RECENT LINKAGE STUDIES IN MAIZE

MAIZE GENETICS COOPERATION Ithaca, New York

Received October 13, 1938

AIZE geneticists in different parts of the United States and in other countries have been cooperating very closely with each other since 1932 through the Maize Genetics Cooperation. In addition to freely exchanging seed stocks through the central repository, they freely exchange new methods, hypotheses, suggestions, and unpublished linkage data by means of an annual circular letter. This mimeographed Co-op News Letter does not constitute publication and none of the material in it may be quoted except by permission of the author.

The rapid progress in the genetics of maize may be largely attributed to this liberal exchange of unpublished material among maize workers. Some of the linkage data presented in the Co-op News Letter, however, are complete and should be published so that they will be more readily available to other geneticsts. It is hoped that a group of short linkage papers can be published collectively each year in the same manner as they are presented in this article. Each paper must be considered a separate entity and any reference to the data in it must include the name of its respective author.

For further information on the genetics of maize the reader is referred to "A Summary of Linkage Studies in Maize," Cornell Memoir 180, June, 1935.

I. Virescent seedling-16 (v_{16}) .

H. K. HAYES and M. S. CHANG, Minnesota Agricultural Experiment Station.

A virescent seedling in Minn. #13 corn was found to be linked with japonica and given the symbol v_{21} . Rhoades (Co-op News Letter, March 23, 1937) has found v_{16} and v_{21} to be allelic after trisomic tests had placed v_{16} also in chromosome VIII. Further linkage data of j, ms_8 and v_{16} are as follows:

GENES XY	LINKAGE PHASE		NUMBER	RECOMBI-			
		XY	Xy	xY	хy	TOTAL	NATION PERCENTAGE
J_1V_{16}	RB	82	565	542	71	1260	12.1±0.9
J_1V_{16}	RS	354	149	154	4	661	16.9±3.7
$J_1 M s_8$	CS	464	39	23	135	66 r	9.5±1.2
Ms_8V_{16}	RS	337	150	171	3	661	13.9±3.8

^{*} Dr. F. R. Immer supervised the taking of these data.

GENETICS 24: 59 Jan. 1939

The order of the genes appear to be v_{16} - ms_8 -j.

(Paper No. 1510 of the Journal Series of the Minnesota Agricultural Experiment Station.)

II. Zebra striped-6 (zb_6) .

H. K. HAYES and M. S. CHANG, Minnesota Agricultural Experiment Station.

Emerson et al. list five cases of zebra striping that have been reported. There are two types, one that is expressed in the seedling stages and which may completely disappear as the plants approach maturity and the other that first appears in partly grown plants. The type reported here was obtained from an inbred line of Del Maiz sweet corn furnished by J. D. BARNARD of the Minnesota Valley Canning Company. The season in 1936 was very hot and dry. Germination of sugary seeds was much lower than normal. Zebra striping could not be classified until late summer when the weather was cooler. Classification was difficult in some cultures. The results given in the summary indicate Zebra striped is located in group 4.

$\frac{\mathtt{GENES}}{XY}$	LINKAGE PHASE		RECOMBI-				
		XY	Xy	xY	ху	TOTAL	NATION PERCENTAGE
$Zb_{6}Tu$	CS	410	64	64	90	628	23.3±2.0
$Zb_{6}Gl_{3}$	RS	326	148	135	19	628	33.9±3.5
$TuGl_3$	RS	314	160	147	7	628	20.5±3.8
Zb_6Su_1	CS	4227	259	175	361	5022	13.3±0.5

The order of the genes appears to be $su_1-zb-Tu-gl_3$.

(Paper No. 1510 of the Journal Series of the Minnesota Agricultural Experiment Station.)

III. Zebra seedling-4 (zb_4) .

H. K. HAYES, Minnesota Agricultural Experiment Station.

Zebra seedling, zb_4 , has been located in chromosome 1 by the following studies:

GENES	PHASE	XY	Xy	xY	хy	TOTAL	PERCENTAGE RECOMBI- NATION
Zb_4Br	RS	448	142	152	12	754	31.1
Zb_4F_1	RS	455	135	158	9	757	28.0
Zb_4Bm_2	RS	487	103	144	23	757	46.0
Zb_4P	CS	266	24	5	64	359	6.9

Progeny of one ear indicated that the P parent was heterozygous, giving the following segregation:

(Paper No. 1510 of the Journal Series of the Minnesota Agricultural Experiment Station.)

IV. Ramosa ear-2 (ra_2) .

H. K. HAYES, Minnesota Agricultural Experiment Station.

A culture of ra_2 received from Dr. Brink at Wisconsin proves to be similar to the one I have studied for many years. There is some variability in type of ear, some cultures showing rudimentary male flowers on the tips of some ears, irregularity of rows on the cob but no division of the cob as in ra_1 . Other cultures have a divided cob on the tip of the ear but a solid cob at the basis. Ra_1 can be separated from ra_2 in the F_2 of a cross.

