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N E  of the fundamental steps in any analysis of the inheritance of quan- 0 titative characters is the partitioning of the total phenotypic variance of 
the trait under study into it; genetic and environmental portions. 

The various techniques for this purpose for characters showing continuous 
or graded types of variation are well known (see WHATLEY 1942). They are 
based on methods of variance and correlation analysis derived in the main 
from the studies of WRIGHT (1921), although many phases of the general 
problem were attacked earlier by WRIGHT (1917) and several other investi- 
gators (among them WEINBERG 1909; FISHER 1918 et d.). In  the case of 
characters whose phenotype is expressed in an all-or-none manner these meth- 
ods do not directly apply. However, special techniques based on the inverse 
probability transformation have been used in this connection by WRIGHT 
(1934a, 1934b, 1943), while more recently LUSH, LAMOREUX and HAZEL (1948) 
considered the problem in a more direct relationship to applied animal breeding 
practice. Reference to the methodology and results of this investigation will be 
made in the course of discussion. It may also be noted that a t  least one other 
attempt a t  what may be interpreted as the estimation of heritability of an all- 
or-none trait (multiple births in cattle) is on record, an attempt which, how- 
ever, did not consider fully the difficulties of application of the analysis of 
variance to binomial data ( KORKMAN 1948). 

I t  is actually possible to derive a simple technique for dealing with all-or- 
none data by considering certain properties of the “degree of heritability,” 
which for quantitative characters may be defined as the proportion of the 
phenotypic variance due to additively genetic differences between individuals. 
The purpose of this communication is to describe a method of approximate 
determination of the degree of heritability of traits expressed in an all-or-none 
manner, and to discuss briefly the significance of the results obtained. The 
derivation presented is applied to raw percentage data as contrasted with 
similar formulas developed by WRIGHT (Zoc. cit.) and applied to transformed 
data. 

The problem was suggested by the junior author who also supplied the ma- 
terial, the general solution and actual analysis having been carried out by the 
senior author, while the responsibility for the presentation and discussion is 
shared by both. 
GENETICS 34: 395 July 1949 
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MATERIAL 

The data used in the present study consist of the 18-months mortality 
records for 12 years of a flock of Single Comb White Leghorns, maintained a t  
the UNIVERSITY OF CALIFORNIA in Berkeley. Detailed descriptions of the se- 
lection procedures used in breeding for egg production and other pertinent 
information regarding the flock have been presented elsewhere (TAYLOR and 
LERNER 1938; LERNER and HAZEL 1947; DEMPSTER and LERNER 1947). I t  may 
be sufficient to say here that the main efforts in the breeding program were 
directed towards increasing the first-year egg production index (average hen- 
housed egg production), which represents a combination of egg production, 
viability, and the interaction between them. 

The only other point in connection with the data which requires comment is 
the fact that all of the birds which died in the first laying year were subjected 
to post-mortem examination. The birds which were not kept after the end of 
the first laying year (approximately 18 months of age) were killed and autop- 
sied. Any animals in this category which exhibited significant pathological 
lesions were included in the group of dead rather than surviving birds. The 
autopsies were performed by the Department of Veterinary Science of the 
UNIVERSITY OF CALIFORNIA in all of the years, except for a period during the 
war, when some were carLied out by members of the Division of Poultry 
Husbandry. In  addition to the study of the heritability of total first year mor- 
tality, two specific types of pathological disturbance are also discussed. The 
first is lymphomatosis, a complex of neoplastic diseases of particular impor- 
tance in the commercial field (see TAYLOR et al. 1943, for a report on breeding 
investigations on resistance to lymphomatosis in this flock), while the second 
may be termed reproductive disorders, consisting of various types of breakdown 
of the genital system. This type of pathological involvement represented the 
major single cause of loss in the flock under study (1083 from a total of 5064 
birds involved) while lymphomatosis accounted for 411 deaths from a total of 
2 107 deaths recorded. 

