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ABSTRACT 
For a dioecious  diploid  population  subdivided into an  arbitrary  number of subpopulations, we  have 

derived  recurrence  equations  for  the  inbreeding  coefficient  and  coancestries  between  individuals  within 
and  among  subpopulations  and  formulas  for effective  size and  Fstatistics.  Stable  population  size  and 
structure,  discrete  generations,  autosomal  inheritance,  and  the  island  migration  model  are  assumed, 
and  arbitrary  distributions of the  numbers of  male and  female  progeny  per  family,  different  numbers 
and  variable  migration  rates  of  males  and  females  are  incorporated  in  our  derivation.  Some  published 
equations for effective  size and  Fstatistics  for a subdivided  population  are  shown to be incorrect  because 
several  incorrect  probabilities  are  used  in  the  derivation. A more  general  equation  for  effective  size is 
obtained by finding  eigenvalue  solutions  to  the  recurrence  equations  for  inbreeding  coefficient  and 
coancestry  in  this  article,  which  reduces  to the simple  and  familiar  expressions  derived by previous 
authors  for  the  special  case of a single  unsubdivided  population.  Our  general  expressions  for  Fstatistics 
also reduce to the classical  results Of  WRIGHT’S infinite  island  model  and its extensions. It is shown that 
population  structure is important  in  determining  effective size and Fstatistics and  should  be  recognized 
and  incorporated  into  programs  for  genetic  conservation  and  evolution. 

S INCE the  introduction of the  concept of  effective 
population size by WRIGHT ( 1931 ) , much work has 

been  done  on  the prediction (CABALLERO 1994; and 
references therein)  and estimation (WAPLES 1989; 
NUNNEY and ELAM 1994) of this parameter, which is 
central to evolutionary and quantitative genetics be- 
cause it measures the rate of genetic  drift and inbreed- 
ing. Most  of the previous inquires on predicting ef- 
fective  size, however, are  concerned with a single un- 
subdivided population. There is evidence that many 
organisms are arrayed into  subpopulations ( SELANDER 
1970; CHESSER 1983; FOLTZ and HOOGLAND 1983) 
maintained by means of intrinsic factors, such as  behav- 
ioral segregation, or extrinsic factors, such as geo- 
graphic distance and habitat  fragmentation. Domestic 
animal  populations  are normally subdivided into  herds 
distributed  in  different farms with genetic exchanges 
( usually sires or semen ) among  them.  The applications 
for  animal  breeding about effects of migration on in- 
breeding  in subdivided populations have been dis- 
cussed ( ROUX 1995). Thus in recent years, formulas 
for effective  size  have been developed for subdivided 
populations. CHESSER (1991a,b) described the recur- 
rence  equations  for  inbreeding coefficient and coances- 
try and derived equations for effective  size for  a subdi- 
vided dioecious population, assuming that  each female 
produces exactly one male and  one female progeny. 
Subsequently, the model has been  extended to inde- 
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pendent Poisson distributions of male and female off- 
spring  per family ( CHESSER et al. 1993)  and multiple 
paternity ( SUGG and CHESSER 1994). CHESSER and his 
coworkers noted  that,  their expressions for effective  size 
and Fstatistics when applied to a single unsubdivided 
population,  are sometimes in variance with previous 
work (WRIGHT 1969; CABALLERO and HILL 1992) . Also, 
they did  not give eigenvalue solutions for  the asymptotic 
effective  size and thus  their expressions presented  did 
not preserve concordance with the classical models 
when the same assumptions are  made. In this article, 
we extend  the previous model to include an arbitrary 
distribution of  family  size as well  as different  numbers 
of male and female individuals, varying numbers of sub- 
populations and a variable rate of migration by each 
sex. We will derive expressions for asymptotic effective 
size,  which reduce to the familiar equations  for  the 
special case of a single unsubdivided population as ob- 
tained by many authors ( HILL 1979; NAGYLAKI 1995), 
by finding  the eigenvalue solutions for  recurrence  equa- 
tions for  the  inbreeding coefficient and coancestry. 
More general expressions for Fstatistics will also  be ob- 
tained, which reduce to the classical result of KIMURA 
and CROW ( 1963) , ROBERTSON ( 1965 ) , WRIGHT 
( 1969),  and PROUT ( 1981 ) . We  will show that, because 
several incorrect probabilities used in the derivation, 
CHESSER and coworker’s expressions for effective  size 
and Fstatistics are  different,  but also incorrect. 

ASSUMPTIONS AND PARAMETER DEFINITIONS 

We consider  a  population subdivided into s subpopu- 
lations, each consisting of N, males and N, females with 
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the total subpopulation size being N = N, + N,.  We 
assume a stable census population size and structure in 
each discrete generation, autosomal inheritance involv- 
ing genes which do not affect viability or reproductive 
ability so that  natural selection is not  operating to elimi- 
nate  them. 

