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important S line of attack on the evolutionary problem. While such differences can 
only rarely represent first steps toward speciation in the sense of the splitting 
of the species, they are important for the evolution of the species as a whole. 
They provide a possible basis for intergroup selection of genetic systems, a 
process that provides a more effective mechanism for adaptive advance of the 
species as a whole than does the mass selection which is all that can occur 
under panmixia. 

TUDY of statistical differences among local populations is 

RANDOM DIPPERENTIATION UNDER THE ISLAND MODEL 

Mathematical consideration requires the use of simple models of population 
structure. The simplest model is that in which the total population is assumed 
to be divided into subgroups, each breeding a t  random within itself, except for 
a certain proportion of migrants drawn a t  random from the whole. Since this 
situation is likely to be approximated in a group of islands, we shall refer to it 
as the island model. 

The gene frequency (4) of a subgroup tends to vary about a certain equi- 
librium point (q) in a distribution curve (+(q)) determined by the net sys- 
tematic pressure (measured by Aq, the net rate of change of gene frequency 
per generation from recurrent mutation, immigration, and selection) in con- 
junction with the cumulative effects of accidents of sampling (random devia- 
tion aq, variance per generation U:,) (WRIGHT 1929, 1931, 1942). 

Let N be the effective size of the subgroup, m the effective proportion of its 
population replaced in each generation by migrants, and qt the gene frequency 
in the total population. The rate of change of gene frequency per generation in 
a subgroup, taking account only of immigration pressure, is Aq= -m(q- qt). 
In a random breeding population U&= q(1 -q)/2N. Substitution in (I) g;ves 
the following, choosing C so that J&$(q)dq= I (WRIGHT 1931, 1942). 

* A portion of the cost of composing the mathematical formulae is borne by the Galton and 
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(4) 4 = Jo (q - iI24(q)dq = qt(1 - qt)/(4" + 1). 

In  the derivation of (I), i t  was assumed that Aq is sufficiently small that 
terms involving (Aq)2 might be ignored. A more accurate value of c: may be 
obtained directly. The deviation of a local gene frequency from the average, 
(9-qt), tends to be reduced to (I-m)(q-qJ in the next generation. The 
mean sampling variance of (q+Aq) is 

= [qt(I - qt) - (I  - m)2a:]/zN. 

Thus with a steady balance between the effects of immigration and of the 
accidents of sampling 

(6) 

(7) 

U: = ( I  - m)%; + [qt(I - qt) - (I  - m)%:]/zN 
U: = qt(I - qt)/[zN - (zN - I)(I - m)*]. 

This is approximately the same as (4) for small values of m but becomes 
qt( I - qt)/aN, the sampling variance, in the limiting case of no isolation what- 
ever (m= I). This is about twice as great as given by (4) in this extreme case. 

The variance, excluding the immediate sampling variance may be obtained 
by multiplying (7) by (I  -m)2 as indicated in (6). Formula (4) lies between the 
values with and without the immediate sampling variance. 

Under exclusive uniparental reproduction, whether vegetative or by self- 
fertilization, the distribution of alternative genotypes may be treated by the 
same theory except for replacement of zN by N. Immigration pressure is the 
same but the sampling variance is q( I - q)/N. 

THE INBREEDING COEFFICIENT 

Departures from panmixia may be expressed in terms of the average in- 
breeding coefficient of individuals, relative to the total population under con- 
sideration. This coefficient has been defined as the correlation between uniting 
gametes with respect to the gene complex as an additive system. It has been 
shown that its value can be found for any pedigree by finding all paths by 
which one may trace back from the egg to a common ancestor (A) and thence 
forward to the sperm along a wholly different path. According to the theory 
of path coefficients, the correlation between uniting gametes is the sum of 
contributions from all such paths (WRIGHT 1921, 1922b). 

F = [ ( I / Z ) " ~ + ~ ~ + ~ ( I  + FA)] 

where F and F A  are the inbreeding coefficients of the individual and of a 
common ancestor of sire and dam, respectively, and ns and nD are the numbers 
of generations from sire and dam, respectively, to this common ancestor. In a 
population in which the average inbreeding coefficient is F, the frequencies 
of genotypes (one pair of alleles) are as follows (WRIGHT 1921, 1922a). 



The inbreeding, measured by F, may be of either of two extreme sorts: 
sporadic mating of close relatives with no tendency to break the population 
into subgroups, and division into partially isolated subgroups, within each of 
which there is random mating. The latter is the case in which we are primarily 
interested here. Assume that there are K subgroups each of size N. The pro- 
portion of heterozygotes within a subgroup is zq’(1-q’) where q‘ is the gene 
frequency in the parental generation, including immigrants. 

The variance of the gene frequencies of the subgroups, not allowing for 
accidents of sampling in the last generation, is 

U 

(1 2) 

(13) u:t = qt(I  - qt)F from (9) and (12). 
yt = 2qt(1 - qt) - 2u$ from (IO) and (11) 

This formula does not allow for the contribution to variance due to acci- 
dents of sampling in the last generation. Thus it gives u$=o instead of 
a;=qt(1-qt)/aN f o r ~ F = o .  To compare with (7) it must be divided by 

(14) 

(15) 

(16) 

U: = qt(I - qt>F/(I - m)’ 
F = (I - m)2/[2N - (2N - I)(I  - m>2] 

m = I - d2NF/[ (2N - I )F + I ]  

from (14) and (7)  

(17) 0: = q,(I - qt)[(2N - 1)F + I ] / ~ N .  

The formula F= 1/[4Nm+1] given in a preceding paper (DOBZHANSKY and 
WRIGHT 1941) is a satisfactory approximation if m is small. 

This island model is not likely to be exactly realized in nature. In  most cases, 
the actual immigrants to a population come from immediately surrounding 
localities in excess and thus are not a random sample of the species. This can 
be remedied to some extent by multiplying the proportion of replacement by 
an appropriate factor to obtain the effective immigration index. If q, is the 
gene frequency in the actual immigrants (varying from group to group) the 
appropriate factor would be (9- q,,,)/(q- qt). Unfortunately the values for 
effective m for different loci may be very different. 
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LOCAL INBREEDING I N  A CONTINUOUS AREA 

At  the opposite extreme from the island model is that in which there is com- 
plete continuity of distribution, but interbreeding is restricted to small dis- 
tances by the occurrence of only short range means of dispersal. Remote popu- 
lations may become differentiated merely from isolation by distance (WRIGHT 

Each individual has its origin a t  a particular place. Assume that its parents 
originated a t  distances from this place with a certain variance both in longitude 

1938, 1940). 

