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ABSTRACT 
Assuming  discrete  generations  and  autosomal  inheritance  involving  genes  that do not  affect  viability  or 

reproductive  ability, we have  derived recurrence  equations  for  the  inbreeding  coefficient  and  coancestry 
between  individuals within and  among  subpopulations  for a subdivided  monoecious  population  with 
arbitrary  distributions of  male and  female  gametes  per  family,  variable  pollen  and  seed  migration rates, 
and  partial  selfing.  From  the  equations,  formulas  for  effective  size  and  expressions for Fstatistics are 
obtained. For the  special  case  of a single  unsubdivided  population,  our  equations  reduce to the  simple 
expressions  derived by previous  authors. It is shown that  population  structure  (subdivision  and  migra- 
tion) is important  in  determining  the  inbreeding  coefficient  and  effective  size.  Failure  to  recognize 
internal  structures of populations may  lead to considerable  bias  in  predicting  effective  size.  Inbreeding 
coefficient,  coancestry  between  individuals  within  and  among  subpopulations  accrue  at  different  and 
variable  rates  over  initial  generations  before  they  converge to the same  asymptotic  rate  of  increase.  For 
a given population, the smaller  the  pollen  and  seed  migration  rates,  the  more  generations  are  required 
to attain  the  asymptotic rate and  the  larger  the  asymptotic  effective  size.  The  equations  presented  herein 
can  be  used for  the study of evolutionary  biology and  conservation  genetics. 

T HE effective  size  of a  population is a key parameter 
in  population and quantitative genetics. The con- 

cept was introduced by WRIGHT (1931 ) as the size  of 
an ideal population whose genetic composition is in- 
fluenced by random processes in the same way as the 
real  population. It was distinguished subsequently by 
CROW and coworkers (CROW and K"RA 1970, pp. 
345-364) as inbreeding effective  size,  which predicts 
changes  in heterozygosity, and variance effective  size, 
which predicts  changes  in  gene  frequency drift vari- 
ance; however, these two effective  sizes are  identical in 
a  population  that is not completely subdivided and of 
constant size ( & M U M  and CROW 1963; CROW and k- 
MURA 1971;JOHNSON 1977; HILL 1979). 

Most of the previous work on effective size considers 
a  single  unsubdivided  population. There is evidence 
that many organisms are arrayed into complexes of 
breeding  units  or  subpopulations ( SELANDER 1970; 
CHESSER 1983)  due to intrinsic  factors,  such as behav- 
ioral  segregation, or extrinsic  factors,  such as geo- 
graphic  distance and  habitat  fragmentation.  It is found 
that  differentiation  among  subpopulations is  very com- 
mon in  plants ( BARRETT and HUSBAND 1990). Thus it 
is more  appropriate to take population  structure  into 
account  in  deriving  expressions  for effective size. 
CHESSER et al. ( 1993)  considered  the effective size and 
Fstatistics of a  dioecious  population with subdivision 
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and migration;  SUGG and CHESSER ( 1994)  extended 
the model to include  multiple  paternity. In this article, 
we broaden  the scope of previous inquiries by consid- 
ering  the effective size  of a  monoecious  diploid  popu- 
lation of finite size subdivided into a number of sub- 
populations. We incorporate  both  pollen  and  seed mi- 
grations  in WRIGHT'S (1969) island model,  partial 
selfing and  an arbitrary  distribution of  family  size in 
our analysis. By removing the restrictive assumptions 
made by previous authors, we obtain  more  general 
equations  for effective size and Fstatistics that preserve 
concordance with the classical models when the same 
assumptions are  added. 

ASSUMPTIONS AND PARAMETER  DEFINITIONS 

We consider  a  monoecious  population of plants sub- 
divided into s subpopulations,  each consisting of Nindi- 
viduals. In each generation,  each  subpopulation re- 
ceives a  proportion ( dp) of migrant pollen drawn at 
random  from  the whole population at  the time when 
plants are flowering. Since plants may reproduce by self- 
fertilization to varying degrees ( SCHEMSKE and LANDE 
1985), we incorporate partial selfing in our model. 
After pollen  migration,  each  subpopulation  reproduces 
by selfing with probability ,6 and by random  outbreed- 
ing with probability 1 - 0. After pollination each sub- 
population receives a  proportion ( ds)  of seeds taken 
randomly from the whole population.  Thus  both pollen 
and seed migrate in the island model  (WRIGHT 1943 ) , 
and female gametes do  not migrate. Throughout  the 
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article we shall deal just with the case  of stable census 
size and population  structure  for simplicity. Other as- 
sumptions are discrete generations, autosomal inheri- 
tance involving genes that do not affect  viability or re- 
productive ability so that  natural selection is not op- 
erating to eliminate them. 