As for the monoecious case, we assume the island 
model of migration. Each subpopulation receives a prc- 
portion of dm males and  a  proportion of df unmated 
females drawn at  random from the whole population. 
After migration, each subpopulation  reproduces by 
panmixia. 

The probabilities that two individuals of separate 
sexes, taken at  random from the same subpopulation 
( q m f )  and different subpopulations ( q k f )  after migra- 
tion, come from the same subpopulation before migra- 
tion are 

g m f =  (1 - dm) (1 - df) 

+ (1 - dm) df/s + (1 - df)  d m / s  + d m d f / s  

= 1 - ( d m  + d,- d,df) (1 - 1/s) (1) 

and 

gk,= (1 - d m ) d f / s  + (1 - df) d m / s  + d,df/s 

= ( d m  + df- d m d f ) / s ,  ( 2 )  
respectively.  Similar to the monoecious case (WANG 
1997), we can derive the probabilities that two individu- 
als  of the same  sex v ( v = m or f )  , taken at  random 
and without replacement from the same subpopulation 
( qw) and different subpopulations ( 4;) after migration, 
come from the same subpopulation before migration 

For relatively large values of Nu, they can be simplified 
to 

q,, = 1 - (2d, - d2,) (1 - l / s ) ,  (5 )  

q:, = ( 2 6  - d 2 , ) / s  ( 6 )  

approximately. Henceforth we use (5)  and (6)  instead 
of ( 3)  and ( 4 )  for large values of N,, or for ease of 
presentation. 

The parameters Fand a as defined in the monoecious 
case are also  used here. As to the coancestry  between 
individuals  within subpopulations ( e )  , three identity pa- 
rameters, e,,, emf, and Offfor the coancestry of  two males, 
one male and  one female, and two females  taken at 
random from the same subpopulation before migration, 
respectively, can be distinguished for a dioecious popula- 
tion. Assuming that each female parent produced exactly 

one male and  one female progeny, CHESSER ( 1991a,b) 
used  only two  of the three parameters in  his model, Om, 
for coancestry of individuals of the same  sex (Omm = 
Of,) and 8, for coancestry  between  male and female 
individuals. If the sex of the progeny produced by each 
female parent is assumed to be determined randomly 
(each sex produced with a probability of 1/2),  then e,, 
= Off = 8, and  there is no  need to distinguish the 
coancestry of the same or separate sexes.  CHESSER et al. 
(1993)  and SUCC and CHESSER (1994) adopted  the 
simplified model. More generally, however, Om,, Omf, 
and Offshould be distinguished; and in natural popula- 
tions and especially in breeding populations of domes- 
tic animals, the distribution of the  numbers of  male 
and female progeny per  parent may be quite different. 
Thus we use  all the  three parameters in our model. The 
expected coancestry between two individuals irrespec- 
tive  of sex, 8, can be  found as 

+ Nf( Nf- 1)  
N ( N -  1)  Of f .  ( 7 )  

Corresponding to our general  model,  the probabili- 
ties that two random progeny within subpopulations 
before migration come from the same male or female 
parent should also be distinguished according to the 
sexes  of the progeny. Using a  procedure similar to 
WANG (1997), we can obtain the probabilities that two 
individuals of  sex v ( pu,w) and separate sexes ( p u , m f ) ,  
taken at  random from the same subpopulation before 
migration, come from the same parent of sex u 

and 

where subscripts u and v denote sex ( u ,  v = m or f )  , 
a:,, denotes  the variance of the  number of offspring of 
sex v from a  parent of sex u, and a,,mf represents the 
covariance  of the  numbers of male and female offspring 
from a  parent of  sex u. Equations (8) and ( 9 )  are also 
derived by NAGYLAKI ( 1995) . The observed variance 
and covariance are S:,, = a:,N,/ ( Nu - 1 ) and Su,mf = 
au,,fNu/ (Nu - 1 ) , respectively. 

CHESSER and coworkers ( CHESSER 1991a,b; CHESSER 
et al. 1993; SUGG and CHESSER 1994) considered the 
variance in the  number of females mated to a male 
( C T ~ )  and defined  a  corresponding  parameter 4 (the 
probability that  random females within subpopulations 
mate with the same male) used in their derivations. By 
the inclusion of parameter ai and 4, their models seem 
to be more general than our model herein, in fact this 
is not  the case. In our model we, in concordance with 
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most previous models, use the parameters at,, a t f ,  
and am,mf, which include implicitly in themselves the 
variance in the  number of females mated to a male 
(0;). 

Since in our model three coancestry between individ- 
uals within subpopulations  are distinguished according 
to the sexes  of the individuals (emm, 9 ,  and O f f )  , the 
parameters FIS and FST can also be distinguished as 

FIS(vw) = x F- 9, 
7 FST(vw) = - 

e, - a 
(10) 

correspondingly ( v ,  w = m or f )  . The average  values 
of FIs and FST can also be defined as 

1 - f f  

F- 9 9-CY 
1 - 9  1 - a  4.s = - , FST = - , ( 1 1 )  

where 9 is  given  by ( 7 ) .  