THE DETERMINATION OF HERITABILITY 

The change in the average genotype for a given character in successive gen- 
erations under selection is a function of the heritability and the selection dif- 
ferential. Hence, if this change in successive generations and the selection dif- 
ferential are known, it is possible to estimate the heritability. In  other terms 
the heritability is the regression of genotype on phenotype and can be deter- 
mined with equal accuracy, whether or not the distribution of the independent 
variable (in this case, the phenotype) is normal. 

With respect to mortality in a population in which no artificial selection is 
applied, there exists a natural selection differential for viability since birds 
with a genotype for low viability will have a lower chance of surviving to be- 
come parents of the next generation than the birds with a genotype for high 
viability. The improvement in the average genotype by natural selection may 
easily be calculated and allows a ready determination of the degree of herita- 
bility of mortality. 
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Let the genotypic values for viability of members of one generation be 

PI, P2, . - , p,,, with the mean p and the variance up2. That  is to say that  
pl, p2, etc. are the probabilities of survival of the corresponding genotype under 
the postulated given array of environmental conditions to which the birds are 
exposed. The phenotype for survival of the m-th bird will then be pm+em 
where e, is the environmental component, and includes all factor; determining 
the phenotypic value with the exception of the genetic one. This phenotype 
will necessarily take the value of either 0 or 1. The mean genotype of sur- 
vivors, which may be designated as 1 i j  to distinguish it from the mean geno- 
type of all birds ( i j ) ,  is then 

m=l 
1p = ” 

m-I 

Since the expected values of 

are equal to  zero, if birds are kept under conditions in which there is no cor- 
relation between genotype and environment, we have 

where E denotes the “expected value” for the expression in parentheses. 
The expected gain over the previous generation is1 

I t  may be helpful to give a broader form of derivation in addition to the above. If g, is take\, 
as the total genotypic value of the m-th bird, pm as its additively genotypic value, and e, as the 

CPm(gm +em) 

C (gm+em) 
environmental contribution, the additive genotype of the survivors is 

pected values of x p m e m  and of Ce, will by definition he zero. Hence, the additive genotype of 

. The ex- 

C pmgm 
the survivors and the mean additive genotype of the next generation is __- . The improve- - 

Z gm 
E P m z m  

C& 
ment in the mean genotype then is ---- - fi. Since g here equals E, the expectation for the 

~ [ g m ( ~ m - P ) l  mP2 
gain is -__-- = -, as given in the text. 

~ - 
P P 
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n(Pz + up2) 

nIj 
UP2 

P 

--Ij - - 

-- .  - 

The phenotypic selection differential applied in this case is then 1 -p, being 
the difference between the phenotype of the survivors (taken as unity) and the 
mean phenotype of the population. Therefore, 

genetic improvement 

phenotypic selection differential 
heritability = 

This gives an expression for the heritability in terms of the genotypic vari- 
ance for viability and the mean viability, an expression which also can be 
derived more directly (compare WRIGHT 1943). 

The determination of the genotypic variance is possible by a consideration 
of the application of the analysis of variance to binomial data. The direct 
analysis of the data, in which a death or a survival is considered as a separate 
observation with possible values of zero or of unity, has theoretical objections, 
since the variance is not independent of the mean, thus violating one of the 
fundamental requirements of variance analysis. This difficulty can be over- 
come by the arc-sine transformation. However, the genotypic variance in our 
data proved to be so small that the direct method could be used on the raw 
data. 

There is, of course, the general question as to the significance of the degree 
of heritability derived from the raw data as compared with that obtained by 
using one or another type of transformation. We shall not enter the various 
aspects of this problem here except for the discussion of the probit transforma- 
tion in connection with the variation in heritability related to mortality level 
(see below). The reason why this discussion is made in specific reference to the 
“probit” rather than to the “inverse probability” transformation of WRIGHT 
(1926), which is essentially the same, lies in the fact that LUSH, LAMOREUX and 
HAZEL (1948), whose results are being referred to, have couched their analysis 
in probit terms. 