Because  of the symmetry  of the island model, only 
the following probabilities of identity by descent are 
necessary to describe the  second moments of gene fre- 
quencies for  a subdivided monoecious population: 

F: the  inbreeding coefficient defined as the probabil- 
ity that two genes at  a given locus of an individual drawn 
at  random from the  population  are identical by descent. 

e( e*) : coancestry of individuals chosen at  random 
from the same subpopulation after (before) seed mi- 
gration. Coancestry is defined as the probability that 
two genes at a given locus, one taken at random from 
each of  two randomly selected individuals, are identical 
by descent. 

a (a* )  : coancestry of individuals drawn at  random 
from different subpopulations after (before) seed mi- 
gration. 

WRIGHT'S (1969,  pp. 294-295) Fstatistics are  rather 
useful for describing gene flow and breeding  structure 
of subdivided populations. This is made obvious by their 
extensive  use in the published literature and by the 
attention to proper  interpretation and estimation of 
the coefficients ( NEI 1977; WEIR and  COCKERHAM 1984; 
WEIR 1990) . The Fstatistics are  defined as 

(COCKERHAM 1969, 1973), where subscripts I ,  S, and 
T represent individuals, subpopulations, and the total 
population, respectively. The Fstatistics can be thought 
of  as inbreeding coefficient and also as correlations 
between gametes. In a subdivided population, FIs is con- 
cerned with inbreeding in individuals relative to the 
subpopulation to which  they belong, F Y T  is concerned 
with inbreeding in subpopulations relative to the total 
population of which  they are  a  part,  and FIT is con- 
cerned with inbreeding in individuals relative to  the 
total population. Equally, FIs is the correlation of unit- 
ing gametes relative to gametes drawn at  random from 
within a  subpopulation, FSTis the correlation of gametes 
drawn at random within subpopulations relative to ga- 
metes drawn at  random from the  entire  population, 
and Frr is the correlation of uniting gametes relative to 
gametes taken at  random from the  entire  population. 
FIs is a function of the  nonrandom mating in  the sub  
population, it being negative, zero, and positive  with 
avoidance of  close inbreeding,  random mating, and 
close inbreeding, respectively. FYr is a measure of the 
increase in inbreeding  due to the finite size  of the  popu- 
lation. It is  always greater  than or equal to zero because 
of the Wahlund effect. Finally, FIT is the most inclusive 
measure of inbreeding in that  it takes into  account  both 

the effects  of nonrandom matingwithin subpopulations 
( F I S )  and  the effects of population subdivision ( Fs,). 
The relation among  the  three coefficients can be ex- 
pressed as 

(1 - F I T )  = (1  - F Y r ) ( I  - F I S )  ( 2 )  

(CROW and KIMURA 1970, pp. 106). 

RECURRENCE EQUATIONS  FOR PROBABILITIES 
OF IDENTITY BY DESCENT 

First we consider the  recurrence  equation for the 
inbreeding coefficient, F. Each  zygote is formed by sam- 
pling one male gamete and  one female gamete from 
the parents. The female gamete is assumed to be taken 
from within a  subpopulation. The male gamete, how- 
ever, is chosen at random from the same subpopulation 
as the female gamete with probability 

qm/= 1 - dp(1 - 1,'s) ( 3 )  

and from a  different  subpopulation with probability 1 
- qmp For the first case, the male gamete comes from 
the same parent as that of the  female  gamete with 
probability p, from  a  different individual with proba- 
bility qmf - 0. Thus it is clear that p 5 1 - dp(  1 - 
l/s) or dp 5 s ( l  - p ) / ( s  - 1 ) .  The  inbreeding 
coefficients of a zygote in generation t ,  from  the two 
gametes that  descend from the same individual, sepa- 
rate individuals in the same subpopulation and in dif- 
ferent subpopulations: I/*( 1 + Bt-l and at-l, re- 
spectively. Thus  the average inbreeding coefficient in 
generation t is 

4 = M ( 1  + & - I )  + ( q q -  P)et-l 
+ (1 - q m / ) Q t - l .  ( 4 )  

Next we consider the  recurrence equations for 8. 
Now the two genes under consideration are from differ- 
ent individuals in the same subpopulation. Three cases 
can be distinguished. 

Both genes  come  from  male  gametes with probability 
1/4: Since pollen migrates with migration rate d,, we 
can distinguish three situations in deriving the probabil- 
ity (denoted by qmm) that two male gametes taken at 
random and without replacement  are from the same 
subpopulation. 

Both  male  gametes  are nonmigrants: This occurs with 
probability 

In such a situation, the gametes certainly come from 
the same subpopulation.  Thus  the probability that they 
are from the same subpopulation is also  given by (5a) . 