RECURRENCE EQUATIONS FOR IDENTITIES 
BY DESCENT 

The inbreeding coefficient, F, of an offspring is equal 
to the coancestry of  its parents. Since a  random pair 
of parents comes from the same subpopulation with 
probability qmf and from different subpopulations with 
probability 1 - qmf before migration, we have 

8 = qmf9mJt-1 + ( 1  - q m / )  f f t - 1 .  ( 1 2 )  

The coancestry between two offspring of separate 
sexes, emf, should  equal to the identity (by  descent) 
probability of the two genes, one taken at random from 
each of the two offspring. Three cases can be distin- 
guished: 

1. Both genes descend from male parents with probability 
1/4:  In such a case,  they come from the same parent 
with probability pm,mf and from different male par- 
ents with probability 1 - pm,mp For the  latter case, 
the  parents  are from the same subpopulation and 
different subpopulations before migration with 
probabilities q,, and 1 - q,,, respectively. Thus,  the 
two genes are identical by descent with probability 

1 / 4 ( ~ m , m / ( 1  + F , - 1 ) / 2  + (1 - p m , m f )  

X [ ~ m m e m m , - l  + ( 1  - qmm)at-~ll. ( 1 3 )  

2. One gene comes from a male parent and the other gene 
from a female parent with probability I/*:  Thus they are 
identical by descent with probability 

% [ q m f g m J t - l  + (1 - q m f ) a t - l I -  (14) 

3. Both genes are from female parents with probability 
‘ / 4 :  Like the derivation of ( 1 3 ) ,  we can derive the 
probability that two genes are identical by descent 

1/4{p~,,f(l + 8 - 1 )  / 2  + ( 1  - pf,,,) 

x [@/9,Jt-l + (1 - @,)f f t - l l l .  ( 1 5 )  

Collecting Expressions 13-15, we obtain the recur- 
rence  equation  for  the coancestry between two random 
offspring of separate sexes as 

9 m J t  = 1 / 8 ( p m , m f +   p f , m f )  ( l  + f i - 1 )  

+ 7 4  ( 1 - p m , m f )  qmmemm,t-1 + 7 z q m f e m x t - 1  

+ 1/4( 1 - pf,rn,) pfef/rt-1 + 74[4 - q m m  - 2qm/ 

- e/- ( 1  - q r n m ) p m , m f -  (1 - 4 / r ) p f , m / I a t - l .   ( 1 6 )  

Similarly we can derive the  recurrence equations for 
9,,,,, B f J t ,  and at ,  which are 

em,,t = 78 ( p m , m m  + p f , m m )  (1 + 8-1) 

+ 7 4  ( 1 - p m , m m )  qmmgmrn,t-l + Y 2 q m f e y f ; t - l  

+ 1/4(1 - p , m m )  @fer/;t-1 + 1 / 4 [ 4  - q m m  - 2qm/ 

- ef- ( 1  - q m m ) p m , m m  - ( 1  - ~ f ) p / , m m l  at-1, (17)  

e,,, = ‘/s ( pm, + pf, fJ) ( 1 + 4-1 ) 

+ 74 (1 - p m , f f )  qmmemm,t-l  + 7 2 q m f e m J t - l  

+ 1/4(1 - p f ~ f )  q j f g f ~ t - 1  + 74[4 - qmm - 2 q m /  
- ef- ( 1  - q m m ) p m , f f -  ( 1  - @ ~ ) P f , f f I a t - ~ ,  (18) 

and 

f f t  = 1/4qhmemm,t-l + 7 ~ q h f g m ~ t - 1  + 1/4qjfefJt-l 

+ 7 4 ( 4  - 46, - 2q6f - q ; f ) f f t - l ,  (19)  

respectively. 
Expressions 12 and 16-19 fully describe the transi- 

tions of coancestry or gene identities by descent for  a 
subdivided dioecious population over  successive gener- 
ations. A matrix form of presentation is 

St = TSt-1 + C ,  ( 2 0 )  
where 

s t =  ($j, c=1/8($)3 

~ 

i i 0 0 8 q m f  0 8 - 8qmf 
Pmm 2bmm 4 q m f  2 cmm 2 ( 4. - Pmm + qmmpm,mm + e f P f , m m )  

T = 78 P m f  2bmf 4 q m f  2 c m /  2 ( 4. - Pmf + qmmpm,m/ + q f f i / , m f )  . ( 2 1  1 
Pff 2bff 4 q m f  2 91 2 ( 4. - Pff + qmmPmJf + ed+Jf) 
0 2qhm 4q6f 2q;f 24.’ 
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In matrixes C and T,  p,,," = p,,,, + pj,,,,, denoting  the 
probability that  a  random  pair of offspring of sexes u 
and w ,  respectively, come from  the same parent, 6, = 

- %f, and Q' = 4 - qkm - 2qkf - qjf, with subscripts 
u and w denoting sexes (u, w = m or f )  . 

