The genetic  correlation  among 
demes is on average ps = -FSr/(n - 1 )  for  different 
demes. 

We can write (from  Equation 9) ,  

Ne = 
Nn(1 - e) 

(1 - Fs,) + 2FsTNe ' 

so that, with K = n 

Nn 
4N( m + e) Fsr 

N, = 

It can be  shown that  Equation 23 is true relaxing the 
assumptions about 4 and k. 

The same result can be found with the  method of 
ultimate contributions, as in  Equation 13. The immedi- 
ate and  net contribution of genes are  both zero for  a 
deme  that is about to go extinct (qE, Q E  = 0). For the 
surviving demes,  the  net  contribution  depends on  the 
number of generations  that they persist before they go 
extinct. The  net contribution of a  deme which  survives 
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FIGURE 2 . - h  the  number of colonists approaches the 

equilibrium  deme size, the  extinction  effect  on effective popu- 
lation size diminishes. N = 100, e = m, = 0.1. 

x generations is 6, = [ ( e  + m ( l  - e ) ) / ( l  - e)][( l  - 
e) I [ (1 - (1  - m)")/m] . The  number of demes  that 
will last x generations without extinction is ne(1 - e)". 
Substituting into  Equation 13, and summing over  all 
classes of demes, gives 

which is equivalent to Equation 23 above. 
Equation 23 reduces to the two approximate cases 

given by SLATKIN (1977) for k = N, at 4 = 0 and 4 = 
1,  and to that given by MARWAMA and KIMURA (1980) 
for  their  model when = 1.  

If k 4 Nand extinction is not  rare relative to migra- 
tion,  then  the effective  size can be substantially reduced 
(see Figures 1 and 2).  For example, if e = m = 0.10, N 
= 1000, and k = 1, then  the effective  size is 0.0062 of 
what it would  have been without local extinction. Local 
extinction can greatly reduce  the effective population 
size. 

EXPLICIT  POPULATION DYNAMICS 

Demographic model: As has been shown in the previ- 
ous  section,  reducing the  number of possible demo- 
graphic states of demes greatly simplifies the calculation 
of N, for  a  metapopulation. If each  deme's  demo- 
graphic trajectory is strictly a  function of its present 
state, and does not  depend  on  other historical factors, 
then  the identity measures of all demes  in  that state 
can  be  represented by an average, thereby simplifying 
the calculations. In this section, we suppose  that  the 
demographic  future of a  deme can be described by a 
single parameter, namely, deme size. The  approach 
could be generalized to include other parameters, such 
as the level  of some limiting resource. 

In  the catastrophic  extinction  model above (and in- 
deed, in most models of metapopulation dynamics), 
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demes  are taken to have constant size and to  be recolo- 
nized immediately if they become extinct. The probabil- 
ity of extinction is imposed arbitrarily, colonization is 
assumed to be immediate, and numbers build up to 
the carrying capacity  in a single generation.  Here, we 
show  how to calculate the effective  size  of a  population 
with arbitrary fluctuations in deme size and illustrate 
the  methods using a model in  which extinction and 
recolonization are  not catastrophic but  are  rather  the 
consequence of the  demographic stochasticity intrinsic 
to density-dependent population dynamics,  possibly 
augmented by chaos in the underlying dynamics. 

The fundamental  model could apply to haploid or 
diploid populations,  but  for simplicity, we apply  it to 
the  haploid case. We also  assume that colonization and 
migration are due to the same process, so that  the  num- 
ber of colonists arriving per  generation follows a Pois- 
son distribution. As before, assume a very large number 
(n) of demes. These have reached  a steady-state distri- 
bution of  sizes, qi, the  mean  number of genes in each 
deme being defined as 2&' = Ci iGI ,  where i is the 
number of haploid genotypes in a  deme.  In this section 
and the next, i and j are  no  longer  just identifiers of 
particular populations, but mark the population size  of 
a class  of populations. (Though we use a haploid model, 
we define  the  number of genes as 2N for consistency 
with the  standard  formulae). As above, the  population 
is counted immediately after migration. This simplifies 
the analysis, because the two stochastic processes  of mi- 
gration and reproduction can be combined. 