One  is  a  migrant  and the  other a  nonmigrant: This occurs 
with probability 2Nd, ( 1 - d,) / ( N - 1 ) . Since the mi- 
grant comes equally from the s subpopulations, the 
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probability that  the two gametes 
subpopulation is 

2Ndp( 1 - dp) 
s ( N -  1) 

are from the same 

(5b) 

Both male  gametes  are migrants: This occurs with proba- 
bility dp ( Nd, - 1 ) / ( N  - 1 ) . The probability that two 
migrants taken at random  and without replacement 
come from the same subpopulation is ( Ndp - 1 ) / ( sNdp 
- 1 ) . Thus in this situation the probability that  the two 
gametes are from the same subpopulation is 

dp(Ndp - 1) '  
( N -  l)(sNdp-  1) ' 

Combining (5a ) ,   ( 5b ) ,  and  (5c) we get 

qmm = (1  - dp) ( 1 - i c l )  

2Ndp( 1 - dp) + 

dp(Ndp - 1) '  + 
s ( N -  1 )  ( N -  l)(sNdp - 1) . (6)  

For the special cases  of no migration ( dp = 0)  and 
complete dispersion ( dp = 1 ) of pollen, (6)  reduces to 
qmm = 1 and qmm = ( N  - 1 ) / ( sN - 1 ) , respectively,  as 
expected. Expression 6 is generally quite complicated. 
If the  subpopulation size N is relatively large, (6)  re- 
duces to 

approximately. Note that if the gametes are sampled 
with replacement we also obtain ( 7 ) .  MARUYAMA and 
TACHIDA ( 1992) used the  latter sampling method with- 
out explanation. We think, however, sampling without 
replacement is more practical in reality.  However, for 
simplicity we still  use ( 7 )  instead of (6)  for relatively 
large values  of Nin this article. 

It has been shown that  the probability that  a  random 
pair of male gametes from the same subpopulation  are 
descended from the same parent is p,, = a:/ ( N  - 1 ) 
( WANG 1996), where a: is the variance of the  number 
of male gametes per  parent.  Thus,  the two genes are 
identical by descent with probability 

One  gene is from  a  male  gamete and the  other  is 
from a female  gamete  with  probability '/*: Since only 
pollen migrates, the probability that  the two genes (or 
gametes) come from the same subpopulation is qmf = 
1 - dp(  1 - 1 / s) . For partial selfing populations, the 
probability that two gametes of separate sexes taken at 
random  that do not  unite  to  produce one zygote and 
come from the same parent is pmf = ( am/ + 1 - 0 )  / 

( N  - 1 ) , where amf is the covariance of the  numbers 
of male and female gametes contributed  per  parent 
( WANC 1996). Thus  the two genes are identical by de- 
scent with probability 

Both  genes  come  from  female  gametes  with  probabil- 
ity 1/4: Since female gametes do  not migrate, the two 
genes are from the same subpopulation with probability 
one.  Thus  the probability of identity is 

where pff = a?/ ( N  - 1)  and a; is the variance of the 
number of female gametes per  parent.  In (8-10), a: 
and amf are theoretical variance and covariance; the 
corresponding observed values are with  Gaussian cor- 
rectionsS2,=a:N/(N-1)andSm/=am/N/(N-1),  
respectively, where u = m or f. 

Combining Expressions 8-10, the coancestry be- 
tween two random individuals before seed migration is 

9T = '/8 ( q m m p m m  + 2QmfPmf + Pff) (1  - 28,-1 + 4-11 
+ 1/4(qmm + 2qm/+ 1 )  (et-l - at-1) + at-1. (11) 

Similarly, we can derive the coancestry between two 
individuals, taken at random  from separate subpopula- 
tions before seed migration. The  equation is 

aF = '/s ( Q L m P m m  + 2qLfpmf) ( 1 - 28t-1 + 4-1 ) 

+ y4( q;m + 2q~fnf) (et-l - at-I + at-l, (12)  

where is the probability that  a male gamete and  a 
gamete of  sex u ( v refers to sex, u = m or f) , taken at 
random and without replacement from separate sub- 
populations, are from the same subpopulation before 
seed migration. Using a  procedure similar to the deriva- 
tion of ( 6 ) ,  we can obtain 

qLf = dp/s, (13) 

, 2dp(l - dp) + d;(Ndp - 1 )  
Qmm = sNdp - 1 . (14) 

S 

For large subpopulation size ( N) , ( 14)  reduces to 

q L m  = dp(2 - dp)/s (15) 

as an approximation. 
Now  we consider seed migration. It changes the 

coancestry between individuals, 8F and a T,  but  does 
not affect the  inbreeding coefficient, F,.  After seed mi- 
gration,  the probabilities that two individuals, taken at 
random and without replacement from within subpop- 
ulations (denoted as qss) and from different subpopula- 
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tions (denoted as q b ) ,  come from the same subpopula- 
tion before seed migration can also be expressed by 
( 6 )  and ( 1 4 ) ,  respectively, or by ( 7 )  and (15)  approxi- 
mately,  only to replace dp with d,. Thus  the coancestry 
between two individuals from the same subpopulation 
after seed migration is obtained as 

e, = qsaz + ( 1  - qss)az. (16)  

Substituting ( 1 1 )  and (12 )  into (16)  yields 

0, = I/s{qss[(qmm - q L m ) P m m  + 2(qmf- q L f ) P m /  

+ p//1 + qLmpmm + 2qL/Pm/l(1 - 20,-1 + E-1) 

+ %[qss(1  + q m m  - q L m  + 2 q m / -  2qL/) 

+ q:, + 2 4 ~ ~ 1  (e,-l - at - l )  + at-l. (17)  