Generally male and female migration rates have  dif- 
ferential effects on  inbreeding coefficient and coances- 
try.  Only when N, = Nfand  the  numbers of male and 
female offspring per family are in  the same and inde- 
pendent distributions do male and female migrations 
have equal effects. Figure 1 depicts the effects of male 
and female migrations on the  inbreeding coefficient of 
a  population subdivided into 20 subpopulations, each 
consisting of 5 males and 50 females, with other param- 
eters  being a:, = ai f  = om,mf = of,,/ = 0 and a?, = 

= 2. Figure 1 shows that  the  magnitude of effect of 
male migration is different from that of female migra- 
tion. This is due to the differences in male and female 
numbers and in  the distributions of progeny per male 
and female parent. Similar to the  monoecious case, 
male or female migration decreases the  inbreeding co- 
efficients in initial generations and increases the in- 
breeding coefficients in later  generations.  Thus  the 
smaller the migration rate,  the lower the eventual in- 
breeding coefficient. For example, in Figure 1 the  line 
for d, = 0.1 will cross lines for dm = 0.2, 0.3, and 0.4 
in generations 260,  231, and 214, respectively when dr 
= 0, while the line for dj = 0.1 will cross lines for dr 
= 0.2, 0.3, and 0.4 in generations 261, 244, and 239, 
respectively, when dm = 0. 

Let us  now consider some special cases  of the recur- 
rence  equations and make comparisons with previous 
results. 

Each female  parent  contributes  exactly one son and 

q r n , ( l - p m , u , ) , ~ , , = ~ / ( l - p / , , , ) , ~ = 4 - q g , , - 2 9 , ~  

/ o  0 

l + x  
4 
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FIGURE 1.-The  inbreeding  coefficient over the first 41 

generations for a population  subdivided  into 20 subpopula- 
tions,  each  consisting of 5 males and 50 females, with parame- 
ters uim = u 2  - 

f l f  - = a , ,  = 0 and = u& = 2. -----, 
effect of dm wth a constant value of d, ( 0 )  ; -, effect of d/ 
with dm being constant ( 0 ) .  

one daughter  to  the  next  generation.  Females do not 
migrate ( d ,  = 0)  and  males  migrate  randomly  among 
the  subpopulations (dm = 1):  The selection scheme 
implicitly confines that  the  numbers of males and fe- 
males within subpopulations  are  equal ( N ,  = N, = n ) .  
In such a case, we have a:, = a,,,/ = 0, p,,,,, = 0, p,, ,  
= l / n ,  qmj = qLf = l / s ,  q,/= 1, qjf = 0, and qLm = 
qmm = ( n - 1 ) / ( sn - 1 ) (from  the exact Equation 3 ) .  
With these stipulations (21 ) reduces to 

1 - Y  

3 - x - 2 y  \ 
4 

n ( 3  - x -  2y) - 1 + x 9 I 
4n 

4 - x - 2 y  
4 I 

wherex= ( n -  l ) / ( s n -  1 )  andy=  l /s .Becauseof 
the  special  selection  scheme,  the  coancestry  between 
two males is  always equal  to  the  coancestry between 
two females (Om, = O f f ) ,  and  thus they are all de- 
noted as Om, and  the variables  in the  matrix  equa- 
tions  reduce  to  four.  Equation  (22) is also derived 
by CHESSER (1991a,  Equations  19-21)  for  the case 
of equal  numbers of males and females.  Although 
his equations  consider  unequal  numbers of different 
sexes,  they are  correct only  when N, = Nf because 
of the  restriction of the  selection  scheme  and  the 

~ 

incorrect  definition of the  probability (x) that two 
males  taken  at  random  are  from  the  same  subpop- 
ulation, x = (N ,  - 1 ) / ( sNf - 1 ) ( CHESSER 1991a, 
Equation 8)  , which should  be x = (N, - 1) / (  SN, 
- 1 ) .  

The selection scheme is the  same  as  the  above 
but both males and females are allowed to disperse 
with  variable  migration  rates: In such  a  case,  it 
can  be  shown  that  our  transition  matrix  in ( 2 1  ) re- 
duces  to 
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T =  
4n 

0 

0 

q 6 m  + qj/ 
4 

which is in variance with the transition matrix derived 
by CHESSER (1991b, Equation 5 ) .  In  the derivation of 
his equations, the probabilities that two individuals of 
sex z) taken at random from the same subpopulation 
and from different subpopulations after migration 
come from the same subpopulation before migration 
are mistakenly  used  as ( CHESSER 1991b, in Equations 
A3,  A5,  A8, and  A9) 

and 

respectively,  while the  correct expressions for q,,,, and 
qk should be given by ( 5 )  and ( 6 ) ,  or more exactly by 
( 3)  and ( 4 )  shown in this article. Only when d, equals 
zero or one, do  (24)  and  (25) give correct values for 
qm and 4;; Otherwise, (24) always overestimates the 

!&L 
2 

& 
2 

1 

Qn - 2 

- Q’ 
4 

value  of quu and  (25) underestimates the value of qk. 
With a small number of subpopulations and intermedi- 
ate values  of migration rates, the  errors made by (24) 
and (25) are great. For example, with s = 2, d,, = 0.5, 
and large N ,  the values  of q l ,  are 0.25 and 0.375 approx- 
imately from ( 25)  and ( 6 )  , respectively. 