Go metes 

Zyqotes 

Gamete3 

Pro ba bif i t y  

0 

0 

(N-1) / CJ 
and in latitude. If the same condition held in preceding generations, the grand- 
parents originated a t  distances with twice this variance in longitude and in 
latitude and the ancestors of generation K originated a t  distances with K 
times this variance in both directions. The parents may be considered as if 
drawn a t  random from a territory with a certain radius R and effective popu- 
lation size N. The ancestors of generation K may then be considered as drawn 
similarly from a territory of radius d E  R and effective population size KN. 

We shall use the term parental group for the population (effective size N) 
from which the parents of an individual may be considered to be drawn; the 
term random breeding or panmictic unit will be used for any local population 
of the same effective size as the parental group. 

The assumption of random union of gametes, including self fertilization 
(probability I/N) can be made with sufficient accuracy even though there is 
actually no self fertilization. It has been shown that such unions in a population 
of constant size N lead to fixation a t  the rate 1/2N in comparison with the 
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rate [(N+ I)  - d m ] / 2 N  either in a population of size N equally divided 
between males and females or in a population of N monoecious individuals in 
which self fertilization does not occur. As the latter formula may be written 
[1-(1/2N). . . ]/zN the difference is ordinarily negligible (WRIGHT 1931). 

The inbreeding coefficient of individuals in such a population can be cal- 
culated from its definition as the correlation between uniting gametes. Let F, 
be the correlation between random gametes drawn from a population of size 
xN and use primes to indicate preceding generations as in the text figure (p. I 17). 
The inbreeding coefficient itself would be Fl in this terminology. The values 
of these coefficients can be expressed in terms of coefficients for preceding 
generations by tracing all connecting paths and noting that the path coeffi- 
cient b, relating gamete to parental zygote, has the value d(1+F‘)/2 and 
that the path coefficient, a, relating offspring zygote to one of the gametes 
that produced it, has the value .\/I/[z(I+F)]. The compound coefficient 
ba’=+ (WRIGHT 1921). It may easily be seen that (8) can be deduced a t  once 
from these considerations. 

In  the case of continuity 

gN - I 
F,”‘ etc. 

I + F”’ 
[F,” = -&-) + gN 

(19) Thus 

F =  
I + F’ 

2N 
+E{ N 

+ . . .  I> * 
If the same population structure has continued indefinitely, primes may 

be dropped. 

F=(G)[I+~(F)+~(Y)(I~I;~~_~) 
+L(y)(y)(y)...]. 4 

This is an infinite series, but in practice the value of F that is of interest is 
that relative to some finite population. The correlation between random 
gametes in a population of size KN is FK which may be taken as zero, thereby 
stopping the series a t  (K-I)  terms. Let t, be the xth term in the series in 
brackets and x:-’t the sum of first (K- I)  such terms 
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(21) F ='Et/ 1 [zN - 'gt] 

(X - I )N  - I 
tx = t (x-1). 

xN ( 2 2 )  

Let t(x-0.5)= (t,+t(,-l))/z and At(x-~.5) = tx- t(x--l) 

At(x-o,6) 2(N + 11 - = -  
t (x-0.6) N(ZX - I) - I (23) 

If the values of t are treated as ordinates of a curve with abscissas x, we 
may write t and x in place of t(x-0.5) and (x-o .~) ,  respectively. The following 
then hold approximately 

2(N + 11 _ -  d t  
(24) - ZNX - I 

t = C  x - -  
(25)  ( :N)(N+l)'N a 

( 2 6 )  t = tdx approximately 
K2-1 K2-0.5 

K -0.6 1 

The value of the constant C can be obtained by equating actual and esti- 
mated values of t. Estimates for all but the first few terms in the series are in 
close agreement. Thus if N =  IO 

Actual series [1+.45+.285+.206625+ * * . ] 
Estimated series C[1.05805+.47969+.30423+.22067+ * * ] 

The estimated value of C from the first term is .9451, from the second term 
.9381, from the third term .9363. The limiting value is .935774. The value of 
C approaches I as N increases. Thus for N =  100, C =  .994157. 

Estimates of C?-'t directly from (27) are not good approximations, but most 
of the error is in the first few terms. Good estimates can be made by using the 
actual values from ( 2 2 )  for these terms and the estimates from (27)  for the 
later terms. For N =  IO 

Actual ( 2 2 )  Estimate ( 2 7 )  Error of Estimate 

5t 1 * 73500 I .  86782 +. 13282 

kt .79002 79250 + .00248 
Ft *99511 * 99541 + .00030 
1u 

Et .57228 .57228 + . 00000 
10 
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A priori, one would expect F to approach I as a limit as the size of population 
is increased without limit. This requires that C T t  approach N. Trial for values 
of N from IO to IO,OOO indicates that this is actually the case and thus gives a 
good check on the theory. Following are examples: 

N=IO N =  20 N = s o  N= IO0 
39 9 

t from (22)  3.52013 3.86519 4.09266 Et 2.797 
1 1 
m m 

t from (27)  6.47987 '16.13481 45.90734 t 97.203 

10.0c000 2o.occco 50.00000 IC0 .coo 
10 P 

40 

LOCAL INBREEDING ALONG A LINEAR RANGE 

In  a species with an essentially one dimensional range (parents drawn from 
the whole width) the extent along the range from which the ancestors of 
generation K,are  drawn is proportional to v% as with area continuity, but 
the effective size of the corresponding population is N instead of KN. 
By analogous reasoning 

(28) F = t /(zN - t) 

where 

Et=[I+2(y)+-&-)( N - I  G N - 1  d/zN )-.I 

At(=-0.6) z N ( v ' F T  - d:) - 2 _ .  (30) ~ = 
t(x--0.6) N(v'= + t/X) - I 

Treating this expression as the slope a t  the mid-interval and replacing 
(x-0.5) by x 

= -  
ZNX[I - 1/(32x2) + e - ] - dF 

Ignoring 1/(32x2) and smaller terms in the brackets, this yields 

( 3 2 )  t = Ce-2'/z/N[d/x - (I/~N)]-~~+(~/N)*I. 