Similarly we can derive the coancestry between two indi- 
viduals from different subpopulations after seed migra- 
tion, 

a, = 1 / 8 k & [ ( q m r n  - q L m ) P m m  + 2(qmf- q L f ) P m / +  Pffl 

+ qLmpmm + 2q;/pmf~(1 - 2~ + 

+ l/q[q:s(l + qmm - q L m  + 2 q m / -  24L/) 

+ qLm + 2q;/1 (0,-1 - at-1) + a t - 1 .  (18)  

Expressions 4, 17, and 18 are  the complete recur- 
rence equations for F, 8, and a. These can be  presented 
in a matrix form, 

S t  = TSt-1 + C. (19)  

In ( 19) ,  S, is a  column vector  of the  three probabilities 
of identity by descent at generation t ,  

st= (i) (20)  

The transition matrix T defining the probabilistic 
changes of the vector  of  variables is 

T 

= ( 7zp 4m/  - p 1 - qm/ 
aq,, + b ( c  - 2a) qss + e - 2b 1 - cqss - e , 
aqiS + b ( c  - 2a) q:, + e - 2b 1 - cqlS - e 1 

(21 1 
where we put 

a = ( qmm - q L m )  P m m  + 2 ( qmf - qkf)  Pmf + PffI 3 

b = 78 ( q L m p m m  + 24LfPm,) 9 

C = 1 / 4 ( 1  + Qmm - q k  + 2qmf- 2qLf), 

e = 74(qLm + 24Lf).  (22) 

The constant column vector C is just the first column 
of matrix T ,  

C = ( uq?: b )  . (23)  

Since the initial values  of  all  variables, So, are zero, we 
can use (19)  to  predict  the  inbreeding coefficient and 
coancestry and thus Fstatistics and effective  size  in  any 
generation. 

The effect of pollen and seed migration rates on in- 
breeding coefficient in a subdivided population is 
shown in Figure 1. The  graphs  are  generated using 20 
individuals per  subpopulation, 20 subpopulations with 
parameters 5': = S; = 1, Smr = 0.1, and p = 0.1 (inde- 
pendent Poisson distributions of the  number of prog- 
eny per  parent from selfing and  outcrossing). Results 
applicable to all subdivided populations are as  follows. 
( 1 ) The  inbreeding coefficients  in the first few genera- 
tions are decreased by pollen or seed migration. How- 
ever, the lines converge slightly and eventually  cross; 
larger values  of migration rate give  lower inbreeding 
coefficients initially than smaller values, but in later 
generations  the  order is reversed. The convergence rate 
is dependent  on values of d,, dp,  N ,  s, p, S:, S;, and 
Smp Using the  recurrence equations for inbreeding co- 
efficient and coancestry, the  generation  at which a re- 
versal  takes place for different values  of migration rate 
can be calculated. In Figure lA, for example, the line 
for dp = 0.1 will cross lines for dp = 0.2,  0.3, and 0.4 in 
generations 900,  864, and 837, respectively,  while  in 
Figure 1B the line for d, = 0.1 will cross lines for d, 
= 0.2,  0.3, and 0.4 in generations 864,  855, and 850, 
respectively. ( 2 )  Seed migration has a larger effect on 
inbreeding coefficient than pollen migration. At a given 
migration rate, seed migration gives  lower inbreeding 
in initial generations and higher  inbreeding in later 
generations  than pollen migration. For example in Fig- 
ure 1, d,! = 0.4 and dp = 0 results  in  lower inbreeding 
than dp = 0.4 and d, = 0 before generation 431 and 
thereafter  the  order is reversed. This is because, at  the 
same rate of migration, seed migration disperses more 
genes than pollen migration. 

4 s  + b 

EFFECTIVE SIZE 

For a finite population size, the values  of F, e, and CY 

will accrue with generations. Although the instanta- 
neous rates of increase for the  three variables, 

may be quite different in initial generations, they will 
eventually converge to the same value ( AF) if the sub- 
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FIGURE 1,-Effect  of  migration  rate ( dp or d, = 0.1, 0.2, 0.3, and 0.4) on  inbreeding  coefficient  over  the  first 20 generations 
for a population  subdivided  into 20 subpopulations,  each  consisting of 20 individuals,  with  parameters S', = S: = 1, S,,,, = 0.1, 
and ,O = 0.1. ( A )  Effect of dp with  constant  value of d, ( 0 ) .  ( B )  Effects of d, with a constant  value of dp ( 0 ) .  

populations  are  not completely isolated ( dp + d, > 0 )  . A S  - [ I  - 26 - 2aqss + y2p + C( qss - q b )  ] A2 
Afi, AO,, and Aa, correspond  to  instantaneous in- 
breeding ( Nez,,) , coancestry ( N d , t ) ,  and variance ( Nev,) - [ ( 2 a  - c - 2 m  + 26c - ' / , P C  + aqmf) 
effective  sizes,  respectively,  with relations 