The probability that  a  deme will go from size i to size 
j i n  one generation, as a result of reproduction followed 
by migration, is Pij; the equilibrium distribution is deter- 
mined by +] = C, t,btPq. The corresponding probability 
that  a  deme of  size j derives from one of  size i (the 
backwards transition matrix) is = P&,/+j; Cz Tli = 
1. (In a diploid model, i must always be even, whereas 
in the  haploid case, it can take any integer  value).  These 
transition matrices depend  on density-dependent regu- 
lation and  on migration. We assume that in each gener- 
ation,  a  deme  containing i haploid individuals produces 
a randomly distributed number of offspring, with  ex- 
pectation iw,, where w, decreases for large i. Through- 
out, we use the form w, = wo exp( - Z / K ) ,  where K In 
( w o )  corresponds  to  the carrying capacity  of a  deme. 
Each offspring then emigrates to some other  deme with 
probability m. Define A as the  mean  number of  emi- 
grants  contributed by a  deme. This is also the mean 
number of immigrants such that = m& WkfUlrk .  Since 
there  are  a very large number of demes,  the  number 
of immigrant genes is Poisson distributed, with expecta- 
tion M .  The transition matrices depend  on  the sum of 
this distribution and  the distribution of the  number of 
nonmigrant offspring. The dynamics are simplest if the 
distribution of offspring number is Poisson. Then,  the 
transition probability Pll is a Poisson distribution over 
j ,  with expectation 2 + (1 - m) iwi. This can be solved 

to find the equilibrium distribution, + i t  and gives an 
implicit equation  for 2, namely A = d k  WkfUlrk .  [See 
BARTON and ROUHANI (1993) for an analogous a p  
proach to modeling  gene frequencies in a metapopula- 
tion]. 

In a large panmictic  population,  the  form of wi de- 
cides whether  there will be  a stable equilibrium,  a limit 
cycle, or chaos. Migration and  demographic fluctua- 
tions introduce  further complexities. If  all offspring 
migrate ( m  = l ) ,  then  the distribution G2 is  always 
Poisson with mean 2x and  the system can  be  de- 
scribed by the single variable 2n If demographic fluc- 
tuations  are negligible ( K  B l ) ,  the  metapopulation 
reaches a  stable  equilibrium at 2 R =  K log ( w o )  if 1 < 
wo < 2, runs  through limit cycles  of increasing  period 
as the growth rate increases above wo = 2 = 7.39, and 
may fluctuate chaotically for wo > 14.75. When K is 
small, random variation in  numbers across demes in- 
creases crowding effects; averaging over the Poisson 
distribution shows that  the system  is equivalent to  a 
panmictic  population with wt  = wo exp( - l / ~ ) ,  K* = 

If ui$ is large  enough  that Nshows complex dynamics 
with m = 1, then  numerical  iterations show that as 
migration decreases, R cycles through oscillations of 
decreasing  period, and  then settles to a stable value. 
Individual deme sizes  may still fluctuate widely  as a 
result of the  underlying chaos, but  change  indepen- 
dently of each  other. For example, with wo = 20, K = 
3, the  population settles to  a steady equilibrium with 
constant  a  linear analysis  shows this to be stable 
when m < 0.26. Higher  migration rates synchronize 
fluctuations in different  demes, so that  the whole pop- 
ulation  fluctuates  together. With m = 0.5, Ralternates 
between 3.22 and 16.25, in a stable cycle  of period 2. 
When m = 1, the  population oscillates with period 
8. The effect of migration on chaotic dynamics is a 
complicated issue  (HASTINGS et al. 1993; LLOYD 1995). 
Here, we concentrate on cases where the overall distri- 
bution + i  is stable; however, local extinction may still 
be largely due to chaos. 