This seems to be as accurate an approximation as is warranted after replace- 
ment of A t / t  by dt/tdx. 

Comparisons of actual and calculated values of t indicate that estimates of 
C approach stability after a few terms. For N =  IO, C =  1.1529 (from 30th to 
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40th terms). For N =  100, C =  1.01465 (from 9th and 10th terms). For larger 
values of N, especially if x is IO or more, it may be sufficiently accurate to take 
dt/tdx as - (N+z&)/zNx, C = I 

(33) t = e-24X/N/d\/x approximately. 

In  this case 

(34) 

The value of can be approximated by finding actual x y t  from ( 2 9 ) ,  

estimating xk-’ from (34) and multiplying the latter by the mean ratio of t 
from (32) to that from (33). Calculation of ZTt, N =  IO, by this method (by 
steps) gave 10.008 (instead of theoretical IO) and for N=IOO gave 100.07 

instead of theoretical 100. These theoretical values are on the assumption that 
the limiting value of F is I which again is seen to be verified. 

CORRELATION BET WEEN ADJACENT INDIVIDUALS UNDER 

UNIPARENTAL REPRODUCTION 

The effect of isolation by distance on the frequencies of two alternative types 
in a population with exclusive uniparental reproduction can be treated simi- 
larly, again assuming that there are no complications from other factors. The 
treatment, however, cannot be in terms of the inbreeding coefficient. Let E 
be the correlation between adjacent individuals, and assume that there is 
short range dispersion in each generation such that individuals are derived 
from a parental group of effective size N. With area continuity, the ancestors 
of the Kth generation are drawn from a population of effective size KN. The 
correlation between adjacent individuals can be analyzed into two compo- 
nents, that due to the chance, I/N, of derivation from the same parent and 
that due to the chance (N- I)/N, of derivation from different individuals of 
the group, the correlation between which may be represented by E2’ in analogy 
with Fz’ in the case of biparental reproduction. This in turn can be analyzed 
into a component due to the chance 1/2N of derivation from the same in- 
dividual of the second preceding generation and that due to the chance 
(2N- 1)/2N of derivation from different individuals of this group, the cor- 
relation between which may be represented by E:’. 

I N - I  I E = y + - - - -  E2’ 
N 

(35) 
I 2 N - I  1 E2’= %+-- E3” 

2N 
I I 3 N - I  I E,” - - 3~ +- E4’” etc. 

3N 
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Figures I to 3. Variability of gene frequencies of local populations within a continuously inhabited 
area that extends indefinitely in all directions. It is assumed that there is no appreciable long range 
dispersal or mutation. Each curve applies to a particular size (Nu) of random breeding unit and 
thus to a certain amount of short range dispersal. Variability is measured by . Y J ~ G G )  
where qx represents the gene frequencies of the subgroup in question and qy that of the compre- 
hensive population. 

FIGURE I (top).-The variability of gene frequencies (4.) of the random breeding units them- 
selves, within areas up to 104 times their radius (Ri/R,) or 108 times their population size (Ni/N,). 
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Again we may drop primes if the same population structure has continued 
for a large number of generations. 

E = 
N [I + (y) + (?)(?!$.) 

(37) 

+ L(y)(%-L)(!Fg). . .I. 
4 

E = E t/N 

The series xt is the same as encountered in the case of biparental reproduc- 
tion, but the formula for E differs from that for F. I t  resembles it in approach- 
ing I as a limit, as is to be expected a priori, but for a given N, E is about twice 
as great as F for small values of Et, and the difference from the limit is only 
about half as great if Et is close to I .  These relations are illustrated in figures 
7 and I dealing with uniparental and biparental reproduction, respectively. 

In  the case of linear continuity and derivation of individuals from a parental 
population of N, the effective size of the population of the Kth ancestral gen- 
eration is -\rK N, again as under biparental reproduction. By analogous reason- 
ing E = x t / N  where Et is the same series as in the biparental case. The relation 
of E to F for the same N is similar to that described above in the case of area 
continuity. 

RANDOM DIFFERENTIATION OF PANMICTIC UNITS I N  A CONTINUUM 

Returning to biparental reproduction, the situation in a random breeding 
unit imbedded in a continuous population of defined size may be compared in 
some respects with that in an “island” whose population is replaced to such 
an extent in each generation by migrants representative of the whole that the 
inbreeding coefficient of individuals is the same. There is the important differ- 
ence that adjacent groups should be closely similar in the former but uncor- 
related in the latter. Nevertheless the amount of differentiation among groups 
taken a t  ravzdom from the whole should be the same in both cases since equa- 
tions (9) to (I 7) apply in both. It is most convenient to use &= gq/.\/qt(I -qt) 
(from (13)) to measure this differentiation. It should be noted that this ex- 
cludes the variability due to the immediate effect of sampling. 

The theoretical variabilities of random breeding units of various sizes (IO 

to 10,000) within populations up to 108 times the size of the units (or 104 times 
the radius), continuous in all directions, are compared in figure I .  In  interpret- 
ing this variability, it may be noted that if qt=&, a value of & (ordinate) 

K ,  is the average number of generations of separate ancestry of random individuals of the popula- 
tion Ni. 

FIGURE z (middle).-The variability of gene frequencies (q,) of populations of a given size, 
NI=1o4, within areas up to 104 times their radius (Rt/Ri) or ro8 times their population size 
(Nt/Ni). Note the similarity to Figure I. 

FIGURE 3 (bottom).-The variability of gene frequencies (q,) of populations of any size, Ni, 
within a region with a population of a given size, Nt= 109. 
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greater than .577 means a U-shaped distribution of gene frequencies and thus 
very great differentiation. The situation is similar to that found where Nm 
is less than 0.5 in the island model. There is important differentiation down 
to a t  least a= . 2 2  (equivalent to Nm= 5). There is only slight differentiation 
if 4% is less than .07 (equivalent to Nm= 50) (c j .  fig. I, WRIGHT 1940). 