X (qss - qk) - Y2P + aqL + 61 A 

Thus Nd,,,  Nd,t, and Next will also converge to  the same 
asymptotic value ( N e ) .  The  number of generations re- 
quired  for convergence is dependent mainly upon  the 
total rate of migration with  low rates requiring  more 
generations  until convergence is achieved. Other fac- 
tors, such as subpopulation  number ( s )  and selfing 
proportion (0) , also  have some effect on the conver- 
gence rate. Figure 2 shows the changes in  instantaneous 
inbreeding, coancestry, and variance effective  sizes  over 
successive generations  for two populations with  Poisson 
distribution of  family  size. It  can be seen that  although 
the  three effective  sizes may be quite different and 
change dramatically over the first few generations, they 
converge gradually to the same value in later genera- 
tions. Generally, Next decreases, Nd,, increases, and NeZ,, 
changes erratically (depending  on parameters such as 
0, d,, and dp)  over the initial disequilibrium genera- 
tions. 

The asymptotic effective  size, Ne, can be  obtained by 
using the transition matrix T. A matrix like T, which 
has only  positive elements, has a single dominant posi- 
tive characteristic root A, which equals to 1 - A F .  Thus 
Ne can be derived as 

1 
2 ( 1  - A )  . Ne = 

The characteristic equation of matrix T can be o b  
tained from ( 2 1  ) , which reads 

- (1/2Pc - aqm/ + m - 6 ~ )  ( qss - qls) = 0 ( 2 7 )  

The equation has three roots; the largest one lying  be- 
tween zero and  one is the  dominant characteristic root, 
A, which is required. Using  Newton's tangential method 
of approximation and omitting  second and higher or- 
ders of 1 / N ,  the solution for A can be  found analytically 
from ( 2 7 )  as 

h = l - x +  
X 

( 1  - % P )  [ 1  - d q s s  - q5s) 1 

x ( a ( 1  - q m f )  ( q s s  - q 3  + 6 + aqss  

- x [ % P  + c(1 - P )  ( q s s  - q k ) l ) ,  ( 2 8 )  

where 

X =  
6 + aq:, + ( fx - bc) ( q s s  - qls) 
( 1  - %P)  [ 1  - c ( q s . r  - q 3 1  

Substituting ( 2 8 )  into ( 2 6 ) ,  we therefore  get  the asym- 
ptotic effective  size 

1/4(2 - P )  [ 1  - 4 q s s  - q l J 1  Ne = 
6 + aq:, + ( a e  - bc) (4.. - q:.5) 

+ 6 + a q s s  + a ( 1  - q m / )  ( 4 , s  - q 3  
2 [ 6 + aq:, + ( fx - bc) ( qss - q:A 1 

2 [1 - d q s s  - 4 : s )  1 
1 + . (29) 
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FIGURE 2.-Changes in instantaneous  inbreeding (N,,, -), coancestry (N,,,, -----) and  variance ( NeV,!, - - - )  effective 

sizes over  successive generations for two populations  with Poisson distribution of family size. For population A ,  the parameters 
are s = 20, N = 20, S', = S: = 1 ,  Smf = = 0.8, d,, = 0.3, and d, = 0. For population B ,  the  parameters  are as that of population 
A except that dfl = 0.1. 

The equation is complicated and it is not easy to see 
the relations between Ne and  the  parameters of the 
population. When both seed and pollen migration rates 
are small enough so that  second and  higher  order terms 
of dp and d, can be  ignored, N is large so that ( 7 )  
and ( 15) can be used for an approximation, ( 29) is 
simplified considerably to 

2 ~ ( 2  - P ) N  1 + ~ ( l  - 2d,y) 
S: + 2 - 2p 2(dp + 2d,) 

+ N, = 

+ sdp ( SF - S i )  
2(dp + 2d,) ( S i  + 2 - 2p) 3 (30) 

where S: = S', + 2&, + S/' is the variance in the 
number of total gametes per  parent. 

The predictions from ( 29) or ( 30)  (for small  values  of 
dp and dT) fit  in very  well  with the numerical  results by 
recurrence equations. The effects  of dp, d,, N,  and s on N, 
are shown  in  Figure 3 for a population with fixed  total size 
( SN = 8000) and equal  migration  rates of seed and pollen 
( d, = 4)  . The other parameters are St = S; = 1, SVnr = 
p = 0.2. It can  be  seen that decreasing  migration  rate 
always increases N,, this is more evident  when the number 
of subpopulations is large.  Some  common  conclusions are 
as follows. ( 1 ) For a given population  (given  values of 
all  parameters  except  migration rates), the smaller the 
migration  rates, the larger their effects on the increase of 
effective  size. ( 2) For  large size ( N )  and small number ( s) 
of subpopulations, the effective  size  is determined mainly 
by parameters N,  s, 0, and S i ;  migration  parameters dp 
and d, have  relatively  small  effects on N,. If s is large and 
N is small,  however,  small  migration  rates  have  relatively 
large  effects on N,. ( 3 )  The absolute  magnitude of the 
effects  of migration  rates on N, is irrespective of the census 
size of the subpopulation ( N )  , while  it  increases  rapidly 
with the increment in the number of subpopulations (s) . 