Figure 3 gives examples of the equilibrium distribu- 
tion, calculated numerically from the transition matrix. 
Each deme flips  between two states: extinction or a 
roughly Gaussian distribution around  the deterministic 
equilibrium. In a model where deme size  varies  only 
because of demographic fluctuations, extinction is un- 
likely. For example, with w, = wo exp( - i / K ) ,  and wo 
= 2, K = 15, the deterministic model gives a stable 
equilibrium at 2 n =  10.4 (Figure 3A). Even  with  migra- 
tion of  only m = 0.01,  only 1.65% of demes  are empty, 
and average deme size is reduced only to 2R = 9.38 
(Figure 3B). However, if growth rates are  higher,  the 
deterministic analog becomes chaotic, and in the sto- 
chastic model, deme size fluctuates widely. For exam- 
ple, with wo = 20, K = 3, and m = 0.2,  average deme 
size is 2 R =  10.0, and 2.9% of demes  are empty (Figure 

1/(1 - exp(-l/K)). 



436 M. C. Whitlock and N. H. Barton 
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FIGURE 3.-The equilibrium distribution of deme sizes,  for 
TU, = 714, exp(-i/K). (A) 714, = 2, K = 15, m = 0.01; calculations 

there is a stable deterministic equilibrium at 10.40.  Demo- 
graphic fluctuations reduce the mean population size to ic' = 
9.38;  1.65%  of demes are empty. The coeffkient of variation 

(weighted by deme size) is 0.854, and effective population 
size  is increased by a factor 10.1. (B and C )  114, = 20, K = 
3; calculations were truncated above  35  individuals. In the 

chaos. (B) With stochastic fluctuations and migration at m = 
0.2, the mean deme size  is reduced to 10.0, and 2.9%  of 
demes are empty.  var (N)/p = 0.578. FVr (weighted by deme 
size) is 0.299, and effective  population size  is decreased by a 
factor 0.278. With stochastic  fluctuations and migration 

c .R - .. were truncated above  25  individuals.  For  these parameters, 

> in deme size after reproduction is  var (N)/R = 0.154. FVr 
0 
S a 
3 c 
?! 
U corresponding deterministic model, these parameters lead  to 
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X ) .  As the migration rate decreases, 2 n  decreases to 
zero  at  about m = 0.015 (Figure 4B). 

Effective population size with explicit population dy- 
namics: The N, formulae given above must be modi- 
fied, since  the  index i now labels the class of demes of 
size i, rather  than one particular  deme. Demes of the 
same size  may, by chance, follow different  sequences of 
sizes  in the  future,  and so we must account  for  the 
variance in mi and 19 across demes of the same size, as 
well as i t s  mean. A simplification, however,  is that for n 
Rivpn rlme size I.;.?. and 6 are  independent, since one 
depends  on past events, and  the  other  on  future events. 
The equation  for within-deme identity (Equation 19) 
becomes 

at m = 0.02, the mean deme size  is reduced to  1.82, and 
80.9% of demes are empty.  var (N)/R = 7.81. (weighted 
by deme size) is  0.957, and effective population size  is in- 
creased by a factor 37.32. 

in a  deme  that was of size i has probability mi = M/(R 
+ i(1 - m)rui) of being an immigrant. Note that this 
depends only on  the  number in the previous generation 
( i ) ,  and  not  on  the present number 0). Necessarily, q 
= 1 ,  since a deme  that has just been  founded must 
consist solely  of immigrants. The variance in immigra- 
tion rate is also required and  depends  on  both  the 
initial and final numbers. Since the numbers of immi- 
grants in a deme of  size j is binomially distributed with 
probability mi, this variance is vji = m i ( l  - m i ) / j .  