It is apparent from figure I (this paper) that there is a great deal of local 
differentiation if the random breeding unit is as small as IO, even within a 
territory the diameter of which is only ten times that of the unit. If the unit 
has an effective size of 100, differentiation becomes important only a t  much 
greater relative distances. If the effective size is 1000, there is only slight 
differentiation a t  enormous distances. If it is as large as 10,000 the situation 
is substantially the same as if there were panmixia throughout any conceivable 
range. 

The situation is very different as may be seen from figure 4 in a species whose 
range is essentially one dimensional (for example, a shore line). Different 
alleles may approach fixation in different parts of a range only IOO times the 
length of the random breeding unit if the effectivc size of the latter is less than 
100. The range must be about 1000 times the length of the unit if the latter 
has a size of 1000 and about 10,000 times its length if the size of the unit is 
10,000 to give this result. This difference between area and linear continuity 
has been suggested on a priori grounds by THOMPSON (1931) in connection 
with a study of the correlation between water distance and amount of differ- 
entiation within species of fish. 

RANDOM DIFFERENTIATION I N  A HIERARCHY OF SUBDIVISIONS 

The attempt to apply these conclusions to actual cases is hampered by the 
difficulty of determining what are the random breeding units and their effective 
sizes. To obviate this, we should find how groups of any arbitrary size vary 
within a more comprehensive population. 

Consider a total population, size Nt, subdivided into H groups of intermediate 
size Ni and these in turn subdivided into K random breeding groups of size 
Nu. The inbreeding coefficient of individuals is zero relative to the unit groups, 
Fi relative to the intermediate groups and Ft relative to the total. Both H and 
K, in contrast with Nu, will be treated as large numbers. 

The variance of the gene frequency (qu) of unit groups within the inter- 
mediate groups is given by (17) using the proper subscripts. The average 
value of this variance will be represented by ui.i. The variance of the mean 
gene frequencies of the intermediate groups in the total will be represented by 
u : . ~  and that of q, in the total by a:+ 
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Figures 4 to 6. Similar to figures I to 3, respectively, except that a linear range (such as a shore 
line) is postulated. 

FIGURE 4 (top).-The variability of gene frequencies (qu) of the random breeding units them- 
selves, within ranges up to 104 times their length (Li/L,) or population (Ni/Nu). 

FIGURE 5 (middle).-The variability of gene frequencies (si) of populations of a given size, 
Ni= 104, within ranges up to 104 times their length (Lt/Li) or population (Nt/N,). Note the dis- 
similarity to figure 4 in contrast with the similarity of figures I and 2. 

FIGURE 6 (bottom).-The variability of gene frequencies (si) of populations of any size (Ni) 
within a range with a population of a given size, Nt= roE. 
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2 
(43) Equating (40) and ( 4 ~ )  ui.t=qt(I-qt) [Ft-Fi]/[1-Fi]. 

This demonstration involves the assumption that there is inbreeding rela- 
tive to the intermediate groups because these are subdivided. It may be noted 
that the same value of u:.~ may be derived as follows without this assumption. 

(44) From (9) Yt = 2qt(1 - qt)(I - Ft). 

But yt is also the average heterozygosis of the intermediate groups 

H 
Yt = [2qi(1 - qi)(I - Fi)]/H 

(45) 
I 

2 
(47) From (45) and (46) 

(48) From (44) and (47) uy.t = qt(I - qt)[Ft - Fi]/[1 - Fi]. 
Yt = 2 [I - Fi] [qt(I - qt) - ui. t] .  

In  neither demonstration is there any-assumption as to the geographic dis- 
tribution of the values of the mean gene frequencies, qi, within the total. They 
may be distributed a t  random as implied in the island model or there may be 
gradients as expected with continuity. 

The quantity 

ui.t 

= -\/qt(l - qt) 

may be used as an index of the amount of differentiation among populations of 
any size Ni within a more comprehensive population (Nt). The variabilities 
of populations of effective size Ni= 10,000 are considered in figure 2 (area con- 
tinuity) and figure 5 (linear continuity). In the case of area continuity the 
curves are somewhat similar to those shown in figure I for unit groups. It 
appears that populations of 10,000 (or any other size) exhibit about the same 
amount of differentiation within a whole whose population is a certain multiple 
of their own as the unit groups exhibit in a population that is the same multiple 
of their size. Whatever t'he size of the subpopulations considered the varia- 
bility depends on the size of the inbreeding unit. There is an important amount 
of differentiation among large regions if the unit group is as small as IO, appre- 
ciable differentiation if the unit group is as large as IOO but little if it is as large 
as 1000. It should be said that there are important qualifications if there are 
other factors (mutation, rare long range dispersal or selection) which will be 
considered later. 
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The situation differs considerably in the case of linear continuity. Groups of 
size Ni= 10,000 approach the limiting amount of differentiation within popu- 
lations only three times their length of range if Nu= IOO or less. There must be 
virtually complete fixation of one allele or the other over long distances with 
only short regions of transition. If Nu= 1000 there is relatively little differ- 
entiation within Io-fold lengths (that are heterallelic a t  all) but an approach to 
IOO percent differentiation in Ioo-fold lengths. Thus transition regions are of 
the order of IO lengths. If Nu = 10,000, the transition regions are of the order 
of 103 lengths, and such groups approach IOO percent differentiation within 104 
lengths. 

The interpretation of figures I, 2 ,  4, and 5 is somewhat complicated by the 
fact that these do not measure variability on a constant scale. The denomi- 
nators of the ordinates (namely, 4- in 2 and 5 )  increase with the 
abscissas. The tendency toward fixation of large populations means that a t  
the lower abscissas the average value of qt must be close to o or I ,  making 
\/qt(I-qt) small. The structure of a population is exhibited in perhaps the 
most easily interpreted form by considering a constant comprehensive pop- 
ulation Nt and showing how much differentiation there is among subdivi- 
sions of all sizes from the random breeding units up to major subdivisions 
(gqi/dqt(I-qt)  plotted against Ni). Here the denominator is constant so that 
variability is always on the same scale. 