The effect of selfing proportion  on effective  size is 
influenced by the variance of  family  size;  self-fertiliza- 

tion increases effective  size when the variance of the 
number of gametes contributed  per  parent is small, and 
vice versa. For  equal  gamete  contribution per family 
( S i  = S;' = S,, = 0)  and Poisson distribution of the 
number of gametes per family ( S i  = S: = 1, S,, = p ) , 
the effects of selfing proportion  on effective  size are 
shown in Figure 4 for a population with structure and 
breeding  parameters s = 20, N = 20, dp = 0.1, and d, 
= 0.05. The reason that close inbreeding (here selfing) 
has a differential effect depending  on  the variance of 
family  size has been  explained by ROBERTSON (1964) 
and CABALLERO ( 1994) . 

The effects of pollen and seed migrations are asym- 
metrical in  their  influence on effective  size. For a gven 
migration rate, pollen migration always has a smaller 
effect on effective  size than seed migration. For a popu- 
lation with a Poisson distribution of  family  size ( S i  = 
S; = 1, S,, = p = 0.2) with parameters s = N = 20, 
the effects of pollen and seed migration rates on effec- 
tive  size are shown in Figure 5. Clearly, the value  of N, 
for a given subdivided population is smallest when ei- 
ther dp or d,  is large and increases dramatically as both 
dp and d, approach zero. 

For a single unsubdivided population with partial 
selfing, CABALLERO and HILL ( 1992)  and POLLAK and 
SABRAN (1992) derived the effective  size 

by different  methods. For the special case in our model, 
s = 1, dp = d, = 1 (all pollen and seeds disperse back 
into  the  population from which they come),  and the 
general expression ( 29) reduces to N, = 2 ( 2 - p ) / 
(p , ,  + 2 p ,  + prJ) approximately, which again reduces 
to (31 ) if p,,, p,,, and p,, are  substituted, as expected. 

When the  population is subdivided permanently 
without migration among  subpopulations ( dp = d, = 

0)  , then  the effective  size can not  be calculated by ( 29) 
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or (30 ) .  In such a case, inbreeding and genetic drift 
will follow different fates, and NeI,f and will converge 
to the same value, the asymptotic inbreeding effective 
size  as  given by (31 ) . The equation  can be derived from 
( 4 )  and ( 17) reduced for dp = d, = 0 following the 
same procedure as the derivation of ( 29 ) . The variance 
effective  size Next, however, does not converge to the 
same value  as and N&. It reaches another asymp- 
totic value, which is much  larger  than  inbreeding effec- 
tive  size. Thus  the variance effective  size is maximized 
and  the  inbreeding effective  size minimized with com- 
plete subdivision (ROBERTSON 1964). 

PSTATISTICS 

The  instantaneous  rate of increase in coancestry be- 
tween individuals within subpopulations in generation 
t can be presented as 

Substituting (17) and (22) into (32) yields 

If we denote  the  instantaneous Fstatistics in generation 
t -  1 a s  

FIGURE 3.-Threedi- 
mensional  diagrams  de- 
picting the  relationship 
between  migration  rate 
( d, = 4)  and  the  value of 
sor Non the  effective  size. 
The  population  has a 
fixed total  size ( SN = 
8000),  with other parame- 
ters being S', = Sj = 1 ,  Smf 
= p = 0.2. 

and substitute these relations into (33 ) ,  we obtain 

Similarly, we can derive the  instantaneous variance 
and inbreeding effective  sizes in generation  tfrom ( 18) 
and ( 4 )  as 

If there is migration among subpopulations ( dp + d, 
> 0 )  , the  instantaneous effective  sizes ( N e , , ,  NeKf ,  and 
Nd,f)  will change over generations initially before they 
converge to the same asymptotic  effective  size ( N e ) .  
Instantaneous Fstatistics as given in (34) also change 
in the first few generations and will converge to their 
respective  asymptotic  values  in later generations. Using 
( 4 ) ,   ( 1 7 ) ,   ( 1 8 ) ,  and ( 3 4 ) ,  the instantaneous Fstatis- 
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S; = S,, = 0 ) ;  -----, Poisson  distribution of the  number of 
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tics can be calculated, which are shown in Figure 6 for 
a  population with parameters s = 20, N = 20, S', = 
S; = 1, S,,,, = p = 0.5, dp = 0.1, and d, = 0. It can be 
seen that FIs reaches its  asymptotic  value in fewer gener- 
ations than FST and FIT. This is true for all populations 
with different sets  of parameters. 

After a sufficient number of generations when the 
population  attained  the steady state, the  three effective 
sizes  arrive at  the same asymptotic  value (Ne) and the 
instantaneous Fstatistics come to their respective as- 
ymptotic values (denoted as F,, Fm, and F S T ) .  In such 
a case, (35-37) reduce to 

and Fm can be calculated by ( 2 ) .  