The  numbers of male  and  female  offspring  are in 
independent  Poisson  distributions  and  males  and fe- 
males  disperse with migration  rates d, and d,, respec- 
tively: In this  case, S:,, = Nu/ Nu and S%mf = 0, and from 
(8) and ( 9 )  we find that p,,, = p,,,  = 1 /Nu. Thus it 
is clear that Om, = emf = Off = 0 and  there is no need 
to distinguish the coancestry between individuals ac- 
cording  to  their sexes.  With these stipulations (21 ) re- 
duces to 

T and C in ( 26)  are  different from the  corresponding 
expressions derived by CHESSER et al. [1993, Equations 
12 and  13 where parameters 4, k ,  and 0 take  values 
4 = Nf/[Nm(Nf- 1 ) l  and k = 0: = 1 + Nm/Nffor 
the special case]. In  their derivations of the  recurrence 
equations,  the  incorrect probabilities (24) and (25) 
are used and thus different and also incorrect recur- 
rence  equations result. And it is meaningless to include 
the variances and covariances of  family  size in their 
expressions, because the premise made by them (dm, 
= 8, = 6,”) implicitly means that  the  numbers of  males 
and females must be in independent Poisson distribu- 
tions.  Following the methodology of CHESSER et al. 
(1993), SUGC and CHESSER (1994) extended  their 
equations  to  include multiple paternity. The equations 
derived by them, however, are also incorrect because 
( 24)  and ( 25)  are used. 

EFFECTIVE SIZE 

The matrix equation is exact and is easily pro- 
grammed to provide numerical results for inbreeding 
coefficient and coancestry. The instantaneous rates of 
changes of the five gene identity parameters in S, (A& 
La,, Ae,,,, AO,,, and AO,,,) and e( A8,) and thus 
the six corresponding  instantaneous effective  sizes 

be  predicted using the matrix equation in a way similar 
to the monoecious case ( WANG 1997). It is found, how- 
ever, that  the differences among  the last four effective 
sizes are generally negligible except for  the first two or 
three  generations, thus only  Nd,, is considered in the 
following numerical example. 

For a  population subdivided into 20 subpopulations, 
each consisting of 5 males and 50  females  with male 

(NU, Nd(mm),t>  Nd(m,l,t> Ndun,t, and Nd,t) can also 
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Generations 
FIGURE 2.-Changes in the  three effective  sizes ( Nd, Nd,  

and N,, denoted by solid,  dotted  and  dashed  lines  respec- 
tively)  over  successive  generations  for a population  with  pa- 
rameters s = 20, N,,, = 5 ,  N/ = 50, d,,, = 0.8, df = 0, Sim = 
Sjf = 1, S i f  = 1 / Sjm = 10, and Sm,mr = Sf,,,f = 0. 

and female migration rates being 0.8 and 0,  respec- 
tively, and S:m = Sjf = 1, S:, = 1 / Sjm = Nf/ N,, and 
Su,mf = 0 ( following  Poisson distribution of  family  size ) , 
the changes in the effective  sizes  over the first 10 gener- 
ations are shown  in Figure 2. It is clear that,  although 
the  three effective  sizes are  quite different in initial 
generations, they will converge to  the same value  even- 
tually.  Results for other populations with different val- 
ues of s, Nu, d,, S‘,,, and &,/are similar to those shown. 
Although the  number of generations required to attain 
the asymptotic  value of effective  size may be different 
for various populations, the  population must reach the 
steady state in the end so long as  they are  not completely 
subdivided ( dm + d, > 0 )  . 