I n  data on poultry, the estimation of genotypic variance is greatly simplified 
as compared to the case of mammals by the relatively high numbers of offspring 
each bird may leave, especially in the case of sires. I n  the data here considered, 
each dam had an average of about eight offspring and each male an average of 
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about 40 (after elimination of smaller classes as noted below). It then becomes 
possible to carry out an analysis of variance between the offspring of males 
within years, and between the offspring of females within males within years, 
and thus obtain an estimate of the component of variance due to the differ- 
ences between classes, much as has been done previously in the case of con- 
tinuously distributed characters (for instance by WHATLEY 1942). 

Consider, for instance, the analysis between the offspring of males in a given 
year. The table of data will then read as follows: 

Offspring of male Total Surviving 
I nl a1 

I1 n2 a2 

etc. with a total of N males. 
The total of survivors in the offspring of male I can then be considered as the 

total sum of nl observations (that is, al taken as unity and nl-al taken as 
zero). By analogy with the case of continuous variation, the sum of squares 
between classes is e--- a12 (E ad2 

1 nl nl 

The expected value of this sum of squares is 
with N-1 degrees of freedom. 

(N - 1)p(1 - p) + norups 

where r is the difference in genetic relationship between and within classes, and 

[see SNEDECOR 1946, p. 234, and KENDALL 1945, p. 123, eq. (5.29)1. The 
within classes component is jj(l--p), which is the normal expression for the 
variance of a binomial population. The genetic variance then is 

and heritability equals 

However, the first term in the numerator is the heterogeneity x2 in the 2 X N  
table which the data form, so that  heritability may be expressed as 

x2 - (N - 1) 
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The mean value of x 2  for N-1 degrees of freedom is N-1. Hence the 
numerator of the above expression is the excess of the observed x2 above its 
expected value. 

The relation of the heritability to the x2 statistic raises a further point. It is 
well-known that the x2 test is unreliable if the expected number in any subclass 
is small, the minimum per subclass being usually taken as five. COCHRAN 
(1936) has considered the distribution of the heterogeneity x 2  in the case of the 
2 X N  table with a constant number n of observations in each of the N classes. 
He has shown that the mean value of x 2  is slightly greater than N- 1, being 
given by 

The excess depends largely on n and is independent of the expected numbers 
in subclasses. In  the cases here considered, we have approximately, 

(a) in the analysis between sires within years, 

n = 40, N = 10, 

(b) in the analysis between dams within sires within years, 

N = 5 ,  n = 8 .  

For the present analysis, the samples were made fairly homogeneous as re- 
gards n by elimination of some of the observations. In  case (a), all sires with n 
less than 12 and in case (b) all dams with n less than five were excluded. I t  is 
obvious by reference to  the above formula that in the analysis between sires, 
n is so large that no correction need be made even for causes of death with low 
incidence. In  the analysis between dams, however, a correction was made in all 
cases. I t  was of the order of 0.10 for each x 2  calculated and, in the case of iota1 
mortality, for instance, reduced the estimate of heritability by about one in 
eight. 

I t  is possible to give a rough estimate of the standard error of the estimates of 
heritability, since the method used above is similar to the determination of the 
intra-class correlation in the case of continuous variation. FISHER (1941) has 
shown that in a case similar to that discussed above and using the same sym- 
bols, 

___ 

where t denotes the intra-class correlation. Since heritability is then equal to 
t/r, the standard error of the estimate of heritability is given by ut/r. 

In  the data here discussed, the average size of the flock was 400-500 birds. 
Data for about eight breeding males, each mated to an average of five females, 
were used for each of the years analyzed. Owing to the considerable variation 
in mortality from year to year, the analyses were performed within years and 
the values of x2 and no for the separate years pooled to  give the final estimate. 
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With this flock structure, the value of r was 0.285 in the analysis between sires 
(each group being a mixture of full and half sisters) and 0.250 in the analysis 
between dams within sires (that is, for full sisters in a population of half sisters). 
Table 1 shows the results. 