Figure 3 shows that with area continuity, the amount of differentiation falls 
off slowly with the size of the subdivision considered. If Nu= IO and Nt is 109 
(or any other size in the absence of other factors) there is marked differentia- 
tion among populations that are IO percent of the total, although much less 
than among subdivisions of smaller sizes. If Nu= 100, there is only moderate 
differentiation among the smaller subdivisions and very little among ones that 
are as large as IO per cent of the total. In  the case of linear continuity (fig. 6) 
there is virtually complete fixation of all subdivisions up to IO percent of the 
total if Nu is 100 or less. If, however, Nu is 1000 there is a considerable propor- 
tion of these unit groups that are not fixed (uQu/dqt(I  -qt) = .87). The differ- 
entiation among larger populations up to N ~ = o . I  N, is not appreciably less 
than among the unit groups. If Nu= 10,000, u q u / d G )  is only .IO, but 
this index is practically as great among larger populations up to IO percent of 
the total. Thus with linear continuity most of the differentiation is that among 
large subdivisions of the total (of the order of IO percent of its size). With area 
continuity, differentiation is more uniformly distributed a t  all levels. 

Area and linear continuity as well as the island model are ideal cases. There 
may be all grades of intermediacy between area and linear continuity as ex- 
hibited in branching and reticular distributions. Even with rather complete 
area continuity there are almost certain to be variations in density of popula- 
tion. The ancestry of individuals in the centers of high density would spread 
out less rapidly than under the ideal theory with the consequence that there 
would in general be more differentiation among such centers than indicated, 
unless this is interfered with by other factors, which must now be considered. 
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COMPLICATING EFFECTS OF MUTATION AND LONG RANGE DISPERSAL 

The foregoing theory indicates the possibility of an approach to fixation of 
different alleles in large areas of the same continuous population without the 
help of any differential action of selection. It is obvious, however, that this 
very slow process would be greatly affected by other factors that change gene 
frequency. The very fact of persistence of more than one allele over a long 
period of time tends to indicate that such factors are present in some sort of 
balance. Thus there may be reversible mutation, selection opposed by muta- 
tion or selection against both of two homozygotes. Moreover, the short range 
means of dispersal that have been postulated are likely to be supplemented by 
occasional long range dispersal. All of these tend to prevent fixation of one 
type even locally. On the other hand, selection may favor one allele in some 
places and others in other places. This would tend to increase local differentia- 
tion. It is necessary to consider how such processes affect the situation. 

It will be well to review first the joint effects of recurrent mutation and long 
range dispersal in the case of the island model (WRIGHT 1931). The rate of 
change of gene frequency under recurrent reversible mutation varies linearly 
with the gene frequency: Aq=v(I-q)-uq= -(u+v)(q-$) where v is the 
mutation rate to the allele in question, U is the rate of mutation from it and 
$( =v/(u+v)) is the value of q a t  equilibrium, which is the same in this case 
as 9 the mean value of q. This is similar in form to the expression for the effects 
of long range dispersal: Aq= -m(q-q,). 

If both processes are occurring, the expressions merely need to be added: 

(49) Aq = 41 - q) - uq - m(q - qt) = - (m + U + v)(q - $1 
where 

;1 = 4 = (mqt + v)/(m + U + v) 

for a local population in which 9 is not necessarily the same as gene frequency 
for the whole species (qt), since other factors may be a t  work in other localities. 
The long time distribution for such a population is approximately 

( 5 0 )  4(q) = Cq4N(mqt+v)--l (I --q)4Nb(l-qt)+ul--l 

(51)  uq2 = q(1 - 4)/[4N(m + U + v) + I]. 
If conditions are the same in all islands, q=qt=v/(u+v) and the variance 

qt(I-qt)/[qN(m+u+v)+1] is not only the long time variance for a single 
island but also the variance of q, a t  any time, among the islands. 

The variance of subpopulations (inbreeding coefficient Fi) in a total rela- 
tive to which the inbreeding coefficient is Ft has been given (43, 48) as 
qt( I - qt)[Ft- F~]/[I - Fi] applicable to any case, including both the island 
model and that of a continuous population with only short range dispersal. 
The effective value of the immigration index in the latter may be obtained by 
equating with the expression for uq2 given in (SI) .  

(52) m = [I - F,]/[4N(Ft - Fi)]. 
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At  first sight it might appear that the rate of change of gene frequency in 

cases in which there is long range dispersal and reversible mutation (joint 
coefficient ml) in addition to predominant short range dispersal (coefficient 
m2 from (52)) might be obtained by simply adding the contributions from 
these sources as calculated from their effects by themselves. This, however, 
overlooks the likelihood of an important interaction effect. It is necessary to 
go back to the formula for the correlation between uniting gametes (IS) and 
determine how it is affected by mutation and long range dispersal. 

Assume that the proportion ml of the gametes represent a random sample 
from the whole species. The identity of the theories of long range dispersal 
and mutation make it possible to let ml here represent (m+u+v) of preceding 
formulae. Cases in which one or both of the uniting gametes are included in 
this proportion make no contribution to the correlation between uniting 
gametes. The proportion which makes a contribution is (I  -ml)z. Equations 
(IS) are accordingly to be modified as follows: 

F = ( I  - mJz - __ 

I Fz’ = ( I  - ml)P[i(_-) + ~ F3”] etc. 

[ ;( I ’) + (v) FI’] 
I + F” 2N - I 

zN zN 

(5.3) 

Again primes may be dropped, if the same situation has held for a long time. 

I + F  ( I  - ml)4 N - I 

F = [?I [(I - m1>2 + 2 (7) 
( I  - m ~ ) ~  N - I Z N  - I (54) 

+ 3 (&T) - * - 1 
( 5 5 )  

(56) t = C s  ( I  - m,)2x[x - (~ /zN)] - (”+’) /~dx  approximately. 

t = C(I  - m1)2x[x - ( 1 / 2 N ) ] - ( ~ + l ) / ~  
Kz-0.5 

Ki  Kl-0.6 

This is a less convenient expression than obtained where ml= 0, but approxi- 
mate values can be obtained by taking values of K a t  short enough intervals, 
finding 

1 K2--0.5 [ sK+r5(1 - mJ2“dx] [ C s [x - ( ~ / z N ) ] - ( ~ + l ) / ~ d x  
K1-0.6 

and correcting according to the percentage error where both factors are of; the 
form [S,legxdx] with the R’s chosen so as to give the same ratios of terminal 
ordinates. 