Numerical results for  the asymptotic  effective  size can 
be obtained using (20) .  Analytical expressions for the 
equilibrium effective  size can be derived by finding the 
dominant characteristic root of transition matrix T. 
The characteristic equation of matrix T may be  reduced 
to 

Extending (27), we obtain  the multinomial equation, 
from which the  dominant  root X (the largest root lying 
between values zero and  one) can be obtained and the 
value  of  effective  size  is calculated as Ne = 0.5,’ ( 1 - X) 
( WANG 1997 ) . From ( 8 ) and (9  ) , we can see that p , ,  
is  of order 1 / N, or 1 / NF For  relatively large subpopu- 
lation size (N,, Nf 1 ) , second and higher  orders of 

p,,,, can be omitted and ( 5 )  and ( 6 )  can be used  in 
an approximate solution for X. Following a similar pro- 
cedure as for the monoecious case (WANG 1997), the 
effective  size can be  obtained as 

where 

or 

Am X [l + 9df+ 3d, - ( 1  + df-  5 d m ) / ~ ] p m , m m  

+ 2 [1  - 6 d m -  2 4 -   ( 1  - 4 d , ) / ~ ] p , , , ,  

+ - 3 4  - d / -  ( 1  - 3dm)/sIpm,l/ (30) 

approximately, when dm and df are sufficiently  small for 
squares and products of these quantities to be ignored. 
Afcan  also be expressed by (29) or ( 30) only to replace 
subscript m with f and f with m (pu,fm = pu,,, because 
ouifm = ou,,f in Equation 9 ) .  

Expression 28 provides exact fits for the values of 
effective  size obtained via iterations of Equation 20,  as 
would be expected. For a single unsubdivided popula- 
tion ( s  = 1, dm = d,= l ) ,  we get q ,,*, = q:,, = 1 (from 
Equations 1-4). Substituting these and p,, = p,,,,,, + 
p,, into ( 28) yields 

Ne 

16 - - (31)  
P m , m m  + 2 P m . m f  -k Pm.fJ + P , m m  + 2pf,mf + PJ,  

approximately, which was also derived by NAGYLAKI 
( 1995) for  the special  case by a different method. When 
(8 )  and (9 )  are  inserted  into ( 31 ) , we are led to HILL’S 
(1979) formula for  the variance effective population 
size  as found by NAGYLAKI ( 1995) . Thus our expression 
for effective  size is equal  to previous  results by many 
authors when applied to a single isolated population. 

The general expressions for effective  size, ( 28) and 
( 29 ) , can be simplified considerably for  the special  case 
considered by CHESSER et al. ( 1993). Since the  numbers 
of male and female progeny per family are in Poisson 
distributions, we obtain p , , ,  = p=,m, - p,,f, = 1 / N ,  
(where u = m or f) . Inserting this into (28) and (29) 
yields 

- 
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Ne = 
~ s N ,  N/ 

Nm + N/ 

Equations 28 and 32 give  satisfactory predictions of 
effective  size when both N, and  Nfare relatively large. 
If,  however, either N, or Nfis  very small, they may result 
in a little bias because the  approximate expressions ( 5 ) 
and ( 6 ) are used. A general  equation  for Ne using exact 
expressions ( 3)  and ( 4 )  can also be derived from ( 2 7 ) ,  
it is,  however, quite complicated and  not given here. 
For the special case of Poisson distribution of  family 
size, we can get  the  equation for Ne from transition 
matrix T in (26) as 

4 ( 4  - q m m  - 2qmf - ef) NmNf 

+ + 2(2qmm - q m f ) N / +  2 ( 2 9 f -  qmf)Nm . (33)  
( q k m  + 2qkf + qif) ( N m  + 4) 

For  relatively large values  of N, and N ,  inserting (5  ) 
and ( 6 )  into ( 33) we also get ( 32)  approximately, as 
expected. 

A close inspection of ( 28 ) informs us that,  for  a given 
population,  the smaller the migration rates ( dm + df > 
0)  , the larger the effective  size. The magnitude of the 
effect of migration rates on effective  size depends 
mainly on the  number of subpopulations and is inde- 
pendent of the census size  of the  subpopulation.  The 
effects of s, dm, and df on effective  size are shown  in 
Figure 3 for  a  population with  fixed total size ( 2000) ,  
sex ratio ( Nf/ N, = 5 ) ,  Poisson distribution of  family 
size ( S:m = S;/ = 1, Sm,,/ = Sf,m/ = 0, and S:/ = 
1 /S7m = 5 ) ,  and variable values  of s, dm, and df (we set 
dm = df) . It is clear that  the largest value  of N, is achieved 
with  low migration rates and a large number of subpop 
ulations. If either dm or dJ is large or s is small, the 
population behaves as a  random mating unsubdivided 
one  and population  structure has little effect on effec- 
tive  size. 

Male and female migration rates may have differen- 
tial  effects on effective  size. Depending on the sex ratio 
and the variances and covariances  of  family  size, the 
relative effect of dm on effective  size may be larger or 
smaller than  that of d,. When N, = Nfand  the  numbers 
of male and female offspring per family  follow the same 
and  independent distributions, dm and dr have equal 
effects. The influence of male and female migration 
rates on effective  size is presented in Figure 4 for a 
population subdivided into 20 subpopulations, each of 
10 males and 50 females, with independent Poisson 
distributions of male and female progeny per family 
( S:7, = N,/  Nu, Su,m/ = 0 ) .  Figure 4 shows that dm has a 
larger effect on N, than df in this case. 