Equation 13, which  gives the effective population 
size, becomes a sum over the  distribution of deme sizes, 
+;, rather  than over all demes: 
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FIGURE 4.-The relation between migration  rate (m) and 
the  mean  deme size ( g  0 )  and effective population size per 
deme (N,/n; 0). Parameters are as in Figures 3 [(A) zuu = 2, 
K = 15; (B) wo = 20, K = 31. There is a  threshold  migration 
rate below which extinction is certain [(A) m = 0.0002, (B) 
m = 0.0161. The equilibrium shown in B is not stable for m 
> 0.262; in the limit rn = 1 ,  for example, x oscillates in  a 
cycle of period 8. The thin lines connecting  the  open circles 
show the  approximation assuming FS, independent of deme 
size, derived from Equation 19. 

+ C [(l  - + v ~ ~ ] P ; I ~ .  (28) 
I 

The first term in Equation 28 is the variance in immedi- 
ate  contribution to the  migrant pool. The second term 
is the variance in average prospects (19,) due to the 
change  from  deme size i to deme size j .  The third term 
is due to the variance in immigration rate, v,. 

When growth rates are low, so that  the variation in 
deme size is due solely to demographic  fluctuations, 
subdivision allows local extinction, and  hence reduces 
the average deme size, R (Figure 4A). However,  subdivi- 

0.001 0.01 0.1 1 

migration rate 

0 '  
0.01 0.1 1 

migration rate 

1 I 

FIGURE 5.-The average FSr, weighted by deme size, plotted 
against  migration  rate, m. Parameters are as above: (A) wO = 
2, K = 15; (B) w(, = 20, K = 3) .  The heavy line and  open 
circles mark the exact E ; 7 ;  the closed circles and lighter  line 
the island model approximation, FS, = 1/ (1  + 4mm), and  the 
dotted line and triangles the  approximation of Equation 29. 
Note that  for m > 0.262, the solution with mconstant becomes 
unstable. 

sion also  allows local differentiation (I$,.; Figure 5A), 
and overall, N, increases substantially when M is small 
(Figure 4). Note, however, that when migration ap- 
proaches  the critical threshold,  Wdrops so much  that 
the effective  size  also  falls (left of Figure 4). In con- 
trast, when growth rates are high enough to give chaos 
in  the deterministic model,  deme size  varies much 
more. The variation in success across demes caused by 
subdivision therefore  reduces N, even when average 
numbers  are hardly affected (right of Figure 4B). These 
examples show that  the  combined effects  of genetic 
differentiation (&), census numbers ( f l  and variation 
in output across demes can interact in counterintuitive 
ways. However, note  that with the  parameter values that 
generate  the low Fw values  most often  found intraspe- 
cifically, and with demographic instability (right of  Fig- 
ure 4B), N, is reduced, sometimes substantially, by sub- 
division. 

For these examples, FYI,  does not  depend strongly on 
deme size, over the  range of sizes commonly found 
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in the  metapopulation (Figure 6). One can obtain an 
accurate approximation for FST by assuming it to be 
independent of deme size and taking the average of 
Equation 25 over the equilibrium distribution, exclud- 
ing deme sizes j = 0 and 1, for which F y T  is not defined: 

where $, = (+i - +$os - + l l - l i ) / ( ( + t  - +o - $1)  is 
the probability that  a  deme is  of  size i and will not  drop 
to size 1 or 0 in the  next  generation. In the  standard 
island model, Equation 29 clearly reduces to 1/  (1 + 
4Nm). Approximate solutions can be obtained if the 
mean  deme size  is thought of  as a kind of harmonic 
mean deme size, weighted by $ j  and by the immigration 
rate. In  the examples above, this approximation is accu- 
rate over the whole range of migration values (dotted 
lines in Figure 5), whereas the simple island model 1 / 

B 1 -  

FST ......... ............ 
0 

0 10 20 30 

Population  size 

FIGURE 6.-The relation between FsTand deme size. Param- 
eters  are  as  above: (A) ~0 = 2 ,  K = 15, m = 0.001; (B) wo = 
20, K = 3, m = 0.2; (C) ~0 = 20, K = 3, m = 0.02. 