When both seed and pollen migration rates are small 
so that second and higher order terms of dp and d, can 
be dropped as an approximation,  the  general expres- 
sion for Fsr can be reduced to 

FST = 
S 

2 (dp + 2 4 )  Ne 

1 
~ + l  4 ( 2 - p ) ( d p + 2 d Y ) N  

- - . (43)  
+ 

S si + 2 - 2p 

Expression 41 or 43 can be compared to the classical 
results derived by WRIGHT ( 1931, 1943) and  later ex- 
tended by many authors (MARLJYAMA 1970; LATTER 
1973; LI 1976; PROUT 1981 ) . In WRIGHT'S island model 
of population  structure it is assumed that  a population 
consists of an infinite number of subpopulations each 
of the same size N, and in each subpopulation  the pro- 
portion m of the total gene pool is derived from immi- 
grants that may be considered a  random sample of the 
entire  population.  Then  the approximate equation for 
Fsr is derived as 

1 
1 + 4Nm FST = (44)  

approximately when m is small. PROUT (1981) ex- 
tended this model by considering both pollen and seed 
migrations and obtained (in  our notation) 

1 
1 + 2N(dp + 2 4 )  

FS7. = (45)  

approximately for small  values of dp and d,. Note that, 
in PROUT'S (1981) pollen-seed migration model, the 
proportion of migrant genes is m = '/2 dp + d,, inserting 
the relation into (45)  we get (44) .  

For the special  case  shown above, s is large and ga- 
metes are selected at random from the population (in 
independent Poisson distributions) ; thus S', = Sj = 1, 
S,, = p when the  proportion of  self-fertilization is p. 
Seed and pollen migration rates are small enough so 
that second and  higher  order terms in d, and dp can be 
dropped. With these assumptions our expression for 
effective  size reduces to 

approximately from ( 29) or ( 30) , and (41 ) or ( 43) 
reduces to 

1 
F -  

S T -  1 + ( 2  - p ) ( d p  + 2d, )N '  

Fw is a  monotone increasing function of selfing rate 
p. Expression (47)  is also derived by "A and 
TACHIDA ( 1992) using an infinite allele model. If self- 
fertilization occurs at  a  random  proportion ( 1 / N) , 
(47)  again reduces to ( 4 5 ) ,  as expected. It is clear that 

(47)  
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(41 ) and (43)  derived in this article are  more  general 
expressions considering a finite number of subpopula- 
tions, partial selfing, variance of  family  size, and both 
pollen and seed migrations. 

For a single unsubdivided population ( s = 1,  dp = d, 
= 1 ) , we have FST = 0 from (41 ) , and ( 42) reduces to 
Fls = @ /  ( 2 - @ ) , a classical result that was first derived 
by HALDANE (1924). 

If the  population is completely subdivided with no 
migration among  the subpopulations, then we have the 
instantaneous Fstatistics as &, = ( f i  - e,) / ( 1  - e , ) ,  
FyZt = e,, and FIT:, = F, from (34)  because the value of 
CY is zero in any generation. F , ,  can be negative when 
self-fertilization is avoided; FYTt and FIT,,, however, are 
always positive and incremental over generations. If self- 
fertilization occurs at  a  random  proportion (@ = 1 / 
N) , the value  of &, is slightly smaller than zero and 
FST,, = FIT,,+I in any generation. Irrespective of the value 
of @, F , ,  will reach  an asymptotic  value,  while both FsI;, 
and FIT,1 will increase steadily  over generations toward 
unity with the same rate of change. 

DISCUSSION 

A common assumption made by most  previous au- 
thors in deriving expressions for effective  size is a single 
isolated population.  Thus these equations for Ne are 
not readily applicable to natural populations or practi- 
cal crop  breeding populations, which are generally 
somewhat subdivided. The expressions presented 

herein provide the basis for  predicting  the effective  size 
of subdivided populations with arbitrary selfing propor- 
tions, variance of  family  size, pollen and seed migration 
rates, and different extent of  subdivision. It is shown 
that our expressions reduce to the classical  results for 
the special case  of a single unsubdivided population. 

Subdivision and  gene dispersion are  important in de- 
termining  both  inbreeding coefficient and effective 
size. Failure to take population structure  into  account 
can lead to  underestimation or overestimation of the 
true effective  size,  especially  when both pollen and seed 
migration rates are small and  the  number of subpopula- 
tions is large. For complete seed migration, the popula- 
tion behaves  as a single unsubdivided one,  and  there 
is little difference between the values  of  effective  size 
predicted by traditional and the newly derived equa- 
tions. If seeds disperse randomly and pollen do not 
migrate ( d, = 1, dp = 0 )  , ( 29) reduces to 

approximately. Noting that p,, ( N  - 1 ) / ( sN - 1 ) = 

o :/ ( SN - 1 ) is the probability that  a  random pair of 
male gametes from the total population  are descended 
from the same parent (and similar for the  other two 
probabilities) , ( 48) is also the prediction of effective 
size of a single unsubdivided population of  size sN. In 
the opposite situation ( d ,  = 0 and dp = l ) ,  (29)  is 
simplified to 
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approximately, which always  gives values  of Ne slightly 
smaller than  that by (48) , especially when N is small. 
This implies that even  with random dispersion of pollen 
there is differentiation among  the subpopulations. In- 
serting d, = 0 and dp = 1 into (41 ) ,  we  have FST = p f f /  
[ 3 ( 2  - p )  ] approximately, while d, = 1 and dp = 0 
results in a value  of Fsr of zero. However, when N is 
large, complete pollen migration has  similar effect to 
that of complete seed migration. In this case, both (48) 
and  (49) reduce to Ne = 2 (2  - p )  s/ (pmm + 2pmf + 
p f f )  approximately and Fw 0. 