TABLE 1 

Estimates of heritability 
_ _ _ ~ -  

BETWEEN 
BETWEEN SIRES 

DAMS WITHIN JOINT ESTIMATE MEAN _____ TYPE OF 
SIRES OF 

MORTALITY INCIDENCE HERITA- 
POOLED x2 HERITA- HERITABILITY 

BILITY 
BILlTY 

1. Total 0.416 206.39 0.08.32 0.1123 0.0893k0.028 

2. Lymphomatosis 0.081 165.86 0.0506 0.0315 0.0475k0.017 

3. Reproductive disorders 0.234 130.68 0.0223 0.0553 0.0264,0.015 

4. Other than lymphoma- 
tosis 0.335 185.25 0.0662 0.0633 0.0656k0.020 

I n  the analysis between sires, the pooled values of no and the degrees of 
freedom were 4358.7 and 103 in all cases. This gave a standard error of the final 
estimates of around 0.02-0.03. In  the analysis between dams, the pooled values 
were 2752.3 and 41-2 respectively, no being less than in the former case owing to 
the exclusion of dams with less than five progeny. This gave a standard error 
of the estimates of heritability of 0.04-0.05. There is no significant difference 
in the heritability of the different causes of death as derived from an analysis 
between the different sexes. In  the joint estimate, the heritabilities from the 
two sexes were weighted according to their standard error, which resulted, on 
the average, in that between sires having a weight five times that between 
dams. An independent measure of the standard error of the joint heritability 
can be obtained from a consideration of the variation of the heritability be- 
tween the different years. In  the case of total mortality, the heritability was 
estimated to have a standard error of kO.028 from the above formula and 
- + 0.024 from the variation between years. 

These results show a fair agreement with those of LUSH, LAMOREUX and 
HAZEL (1948), who found a heritability of 0.083 for total mortality compared 
with 0.059 from lymphomatosis deaths and 0.034 for deaths from other causes. 
The production index referred to by LERNER and HAZEL (1947) in their paper 
on genetic improvement in this flock is the average production during the lay- 
ing year of all pullets housed and their estimate of individual heritability for 
the character was 0.045. Both they and DEMPSTER and LERNER (1947) have 
found that this figure is sufficiently accurate to account for the changes in the 
production index under selection. 

The production index of the flock may be considered as made up of three 
constituent parts: 
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(i) the average production of survivors, 
(ii) the average production of birds dying before the end of the year, 

(iii) the relative proportion of birds falling into the above two classes, defining 

From the genetic viewpoint, there are two models of the situation available. 
The first model takes the production of surviving birds as its starting point 
and considers survival or death as affecting the environment in which the pro- 
duction record is made. The heritability of the survivors’ production for this 
flock has been determined by LERNER and CRUDEN (1948) whose results agree 
closely with those of SHOFFNER (1946) on a totally unrelated flock in yielding 
the figure of 0.30-0.35. The present investigation has considered the herita- 
bility of the last component and has established it a t  around 0.09. The 
heritability of the production index is then lower than the heritability of either 
of the two components. There are three possible ways in which such a condition 
might arise: 

(i) the heritability of the second component (production of birds dying before 
the end of the year) may be so low as to reduce the heritability of the 
production index below that of the other components; 

(ii) there is a negative genetic correlation between production and viability; 
(iii) non-additive genetic effects are involved. 

It is impossible to discriminate adequately between the various possibilities 
but considerations to be presented elsewhere would suggest that the first two 
probably play a significant rBle. 

The second genetic model, possibly slightly more logical, is to consider total 
production, whether the bird lives or dies, as representing the basic genotype 
involved. No distinction is to be made between genes controlling viability and 
genes controlling egg yield. Viability then becomes important as having a high 
environmental correlation with production and its inclusion in a selection index 
is desirable. It would seem likely, however, that on this scheme, there will be 
considerable interaction between viability and production which will cause 
complications in the full application of the model. 

survival level or viability. 

THE GENETIC CORRELATION BETWEEN MORTALITY FROM DIFFERENT CAUSES 

It should be noted that cases of double classification of mortality from both 
lymphomatosis and reproductive disturbances do appear in the data. If there 
were no complications of any sort (e.g. differences in age distribution of deaths 
from both causes) the environmental correlation between the two types of 
mortality could be readily computed. This might be done by a comparison of 
the number of those falling in the double classification with those falling in the 
separate single classes. The nature of the actual data usually available pre- 
cludes the possibility of such computations. 