The expressions for effective  size derived above are 
valid when migration exists. If the subpopulations are 

N,,,,,, and Nd,t will converge to the same asymptotic 
value, the  inbreeding effective  size,  while Next tends to 
another equilibrium value, variance effective  size. In 
such a case, the rate of inbreeding of the total popula- 
tion is the same as any one of  its subpopulations. The 
inbreeding effective  size  of a  subpopulation is also that 
of the total population. In this situation the matrixes 
(21 ) are  reduced considerably for CY = 0, and following 
a similar procedure, we can derive the asymptotic  in- 
breeding effective  size,  which is expressed by (31 ) ap- 
proximately. 

completely isolated ( dm = df= 0 )  9 NI,~? Nd(mm),t, Nd(m/),t, 

FSTATISTICS 

Population subdivision and migration change  the F 
statistics considerably. The equations for the instanta- 
neous Fstatistics can be  obtained from ( 10-12) and 
(16-19), 

Like the  instantaneous effective  sizes, the Fstatistics 
change over the first few generations. However, in later 
generations, the various  effective  sizes attain the same 
asymptotic  value  while the Fstatistics converge to their 
distinctive  asymptotic  values. The changes in Fstatistics 
for  the first 10 generations  are shown in Figure 5 for a 
population with parameters s = 20, Nm = 5 ,  N, = 50, 
dm = 0.5, df= 0, a:, = 2, a;/ = 1, c i J  = 10, c;m = 0.1, 
cm,mf = 2, and = 1. The  graphs  are  generated 
by numerical calculations by ( 20)  , ( l o ) ,  and ( 11 ) . 
Because of the asymmetrical  effects  of the two sexes, the 
differences among  the  four fixation indexes, Fsr(mm),t, 
F w ( m f l , t ,  FTTvJ, , 1 ,  and Fs7; , ,  are evident in any generation. 
Similar to  the monoecious case (WANG 1997) ,  Fisc,, 
reaches its equilibrium value in fewer generations  than 

For incomplete subdivision, the instantaneous Fsta- 
tistics will eventually attain their respective  asymptotic 
values, fis(,), & r ( w ) ,  and Frr, while the instantaneous 
effective  sizes NrI,t, Nd(vw),t,  and Next will reach the same 
asymptotic value, Ne. Thus in equilibrium, (34-36) re- 
duce to 

FST(vw) and FIT- 
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FIGURE 3.-Three di- 
mensional  diagrams show- 
ing the effect of the num- 
ber of subpopulations (s) 
and migration rates ( d,, = 
dJ)  on  the effective size 
( N e ) .  The  graph plots 
equation 34 for a  popula- 
tion with parameters SN = 
2000, N,/N,n = 5, Si,,& = 

and Si,  = 1 / S &  = 5. 
s;/ = 1, Sm,"q = .Y/.m/ = 0, 

FIGURE 4,"Three di- 
mensional  diagrams de- 
picting the  influence of 
male and female migra- 
tion rates (d,", cl/) on  the 
effective size ( N e ) .  The 
graph is generated using 
10 males and 50 females 
per  subpopulation, 20 
subpopulations and Pois- 
son  distribution of  family 
size ( s : ~  = s;, = 1 ,  S$ 
= 1 / S3m, = 5 ,  and Sm,,., = 
Sf,,,"/ = 0 ) . 
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FIGURE 5.-Changes in the  nine  Fstatistics  parameters 

(FIs,,,, FIS(,/), Fkuf) ,  FIS, F s T ( ~ ~ ) ,  FsT(,~, FbWf) ,  F S T ,  and Fm) 
over successive generations for a population  with  parameters 
s = 20, N, = 5, A$ = 50, dm = 0.5, df = 0, ai ,  = 2 ,  = 1, 
a i f  = 10, a& = 0.1, am,,/ = 2, and uf,,,/ = 1. 

(37) 

A solution to these equations will  give explicitly the 
expressions for FIT and FST(uw), and by (10) and  the 
relation (1 - FIT) = (1 - FST(w))  (1 - FIS,,,)), we can 
obtain &(,) . The expressions for FsT(m), however, are 
quite complicated and therefore  not given here. For 
the special case that  the  numbers of male and female 
progeny per family are in independent Poisson distribu- 
tions, we have FST(,,) = FsT(mp = FsTvp = &,because the 
coancestry between individuals within subpopulations is 
irrespective of the sexes of the individuals. Thus from 
( 39) we get 

2 
(q:, + 2qC + qj/) N, 

FW = (40) 

Inserting (40) into (37)  and  (10) yields 

and 

4 q m /  - q6m - 2qk/ - qjf - 4 

2 ( q6m + 2qkf + qjf) Ne - 4 
4 s  = ( 4 2 )  

approximately. For relatively large subpopulation size, 
we use ( 5 )  and ( 6)  for simplicity and these equations 
reduce  to 
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(43) 

, (44) 