(1 + 4Nm) tends  to  underestimate FSr (thin lines in 
Figure 5 ) .  Substituting Equation 29 into Equation 13 
leads to an accurate approximation for  the effective 
population size (thin lines in Figure 4). 

DISCUSSION 

We have presented  general  methods for finding the 
effective  size of a  population  that is subdivided across 
many different demes, each changing in size and each 
contributing to a  common migrant pool. We found  that 
though  the effective  size can be increased by genetic 
differentiation across demes, it may be greatly reduced 
by variation in the sizes and  contributions of these 
demes. 

Finding the effective  size of a spatially structured pop- 
ulation is closely related to the analogous problem with 
age structure (HILL, 1972,1979; CHARLESWORTH 1994) 
and with inherited variation in fitness (ROBERTSON 
1961; CABALLERO 1994; SANTIAGO and CABALLERO 
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1994). The asymptotic rate of drift  in an age-structured 
population can be found using a similar matrix method 
(HILL 1972; CHARLESWORTH 1994). However, though 
the long-term contribution of individuals to the popula- 
tion (here, 19~) is the crucial quantity, the rate of drift 
does not simply reduce to the variance of  this quantity, 
as for  a single age-structured population  (HILL  1979). 

There is a close analogy with hitchhiking, where a 
marker allele may find itself in  a variety of different 
genetic  backgrounds. If the  genetic  backgrounds 
change in frequency, as  with directional selection or a 
fluctuating polymorphism, then  the effects of drift may 
be greatly amplified ( ~ ~ A ~ N A R D  SMITH and HAIGH 1974; 
HUDSON 1991). The case where families  have heritable 
differences in fitness shares  the complication that allele 
frequency fluctuations are  correlated across genera- 
tions, making  the variance of changes  in one generation 
an unsatisfactory basis for  defining Ne (CABALLERO 
1994). A spatially structured  population is somewhat 
different, because once  an individual moves to a new 
deme, it immediately acquires the fitness associated 
with that  deme;  in  contrast,  the  correlation between 
descendants  from  a family is  slowly dissipated by sexual 
reproduction. However, if one distinguishes genes asso- 
ciated with different  genetic  backgrounds,  then recom- 
bination plays the role of migration, and  the problems 
become similar. We speculate  that  the geometry im- 
posed by recombination lies somewhere between the 
island model and a  stepping stone-model: it transfers a 
gene to many genetic  backgrounds (rather than to a 
few neighbors, as in the stepping-stone model),  but 
nevertheless, only to  a small fraction of the possible 
backgrounds (in contrast to the island model). 

The effects of subdivision on  the effective  size of a 
species can be  complex,  but can be divided into several 
factors: the census population size, the  degree of ge- 
netic  differentiation, and  the variance in reproductive 
success both between and within demes. By examining 
each of these effects individually, we can better  under- 
stand  the reasons for  the  changes  in Ne. 

Obviously, the effective  size of any population relates 
in  some way to  the total number of individuals in  that 
population, and, all else being  equal,  the effective  size 
will increase in proportion to the census size. This ef- 
fect, while conceptually trivial, can be a significant fac- 
tor  in  determining  the  difference  in effective  size be- 
tween a  panmictic  population and a subdivided popula- 
tion occupying the same habitat. The ecology of 
metapopulations is such  that,  for many if not most spe- 
cies, local extinction and demographic fluctuations in 
a divided population will reduce  the total census size 
relative to an undivided population  (see  GILPIN and 
HAN~KI 1989 and  above). Moreover, if the  number of 
immigrants per generation (Nm) is small enough  to 
cause significant genetic  differentiation, it is  likely  also 
to be small enough to reduce census numbers. 