(57) F = Y t / [ , N - y t ]  1 1 
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FIGWEE 7 (top).-Similar to figure I except that exclusive uniparental reproduction is assumed. 
N. is the population size of the group from which the parents of adjacent individuals are drawn 
a t  random and thus measures the extent of dispersal. The curves show the variability of gene 
frequencies (4) of such unit groups within areas up to IO* times their radius (Ri/RU) or 10s times 
their population (Ni/Nu). Each curve applies to a particular extent of short range dispersal. 
FIGURE 8 (middle).-The effect of occasional long range dispersal or mutation (rates UP to, 

m= IO*) on the variability of gene frequency of random breeding units of size Nu= IO within a rea  
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Figure 8 shows how rqu/dqi(i-qi)=.\/Fi, for parental populations of size 
Nu= IO, rises with the size of the population (Ni= KN,) in the presence of 
random replacement (ml) in the proportions IO-’ to  IO-^. The variability of 
the unit population is substantially the same as if there were no mutation or 
long range dispersal if Ni is less than I/ml, but rather abruptly approaches 
a limit in larger populations. Instead of approaching I as when ml=o, d E  
approaches 0.81 if ml=lo-’, 0.76 if ml=~o-6 ,  0.70 if ml=~o-s ,  0.63 if ml 
=  IO-^, 0.55 if ml=  IO-^, and 0.44 if ml=  IO-^. 

Figure 9 shows how the variability of subpopulations of any size Ni within 
a total population of size 109 is affected by the value of ml. I t  is again assumed 
that short range dispersal is such as to give Nu= IO. There is very little differ- 
entiation in this case of subpopulations larger than 30/ml. I t  is clear that it 
requires only a small amount of long range dispersal or mutation to prevent 
the differentiation of large populations. 

The amount of differentiation of populations, that are a given multiple (Ki) 
of the unit population, falls off rapidly with increase of Nu. But the multiple 
beyond which differentiation virtually ceases is largely controlled by the factor 
(1-m1)~ and is thus nearly the same for all values of Nu under which there is 
any appreciable differentiation a t  any level. The value of (1 -m1)~~  is reduced 
to  approximately I O  per cent of its value each log,Io/aml generations (assum- 
ing ml to be small). 

Among populations of a given absolute size (Ni) there is, therefore, a certain 
range of dispersal (determining Nu) that is most favorable to differentiation 
in a continuous population. On the one hand, if the range of dispersal is such 
that Nu is larger than 1000, there is very little differentiation, but on the other 
hand, if Nu is so small that there are more than 3/”1 random breeding units 
in the population under consideration, there is also virtually no differentiation. 

Linear continuity may be treated similarly, by multiplying the terms of 

Under exclusive uniparental reproduction, the chance that an individual is 
derived from the parental population without mutation is (I-ml), instead 
of (I -ml)2. Each term in the series t is accordingly to be multiplied by 
( I  - ml)x. 

The formula for the distribution of gene frequencies among subpopulations 
of a given size, Ni, in the total Nt, may be written approximately as follows: 

(32) by (1 -mdZx. 

( 5 8 )  4(q) = Cq[(l-Pt)/(Ft-Fi)lst--l ( I  - q) [(l-Ft)/(Ft-Fj)I(l-st)-l. 

Here the F’s incorporate the effects of mutation and long range dispersal as 

up to 104 times their radius or IO* times their population size. The highest curve (m=o) is the 
same as the highest curve in figure I .  

RGURE 9 (bottom).-The effect of occasional long range dispersal or mutation (rates up to 
10-3 on the variability of gene frequencies of populations of any size, Ni, within a region with 
a population of a given size, NL= 108. The random breeding unit is assumed to be Nu= IO. The 
highest curve (m=o) is the same as that in figure 3. 
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well as of short range dispersal. This distribution has the mean qt and the 
variance qt(1- qt)[Ft- F~]/[I - Ft] derived above. It differs considerably from 
the distribution 

(59) 

if m2 is the estimate of effective m from (52)  based on the value of Fi and Ft 
under short range dispersal in the absence of other factors. It is legitimate, 
however, if ml is known, to write +(q) in the form of (59) with the under- 
standing that m2 measures the effect of short range dispersal in the presence 
of the other factors measured by ml with full allowance for the interaction 
effect. Indeed this seems to be the only practicable method to use in analyzing 
data from actual populations in view of the fact that no ideal model such as 
area or linear continuity is likely to be exactly realized. 

THE EFFECTIVE SIZE OF INBRED POPULATIONS 

The effect of inbreeding on the effective size of populations is a matter that 
requires some consideration. Size of population enters into the formulae for 
the distribution of gene frequencies principally through the sampling variance 
which is q( I - q)/2N in a random breeding diploid population. Assume that 
individuals have an inbreeding coefficient Fi relative to an island population. 
It makes a difference in the sampling variance whether this is due to mating 
of relatives, not resulting in any territorial subdivision, or whether it is due 
to partial isolation of subdivisions that breed a t  random within themselves. 
In  the former case, the increased frequency of homozygotes causes an in- 
creased sampling variance of the whole island. If there were nothing but homo- 
zygotes, (qiAA+(I - qi)aa), as under long continued self-fertilization, the 
sampling variance would be qi(1 -qi)/Ni, twice that under random mating. 
With random bred and inbred components in the array of equations (9) in the 
proportions (I  - Fi) to Fi, the sampling variance would be the weighted aver- 
age. 

If on the other hand, the island population is subdivided into partially iso- 
lated groups that breed a t  random within themselves and if each group tends 
to maintain its numbers (that is, there is’no intergroup selection) the sampling 
variance of the total island population is less than if there were random mating 
throughout. In  each subgroup, the sampling variance is q,’(I - q,’)/2Nu, aver- 
age U26q,=c~qu’(I -qu’)/2N,K. The sampling variance for the mean gene fre- 
quency of the island would be u2aqi = a26,,/K =xyqu’(  I - qu’)/zNiK if Ni 
=KN,. But from(1o) yi=2CFq1,‘(~-qq:)/K. Thus u26qi=yi/4Ni. From (9) yi 
=2qi(1-qi) ( I - F ~ )  giving 
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The situation in an arbitrarily delimited region in a continuum resembles 

the second. Effective N in such a formula as (59) is thus KN,/(I -Fi). 