It is possible to divide the total mortality into the deaths from lymphoma- 
tosis and those from other causes. As these are yutually exclusive classes, the 
environmental correlations between them can be easily calculated. The follow- 
ing symbols must first be defined: 

(i) the genotype €or viability with reference to lymphomatosis, pa with the 
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corresponding genotype for mortality q,, equal to 1-pa. These will have 
variances of uaa. 

(ii) similar genotypes with reference to  other causes, if lymphomatosis is not 
present, p b  and qb with variances of ab2. 

If lymphomatosis is present, however, there will be cases of double classifica- 
tion which will be counted as due to lymphomatosis only. The apparent 
mortality from other causes is then reduced. We must then define: 
(iii) the genotype for apparent viability with respect to other causes, when 

lymphomatosis is present in a population, pc with corresponding q, and 
U?. It is clear that q, is simply related to qa and q b  by the relationship 

Alive 

Dead 
Lymphomatosis 

q c  = qb - qaqb, 

and total mortality qT is then equal to qa+qc. 
We can now calculate the variance of qc and its covariance with q, by simple 

algebra. We may write 

q, = q a  + 6 q a  

where q, is the mean of q, and 6q, is the deviation from the mean. 
Then 

q c  + 6 q c  = q b  + 6 q b  - (9% + 6qn)(qb + 6qb)  

= q b  - q a q b  + (1 - q a ) 6 q b  - qbsqa - s q a 6 q b .  

! l-qq,-qq, ~ qc 
_____- 

If the variances are small compared to the mean, the last term may be ignored, 
giving 

6 q c  = & 6 q b  - q b 6 q a  

and 
uc2 = - 2 2 pa ub + qb2'Ja2 - 2jjaqbrbaUb, 

where r is the genetic correlation between pa and pb. Sim'larly 

COV. (pa, pc) = - q bun2 + $jaruaub. 

A determination of U,', uc2 and cov.(qa, qe) will thus allow the calculation of r. 
The environmental covariance can easily be calculated from the following 

considerations. Within a given phenotype the distribution of birds with respect 
to their survival or death can be arranged in a four-fold table: 

Other Causes 
Alive Dead 
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Scoring death from either lymphomatosis or other causes as zero and survivals 
as unity, the covariance (which here is environmental) is 

1 - q a - q o -  (1 - 9%) (1 - s o ) ,  or -9.90. 
We can then proceed as follows in the analysis of the data. The between 

class covariance can be obtained as in the heritability analysis from the ex- 
pression, 

alcl C a 1 C  c1 

nl c n1 
between class covariance = - - 

where c1 refers to birds surviving death from other causes. This, like the sum of 
squares between classes, consists of two terms. The first contains the environ- 
mental covariance, which can be calculated as above, and the second the 
genetic covariance. A comparison of the latter with u , ~  and u2 allows an estima- 
tion of the genetic correlation r between p3 and pb. 

The data were similarly analyzed within years but the analysis between 
dams was not made, since COCHRAN'S correction for x 2  made the position un- 
certain. The genetic correlation between p3 and p. was estimated as +0.096. 
A further calculation on the above lines showed that the genetic correlation 
between pa and pb was 0.26. LUSH, HAZEL and LAMOREUX (1948) found a 
much higher correlation (54) between the two in their data, which they in- 
terpreted as evidence of the existence of a general genetic factor controlling 
resistance to death. The present correlation is positive but not particularly 
large, suggesting that a general factor for vigor does not play a large part in 
this particular flock. 

Since, first y, the genotype for viability from two different causes is not 
additive (since pT = papb) and secondly, the denominator in the equation for 
heritability is also not additive, the heritability of the total mortality cannot 
be obtained simply from the heritability of its components. 

Considering the case discussed above, 

By putting pa=ij,+6pa, etc. it can easily be shown 

UT' = pa2ub2 + + 2 j j a&r~a~b  
and 

I n  the simple case, when pa = and = Ub2 

that 
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The heritability of tot,al mortality depends, therefore, not only on the herita- 
bility of the components but on their mean mortality levels. 