Most discussions of the effects of population subdivi- 

sion on effective population size  have focused on  the 
effects of differentiation  among  demes, as measured by 
Fs7. (WRIGHT 1969; GILPIN and HANS= 1989). The ge- 
netic differentiation of populations will often increase 
the effective  size of a  metapopulation. In the  extreme, 
with no migration among  demes, any mutation  that 
arises in a  particular deme may  fix in  that  deme,  but 
cannot  spread  to other demes.  Hence no allele can 
ever fix in the  metapopulation, drift to fixation takes 
indefinitely long, and  the effective  size is infinite. This 
effect operates to a lesser degree when the migration 
rate is nonzero  but  limited;  there is a lag between the 
increase of an allele frequency within a  deme  before 
that allele can change in frequency in other demes, 
because of the waiting time until migration of the allele. 
Any metapopulation with closed and stable subsets that 
do  not exchange any migrants either directly or indi- 
rectly  with other subsets will also  have an infinite effec- 
tive  size. 

Variance among demes in reproductive success de- 
creases the effective population size, and genetic  corre- 
lations among alleles within demes  tend to amplify  this 
effect substantially. The effects seen in the catastrophic 
extinction  model  demonstrate  the  extent to  which this 
sort of variance can substantially decrease the effective 
size  of a  metapopulation  (see Figure 1 ) .  With realistic 
population  structures,  that is, those in which the  output 
of each  deme is not rigidly determined to be exactly 
the same for each deme,  the variance in success among 
demes quickly  makes up for  the genetic correlations 
within demes; little extinction or differential migration 
is required to reverse the  direction of effect of  subdivi- 
sion on effective  size, relative to the island model.  These 
differences can be related  to  the  difference between 
soft and hard selection: if population regulation is 
strictly at  the level  of demes,  then  the variance in repro- 
ductive success among  demes will be small and  the ef- 
fective  size will tend to be large. On  the  other  hand, 
when individual deme size is loosely regulated, or if 
regulation occurs at  the level  of the whole metapopula- 
tion,  the variance can be large among  populations, and 
Ne small. 

Local extinction and colonization have been  treated 
directly above; in the simple catastrophic extinction 
model given  above the effects of colonization are large. 
If a small number of individuals gain a large reproduc- 
tive  success by colonizing a new deme, this can signifi- 
cantly increase the variance in reproductive success in 
the species, decreasing its  effective  size. This effect is 
slightly enhanced if colonists tend to have a  common 
origin (4 ) ,  because they are  then genetically similar 
(see Figures 1 and  2).  The variance in reproductive 
success is particularly increased if there  are very  few 
colonists relative to  the carrying capacity ( k  e N). Then, 
extinction and colonization will greatly reduce  the ef- 
fective  size  of the species. The model given here as- 
sumes that  the k colonists will grow immediately to size 
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N in the  next  generation, If demes grow more slowly 
and immigration continues,  the variance in reproduc- 
tive success due to colonization is diminished, and N, 
would be closer to Nn. The effective  sizes of fast-growing 
species with  relatively low rates of dispersal are  there- 
fore  expected to be the most affected by extinction and 
colonization processes. 

Conservation biologists and resource managers are 
often forced to make difficult decisions about  the geom- 
etry of populations and communities under their  care. 
The  amount of genetic variation maintained within spe- 
cies  may be important  for  the  future ability of species 
to adapt  to new evolutionary pressures and thus affects 
the  optimal strategy for maximizing the long-term 
chances of species’ survival. To increase the  amount of 
genetic variance for  a given total population size,  it has 
been suggested that  the species should  be subdivided 
into distinct subpopulations,  thus allowing different al- 
leles to be maintained in each deme. This strategy has 
been criticized because local extinction reduces  the 
amount of genetic variance rather  than increasing it 
(MCCAULEY 1991).  The results in this paper suggest that 
the decrease in N, with realistic population  structures 
is a  common phenomenon,  and the increase in N, with 
the island model is an artifact of the  unnatural assump- 
tions of that model. 