(Paper No. 1510 of the Journal Series of the Minnesota Agricultural Experiment Station.)

V. Opaque endosperm-2 (o_2) .

W. RALPH SINGLETON, Connecticut Experiment Station, New Haven.

Opaque endosperm is a character in which the endosperm has very little or no corneous starch. It is phenotypically indistinguishable from floury. Opaque, however, gives 25 percent recessive seeds on segregating ears, while floury gives the gametic ratio of 50 percent. Classification of opaque is good in flinty stocks. Separation can be facilitated by placing over a light. Normal seeds are translucent while the recessives are opaque. Opaque 2 is located on chromosome VII, probably beyond v_5 , as is shown by the following data. (Opaque 1 has not yet been located in any linkage group.)

Linkage of o_2 , ra_1 , gl_1 , and ij:

GENES	PHASE	XY	Xy	xY	xy	TOTAL	No.	PERCENT
O_2Ra_1	RB	116	597	554	109	1376	225	16
O_2Ra_1	CB	127	15	15	112	269	30	11
O_2Gl_1	RS	3148	1595	1487	64	6294		20
O_2Ij	RS	405	169	184	30	688		37

A three-point test involving o_2 , gl_1 , and ij gave the following counts:

F ₁ GENOTYPE	0	I	2	I, 2	TOTAL	
$\frac{o_2 + +}{+ gl_1 \ ij}$	467 513 980	115 150 265 17.5%	94 123 217 14.3%	28 23 51 3.4%	1513	

The recombination percentages of o_2 and ra_1 (repulsion phase), also o_2 and gl_1 indicate that o_2 is to the left of v_5 and within 2 or 3 units of v_5 . The percentages between o_2 and ij indicate that o_2 is 2 or 3 units to the right of v_5

VI. White sheath-3 (ws₃).

M. M. RHOADES, U. S. Department of Agriculture, Washington, D. C.

The recessive mutant character white sheath₃ is characterized by the partial absence of chlorophyll in the culm and sheaths of the plant. The character can be readily classified both in the seedling and in later stages of development. The expression of the white sheath character is determined by a single recessive gene which has been designated ws_3 . It is not allelic with the ws_1 and ws_2 factors reported by Kempton (1921) and Clark (1932). The ws_3 gene was first placed in chromosome II by trisomic tests. Linkage data to be presented here confirm this location. F₂ data from

the selfing of $\frac{ws_3}{Ws_3} \frac{lg_1}{Lg_1} \frac{Gl_2}{gl_2}$ plants are as follows:

	LINKAGE		RECOMBI-				
GENES	PHASE	XY	Xy	хY	ху	xy TOTAL	NATION PERCENT
Ws_3Lg_1	CS	1593	103	114	431	2241	11
Ws_3Gl_2	RS	1167	529	505	40	2241	27
Lg_1Gl_2	RS	1158	549	514	20	2241	19

The order is $ws_3-lg_1-gl_2$.

The linear order, with the intervening crossover percentages of the genetic factors in chromosome II as determined from the summary of data in Emerson, et al (1935), is lg_1 19 gl_2 19 B 7 sk 12 fl_1 6 ts_1 8 v_4 . McClin-TOCK (1931) has shown that both lg_1 and B lie in the short arm of chromosome II with lg1 occupying a more distal position. Studies of a reciprocal translocation involving chromosomes II and V (Rhoades, 1933) indicate that ts₁ is very close in terms of crossover units to the spindle fiber attachment region of chromosome II. Since the data presented here show that ws3 is to the left of lg1, which has been placed cytologically near the end of the short arm, it follows that ws, lies close to the distal end of the short arm. The map distance from ws₃ to ts₁ is 74 units. There is an unknown amount of crossing over between ws, and the distal end of the short arm so this value represents an estimate of the minimum length of the short arm of chromosome II. The length of the long arm of chromosome II used in these studies is 1.4 times that of the short arm. If the assumption is made that the amount of crossing over per unit of physical length is of the same order in the two arms it is possible to arrive at the estimate of 178 units as the total length of the genetic map of chromosome II. This estimate is in all likelihood less than the true map length of this chromosome but may closely approximate it.

LITERATURE CITED

CLARK, F. H., 1932 Inheritance of white sheaths in maize. J. Hered. 23: 235-237.

EMERSON, R. A., BEADLE, G. W., and FRASER, A. C., 1935 A summary of linkage studies in maize. Mem. Cornell Agric. Exp. Sta. 180: 1-83.

Kempton, J. H., 1921 Heritable characters of maize. VIII. White sheaths. J. Hered. 12: 224-226. McClintock, Barbara, 1931 Cytological observations of deficiencies involving known genes, translocations and an inversion in Zea mays. Missouri Agric. Exp. Sta. Research Bul. 163: 1-30.

Rhoades, Marcus M., 1933 A cytogenetical study of a reciprocal translocation in Zea. Proc. Nat. Acad. Sci. Wash. 19: 1022-1031.