COMPLICATING EFFECTS OF SELECTION 

Consider next the complications introduced by selection. The effects of vari- 
ous kinds of selection on gene frequency (contributions to Aq) and the form 
taken by +(q) on substitution in (I) have been discussed in previous papers 
(WRIGHT 1931, 1942). These are applicable directly to the island model. The 
case of arbitrarily delimited portions of a continuum can be treated in the 
same way, but if so, m2 of formula (59) includes the interaction effect of 
selection as well as of mutation (and of long range dispersal if this can be dis- 
tinguished from the short range dispersal). The index m2 is to be interpreted 
as the effective amount of replacement of the subpopulations in question by 
representatives of the species as a whole under the conditions of mutation and 
selection that actually hold. As noted in connection with the complications in- 
troduced by mutatipn and long range dispersal, this seems to be the most 
practicable method of dealing with concrete data. I t  is important, however, to 
determine the theoretical relations between the values of m among subdivi- 
sions of different sizes under various ideal population structures. 

For such theoretical consideration of the interaction of selection with the 
effects of short range dispersal, it is necessary to return to the derivation of F 
by path coefficients (IS) in analogy with the treatment of the complications 
due to mutation and long range dispersal (53). But in attempting to carry out 
the analogy we encounter a serious difficulty. 

Long range dispersal (by definition) and mutation may be treated as intro- 
ducing a random admixture into the local population in constant proportion 
ml. Selection may also be treated as introducing a certain random admixture, 
but it is not in constant proportion. The amount of such admixture in the 
case of mutation and long range dispersal may be represented as 

(62) [ -  Aq/(q - 411 = (m + U + v) = m. 
This formula may be applied where Aq also involves selection pressure. Con- 

sider the case of a balance between opposing pressures of mutation and selec- 
tion in the simplest case, that of no dominance, and assume that the same 
situation holds throughout the species. 

(63) where ;1 = v/s Aq = V(I  - q) - sq(1 - q) = - s( I - q)(q - 4) 
(64) 

The joint effect of mutation and selection in this case is equivalent to im- 
migration of a random sample, but to an extent that is a function of the local 
gene frequency. A rough idea of the effect may be obtained by substituting 4 
for q and treating ml=s(1--)=s-v as a constant. If s is much larger than 
v we may indeed simply take ml= s and use (I - s ) ~  in place of (I -m# in the 
theory developed for mutation and long range dispersal. Inspection of figures 8 
and g shows how selection of this sort interferes with the differentiation that 

ml = [- Aq/(q - 61 = S(I - q). 
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would occur within the continuous population under the specified conditions 
if there were no complication of this sort. 

As another example consider the case of selection against both of two homo- 
zygotes. Representing the relative selective values of AA, Aa and aa by 
I - SAA, I and I - saa respectively 

While selection does nothing to local populations that have become fixed 
and the equivalent immigration index ml is accordingly o if q is either o or I ,  

the average value may well be such as to severely restrict differentiation of 
even rather small subdivisions of a continuous population. Again a rough idea 
of the effect may be obtained by substituting i$ for q. It should be noted that 
if there are numerous alleles and selection for heterosis is general, selection 
tends to increase differentiation. 

In  a recent paper (WRIGHT, DOBZHANSKY and HOVANITZ 1942) an attempt 
was made to interpret the frequencies of lethals in a continuous population of 
Drosophila pseudoobscura on Mt. San Jacinto. The following formula was ar- 
rived a t  for the rate of change of the frequency of a typical lethal gene. 

where is the mean mutation rate per generation, s the mean selective dis- 
advantage of heterozygotes, 9 the mean gene frequency, F the inbreeding 
coefficient, and m the effective immigration coefficient of the territory under 
consideration. It was shown that approximately the same variance of gene fre- 
quencies was reached by replacing the above expression by one in which the 
component of Aq, measuring the tendency toward increase of gene frequency- 
namely, (V+mq) (I-q), is balanced by the linear expression that gives the 
same mean as the correct expression namely, - (v+mq) (I  - @q/q 

(68) 

(69) 

Aq = - (m + V/q>(q - q) approximately 
ml = (m + ?/q) approximately. 

DIFFERENTIATION O F  SUBDIVISIONS BY SELECTION 

If selection acts differently in different regions, it is obvious that none of 
the formulae given here apply to the distribution of values q among these re- 
gions, but only to the long term distribution within single ones. As a basis for 
discussion consider the following simple case, which refers to rate of change of 
gene frequencies in an island as affected by the local conditions of selection 
measured by s (assuming no dominance) and the amount of immigration meas- 
ured by m (WRIGHT 1931, 1940). 

(70) Aq = sq(I - q> - m(q - qt). 
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In  a local population in which s (whether plus or minus) is smaller in abso- 

lute value than m, gene frequency can depart only slightly from the average 
of the species (q= qt+(s/m)qt(I - qt)) approximately. Crossbreeding here 
swamps the tendency toward selective differentiation. On the other hand, 
local gene frequency tends to be dominated by the local conditions of selection 
in populations in which s is larger than m in absolute value q= I - (m/s)( I - qt) 
or q= (-m/s)qt approximately, depending on whether s is positive or nega- 
tive. 

The effectiveness of selection here is not related directly to the size of the 
island population. .However, there is likely to be indirect relationship. This 
may be illustrated by considering three situations. 

First, consider islands with various populations but the same absolute 
amount of immigration (as might well be the case if the areas are the same but 
population densities differ). Among such islands, Nm is constant. All have the 
same amount of nonadaptive differentiation (measured by 1/(4Nm+ I) but a 
given selection pressure is more effective on the islands with larger population 
(and hence smaller m) than among those with smaller populations. 

A second situation is that in which size of population is proportional to 
area and the number of immigrants is proportional to the extent of boundary 
(Nm o( dN). Here there is more nonadaptive differentiation on the smaller 
islands and more adaptive differentiation of the larger ones, although the latter 
effect is less marked than in the preceding case. 

Finally, if both size of population and amount of immigration are propor- 
tional to the area (m constant), there is markedly more nonadaptive differ- 
entiation on the smaller islands but no relationship between adaptive differ- 
entiation and size of population. 

Summing up, any sort of differentiation is favored by small m, but the large 
populations tend on the whole to exhibit predominant adaptive differentiation, 
while the smaller ones exhibit predominantly nonadaptive differentiation. 