4 s  = 
4~(drn + d/ -  dmd/) - ( d m -  d / ) ' .  (45) 
4 s - 2 ( d , + d f ) ( 4 - d m - d / ) N ,  

For a single random mating population ( s = dm = df = 
1 ) , ( 45 ) simplifies to 

which, for  equal  numbers of males and females ( N ,  = 
N, = N /   2 )  thus Ne = N ,  reduces to the classical result 
( mMURA and CROW 1963;  ROBERTSON  1965 ) 

(47) 

For the special  case that s is large, N, = Nf = N / 2  and 
both dm and dr are small enough so that second and 
higher order terms can be  ignored,  the effective  size is 

approximately from ( 3 2 ) .  Substituting (48) into (43) 
we obtain 

1 
2N(  dm + df) + 1 ' FST = (49) 

which was also derived by PROUT (1981). If  we do not 
consider sex and  denote migration rate as m = ' / ' (dm 
+ df) , (49) reduces to  the classical result of  WRIGHT 
( 1969) . Thus our expressions for Fstatistics are gen- 
eral, incorporating  a finite number of subpopulations, 
different numbers of  males and females per subpopula- 
tion,  sex-dependent migration rates, and  an arbitrary 
distribution of  family  size. 

For a subdivided population with equal  numbers of 
males and females in each subpopulation and Poisson 
distribution of  family  size,  CHESSER et al. (1993, Equa- 
tion 51 ) obtained  the estimate of FsT as 

The equation is clearly in variance with our expression 
43, and for the infinite island model it also differs from 
the result by  WRIGHT (1969)  and PROUT (1981 ) . Ex- 
pression 50 gives correct predictions of FST only for 
complete migration ( d, = df = 1 ) or no migration (dm 
= df = 0 ) ;  otherwise it always overestimates FW, the 
largest bias being resulted with intermediate values of 
migration rates of male and female individuals. This is 
because ( 50) was derived from recurrence equations 
that used the  incorrect probabilities ( 2 4 )  and ( 2 5 ) .  
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DISCUSSION 

The expressions for gene identity, effective  size and 
Fstatistics derived herein  are applicable to subdivided 
dioecious populations exhibiting varylng degrees of  iso- 
lation and with different numbers of  males and females 
in each subpopulation and  an arbitrary distribution of 
family  size. Traditional equations for a single unsubdi- 
vided population  are shown to be special  cases of our 
general expressions, and CHESSER and coworker’s 
model is extended and also corrected in this  study. 

It is clear that  population  structure has an  important 
effect on inbreeding and genetic drift in both  short- 
term periods and in the  long  run. Migration among 
the subpopulations alleviates inbreeding for the first 
few generations,  but  it will result in a high final rate of 
inbreeding  and thus larger inbreeding coefficients in 
later generations. These results can be used as a guide 
to determine  proper values  of rates of migration and 
subpopulation  number and size in genetic conservation 
programs. 

The effect of population  structure on effective  size is 
determined mainly by migration rates. The smaller the 
migration rate,  the  more  generations  are  required  for 
the  population to attain its  steady state in inbreeding 
and genetic drift ( CHESSER et al. 1993),  and  the larger 
the asymptotic  effective  size. In instances of complete 
migration by one sex or both sexes, the  population 
behaves  as an unsubdivided random mating population 
and  there is little difference between  values  of  effective 
size predicted by traditional and  the newly derived 
equations. When subpopulations become isolated the 
influence of breeding  structure takes on greater impor- 
tance in the  determination of effective  size ( CHESSER 
et al. 1993). If there is no genetic exchange among 
subpopulations ( d m  = df = 0)  , then  inbreeding and 
variance effective  sizes do not converge to the same 
value, and inbreeding coefficient increases and  gene 
frequency changes with different asymptotic rates. 

In our derivations, some simplifylng assumptions 
are  included, such as random mating within subpop- 
ulations, constant size and structure of the popula- 
tion, nonoverlapping generations and autosomal in- 
heritance,  and without-selection and mutation. HILL 
(1979) showed that, for a  population of constant size 
and sex ratio and with a stable age structure distribu- 
tion,  the effective  size  is the same as that for a popula- 
tion  with discrete generations having the same variance 
in lifetime progeny numbers  and  the same numbers of 
individuals entering  the  population in each generation. 
It is unlikely that substantial deviations from the  numer- 
ical  values will result if extensions of the expressions 
derived herein  are made to include overlapping genera- 

tions. Recently the effective  size for  a sex-linked  locus 
has been considered by many authors for a single un- 
subdivided population ( POLLAK 1990; CABALLERO 1994, 
1995; NAGYLAKI 1995; WANG 1996).  The methodolo- 
gies provided here can also be extended to sex-linked 
loci.  However, the situation becomes more complex 
because at least  seven probabilities of identity by de- 
scent should be considered in the general model. 

The  author is grateful  to two anonymous reviewers for  their helpful 
commentS on  an earlier  draft of this manuscript. 
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