From a conservation standpoint,  the  maintenance of 
genetic variance should play a secondary role to other 
concerns. Homozygosity can  be increased substantially 
by local extinction or by the isolation of demes (see 
WHITLDCK and MCCAULEY 1990). With low migration 
rates and  deme sizes,  this  homozygosity can cause sig- 
nificant inbreeding  depression and diminish a  popula- 
tion’s chances of  survival (FRANKHAM  1995). From a 
genetic  point of  view, subdivision of a species, especially 
if there is a risk  of local extinction, is not a  good man- 
agement strategy. Some ecological factors, such as the 
risk  of epidemics or local disaster, can cause the risk  of 
species extinction to be significantly reduced by popula- 
tion subdivision. Other ecological factors, such as  low 
recruitment to new demes, can significantly increase 
the probability of metapopulation extinction for subdi- 
vided populations (see HANSKI 1989 for review). These 
ecological factors are  undoubtedly  often  more im- 
portant  than  genetic considerations and should be 
given full consideration  in  management strategy 
( LANDE 1988). 

Most species are divided into  demes with more or 
less limited migration between them.  The effective  size 
of such species can be strongly affected by this subdivi- 
sion, particularly when there is variance in the  repro- 
ductive success of the  demes. Much more empirical 
work  is needed to know the  extent of the various param- 
eters shown to be important  here; particularly we know 
very little about  the actual variance in reproductive suc- 
cess across demes or the  correlations across generations 
of this  success.  Drift at  the  metapopulation level  may 

prove crucial to understanding  the distribution of  al- 
leles within species or, perhaps,  for the better design 
of conservation strategies. 
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APPENDIX 

Relation  between  mutation  effective  size and in- 
breeding  effective  size: Let the eigenvalues of the ma- 
trix Gij,,kl be ha, the largest being X1. Define CEi as l - 
f i j .  We can  then write the transition for 5 as gt  = G'5, 

= mA"&,, where A has columns of the eigenvectors, 
y a  and D is the diagonal matrix of the  corresponding 
eigenvalues. If  we scale the eigenvectors ye such that 
A" has an eigenvalue of 1 with an associated  eigenvec- 
tor of (1, 1,  1, 1 * * - ), then A"S0 = go. Since  initially 
all El = 0, to = (1, 1,  1, 1 * * ), and therefore st = 

The solution for  at time t can therefore be written 
AD"5,. 

as a sum of eigenvectors: 

E? = 1 - c Yq,.A:, . (A1 ) 
a 

Asymptotically, the identities converge to l $ t  = 1 - 
ylilX;. Thus  the rate of change of the probability of 
identity is governed by the same eigenvalue for all 
demes. 

Now, consider the equilibrium identity in state, Jl. 
This is given by the sum  over the probability that lin- 
eages coalesce at time t (I$ - ), multiplied by the 
probability that no mutations occurred over the 2t gen- 
erations  that separate them, (1 - p)". Substituting from 
Equation A l ,  

m 

j ;  = c (1 - P)zt(Ejt - & I )  
t= 1 

The identity in state depends  on location in a compli- 
cated way. For very small mutation rates ( Nep 4 1, where 
2N, = 1/ (1 - hl ) ) , it is dominated by the term associ- 
ated with the leading eigenvalue; however, this is not 
the case for NJL = 1. The average identity in state takes 
a simple form only if the average is weighted according 
to the  leading eigenvector: 

Equating this with the identity in state under  the 
Wright-Fisher model,f= (1 - p)'(2N-  1)/(2N-  (2N 
- 1)  (1 - 11)') , shows that with  this particular definition 
of  average identity, the mutation effective  size is equal 
to the  inbreeding effective  size. This is true for arbitrary 
times and arbitrary mutation rates. 