The situation in a continuous population is similar in that nonadaptive 
differentiation should be most conspicuous locally and adaptive differentiation 
among larger subdivisions. The most significant thing, however, given a cerz 
tain amount of differential action of selection, is the size of the random breed- 
ing unit. If this is large-for example, over 1000, very little nonadaptive 
differentiation is to be expected and only rather strong differences in the action 
of selection avoid swamping. If on the other hand, there is only short range 
dispersal-for example, Nu= IO, large regions tend to become adaptively dif- 
ferentiated under the influence of slight differences in selection, and superim- 
posed on this should be a large amount of nonadaptive differentiation of small 
regions. The maximum amount of nonadaptive differentiation among popula- 
tions of a given size however, is not found with the smallest Nu, but a t  a certain 
optimum value. 

If a population spreads over a large territory in which the environmental 
conditions are substantially uniform, there would primarily be only nonadap- 
tive differentiation, the amount depending on the value of m or of Nu depend- 
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ing on the model that is most appropriate. With such differentiation occurring 
simultaneously but more or less independently in all series of alleles, each local- 
ity would have a slightly different genetic system from every other locality. 
These systems may be expected to differ in their success in meeting the en- 
vironmental conditions. Among those which are relatively successful, adapta- 
tion is likely to have a slightly different basis in each case. The populations 
with such systems tend to become denser and to send out more than their share 
of migrants and thus enlarge in extent. Each would tend to perfect the line of 
adaptation on which it had started. Thus permanent differential action of 
selection would soon be brought into play in spite of the postulated uniformity 
of the conditions. 

The expansion of centers of population characterized by certain genetic sys- 
tems and contraction of those characterized by other systems is the process of 
intergroup selection referred to in the opening paragraph. The genetic system, 
including its state of heterogeneity as well as its central type, is the basis of 
selection instead of merely the net favorable or unfavorable effect of each single 
gene, which is the only basis for selection under panmixia; or the single geno- 
type, which is the most probable basis under self-fertilization or vegetative 
multiplication. The present analysis indicates that this most favorable basis for 
evolutionary advance of the species as a whole may be present under certain 
conditions in a continuous population as well as in one consisting of partially 
isolated groups. 

SUMMARY 

Formulae are derived relating the variance of the gene frequencies of sub- 
groups (ut) to the effective population number of these (N), the effective 
proportion of replacement per generation by immigrants (m), the inbreeding 
coefficient of individuals relative to the total population (F), and the mean 
gene frequency in the latter (qt). Thus u ~ = q t ( ~ - q t ) / [ z N - ( 2 N - ~ ) ( ~ - m m 2 ) ]  
= qt( I - qt)F/( I - m)z including the immediate sampling variance, but 
ut = qt( I - qt) F excluding this. 

The effect df isolation by distance in a continuous population in which there 
is only short range dispersal in each generation is worked out on the hypothesis 
that the parents of any individual may be treated as if they were taken a t  
random from a group of a certain size (N). It is shown that the inbreeding co- 
efficient of individuals in such a population relative to a population of size KN 
can be expressed in the form F = ~ ~ - 1 t / [ 2 N - ~ ~ - 1 t ]  w h e r e x t  is the sum of a 
series of terms in which t l= I and t,= t(x--l)[(x- I)N- I]/xN or approximately 
C[x- (I/ZN>]-"+~)" where C is a constant close to I. The value of CFt can 
be obtained sufficiently accurately by actual calculation of the first few terms, 
supplemented by the approximate formula 

I I Kt-  1 

2 2N 2 2N 

for later terms. The limiting value XTt is N. Thus F approaches I in an indefi- 
nitely large continuous population. 
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The preceding results apply to area continuity. With continuity in a linear 

range (for example, shore line), F = x t / [ z N - x t ]  as above, t1=1 but t, 
= t ( x - l ) [ N G -  ~]/Nv’x or approximatelyCe-2d“”[d\/x- ( I /zN)]-(~*+~)”*.  

In  a continuous population with exclusive uniparental reproduction, the 
correlation between adjacent individuals is of the form E = x t / N  where xt 
is the same as above for area or for linear continuity as the case may be. 

The variance of gene frequencies in subdivisions of any size, Ni, within a 
more comprehensive population Nt is given by the formula ~ 7 ? . ~ =  qt(I  -qt) 
[F~-F~] / [ I  - Fi] where Fi and Ft are the inbreeding coefficients relative to the 
populations of size Ni and Nt, respectively. 

I t  is shown that in the absence of disturbing factors, short range dispersal 
(N less than IOO in the case of area continuity) leads to considerable differ- 
entiation not only among small subdivisions but also of large ones. Values of 
N greater than 10,000 give results substantially equivalent to panmixia 
throughout a range of any conceivable size. With linear continuity, there is 
enormously more differentiation than with area continuity. There is somewhat 
more differentiation under uniparental than under biparental reproduction. 

Recurrent mutation, long range dispersal and selection are factors that re- 
strict greatly the amount of random differentiation of large (but not small) 
subdivisions of a continuous population. A term (I - m1)2x under biparental, 
( I  - ml)x under uniparental, reproduction is introduced into the expressions 
for t referred to above. In  this ml=[-Aq/(q-qt)] where Aq is the rate of 
change of gene frequency (9) which such factors tend to bring about. 

The effective size of a population characterized by the inbreeding coefficient 
F depends on whether F is due to a tendency toward mating of relatives not 
associated with territorial subdivision, or to such subdivision. In  the former 
case the sampling variance is & = q( I - q) ( I +F)/zN, in the latter, q( I - q) 
( I  - F)/2N, in contrast with q( I - q)/2N in a random bred population. 

If different regions are subject to different conditions of selection, the 
amounts of both adaptive and nonadaptive differentiation depend on the 
smallness of m (if subdivision into partially isolated “islands”) or of N, size of 
the random breeding unit (if a continuous distribution). If these are sufficiently 
large there is no appreciable differentiation of either sort; if sufficiently small 
there is predominantly adaptive differentiation of the larger subdivisions with 
predominantly nonadaptive differentiation of smaller subdivisions superim- 
posed on this. Even under uniform environmental conditions, random differ- 
entiation tends to create different adaptive trends in different regions and a 
process of intergroup selection, based on gene systems as wholes, that presents 
the most favorable conditions for adaptive advance of the species. 
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