For a subdivided population, we should note  that  the 
asymptotic  effective  size is attained after a  number of 
generations. The smaller the migration rates, the  more 
generations are  required. The initial values  of variance, 
coancestral and inbreeding effective  sizes may be quite 
different and change  at different rates over the initial 
generations. The reason is that  gene correlations are 
accruing at  different rates within individuals, within 
subpopulations, and among subpopulations. There- 
fore,  the most  feasible way to depict accurately the dy- 
namics  of  all relevant gene correlations is to iterate 
numerically Equation 19 using a simple computer pro- 
gram. In this manner,  the  inbreeding coefficients, 
coancestry, Fstatistics, and effective  size can be precisely 
tracked for each generation. For general planning of 
programs for genetic conservation or study  of long- 
standing populations in the wild, the expressions for 
asymptotic effective  size can be used as an  adequate 
guide. 

It is  well-known that predominantly selfing plant or 
animal species  have  lower genetic variability  within  col- 
ony and  greater values of fixation index ( Fsr or G.yT) 
compared with outcrossing species (BROWN and RICH- 
ARDSON 1988; JARNE 1995) . This is  usually explained 
theoretically by Equation 47, assuming that male and 
female gametes per  parent  are  independently Poisson 
distributed (MARUYAMA and TACHIDA 1992; JARNE 
1995). The  present study  shows that self-fertilization 
has differential effects on FsT. It increases F y T  when Si  
is large ( S i  > 2 )  and decreases FS, when Sf is small 
( S: < 2 ) .  If Sf = 2, the  proportion of selfing has little 
influence on FST, as can be seen from ( 43) . For the 
special  case of equal  contributions of male and female 
gametes per  parent (which might seldom occur in natu- 
ral populations but can exist in controlled experimental 
populations), S i  = 0 and  (43) reduces to 

1 
Fs7. = 

( s  + l ) / s  + . (50) 

2[1 + 1 / ( 1  - P ) l ( d p  + 2 4 ) N  

This is a  monotone decreasing function of selfing pro- 
portion. The reason that selfing-fertilization decreases 
colony differentiation ( Fsr) when S: is small is due to 
its incremental effect on effective  size. 

Although it is commonly found  that F y T  for selfing 
populations is larger than  that  for outcrossing popula- 
tions in many species, the  magnitude of the difference 
varies  drastically for different species observed. JARNE 
( 1995)  concluded  that F y T  value of selfers was about 
twice that of outcrossers for many  species. The result 
can be accounted  for satisfactorily by Expression  47, 
which, when the  number of  effective migrant genes ( dp 
+ 2 ds)  N is not too small, gives an Fs7. value for selfers 
( p = 1 ) close to twice that for outcrossers ( p = 0 )  . 
HAMRICK and GODT ( 1990)  found  that F y T  in a selfing 
species can be five times that of an outcrossing species. 
The result may be partly due to the difference between 
the family  size  variances  of selfing and outcrossing pop- 
ulations. It is possible that selfers  have a much larger 
variance of  family  size than outcrossers and thus, from 
Equation 43, a  much larger value  of FS,. If, for example, 
the variances of  family  size for outcrossing and selfing 
populations are 2 and  10, respectively, then FST of 
selfing populations can be five times that of outcrossing 
populations from (43).  Although no estimates of S: 
for selfers and outcrossers are available from  the litera- 
ture, we suspect that selfers  have a larger variance of 
the  number of total gametes contributed  per  parent 
than outcrossers. Consider, for example, a population 
with large fertility variation among individuals from  en- 
vironmental causes. When an individual is in a espe- 
cially unfavorable niche, it will produce few gametes of 
both sexes. The successful gametes (that unite to form 
progeny)  contributed by the individual are even  fewer 
for  a selfer than  that for a outcrosser, because the out- 
crosser may fertilize (or be fertilized by)  another indi- 
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vidual  which occupies a favorable niche and  thus  has a 
greater output of gametes. When  an  individual  is  in a 
favorable niche, it  will produce more male  and  female 
gametes.  This  also  means  more  successful  gametes if 
the  individual is a selfer. If the  individual is a outcrosser, 
however, more gametes do not necessarily  result  in a 
larger number of offspring since the  latter  is  also  de- 
termined by other individuals. Therefore, we surmise 
that selfers  generally have  larger  values of S: than out- 
crossers. 

The  author is grateful to two anonymous reviewers for  their helpful 
comments  on  an earlier draft of this  manuscript. 
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