T H E  RELATIONSHIP OF HERITABILITY TO MORTALITY LEVEL 

In  the course of the analysis. heritability estimates were obtained for each 
of the 12  years separately. There was considerable variation in the level of total 
mortality from year to year, as also was the case with respect to the level of the 
separate causes of mortality. Figures 1 and 2 show the variation of apparent 

x 
x 

x 
X 

FIGURE 1.-The relation between estimated heritability and incidence of total mortality. 

t.20 

X 

heritability of total mortality and death from lymphomatosis in relation to the 
mean incidence. The values of heritability are derived from those obtained 
from the analysis between sires and dams, with appropriate weighting, and the 
negative values merely reflect values of the heterogeneity x2 less than the 
number of degrees of freedom in that year. The heritability of death due to 
reproductive disorders was not considered, as the mean value for it is not sig- 
nificantly different from zero. The variation of the points is wide but not 
greater than that expected theoretically. In  the case of deaths from lymphoma- 
tosis, the heritability seems to be related to the average incidence of disease. 
In  the case of total mortality, there is no apparent trend of the points, although 
the fitting of a regression line shows a slight positive slope. However, the range 
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of variation of incidence is such, in this case, that heritability would not be 
expected to vary greatly. In  the case of death from a single specific cause, the 
relationship between heritability and mortality can be predicted theoretically. 

The question of the transformation of the data was mentioned in the presen- 
tation of the technique of estimation of heritability. Any such transformation 
would be expected to affect the heritability comparatively little, since the effect 
is to multiply both the numerator and denominator of the heritability expres- 
sion by a constant factor. The arc-sine transformation makes the denominator 
independent of p while the genetic variance is still dependent. On the other 
hand, it can be shown that in the case of mortality from one single definite 
cause, such as a specific infection or a poison, the probit transformation makes 
the genetic variance independent of p while the denominator varies in a per- 
fectly known manner, being equal to ptj/Z2 where Z is the ordinate of the nor- 
mal curve a t  the point where the intercept is equal to p. The basic concept of 

THE PROBIT TRANSFORMATION 

* DOSAGE * SCALE 
DISTRIBUTION O F  INDIVIDUAL SENSlTIVlTIES 

FIGURE 3.-The basic concept of the probit transformation. 

the probit transformation is that the mortality is the expression of the sensi- 
tivity of the individuals in the population, the sensitivity being assumed to be 
normally distributed on a “dosage” scale, where the “dosage” is some measure 
of the level of the infection or the concentration of poison. Then all individuals 
whose sensitivities are below the given “dosage” will die.2 The probit is then a 
measure on the dosage scale, in terms of the standard deviation within the 
population whose mortality is measured. Figure 3 expresses the situation pic- 
torially. 

* DR. EVERETT R. DEMPSTER in reviewing the manuscript has suggested a model differing from 
the one employed here, which may be easier to visualize but leads to the same mathematical re- 
sults. He considered the genotype as the proportion of environments in which the organisms will 
survive. In  this view the organism is seen as subjected to a distribution of environments or 
dosages rather than having, as in our case, its sensitivity changed by the environment and then 
subjected to a given dose. In  our model the “probit” is derived from the dichotomy of distribution 
of sensitivities by the dosage; in his, from the dichotomy of the dosage distribution by the sensi- 
tivity. The theoretical implications of the two models are the same except that the concept of 
heritability on the dosage scale introduced by LUSH, LAMOREUX and HAZEL (see below) can not 
be applied to DR. DEMPSTER’S. 



HERITABILITY OF ALL-OR-NONE TRAITS 407 
The probit transform of q, the mortality, is then 5+x, the 5 being introduced 

to avoid negative values, and x is measured in terms of the standard deviation 
of the group whose probit it is. In  the case of the probit of a given genotype, it 
would be expressed in terms of the environmental variation of that genotype 
on the dosage scale. The whole population is then made up of the sum of all 
the genotypic distributions. If i t  be assumed that the environmental distribu- 
tion on the dosage scale is independent of genotype, then on the movement of 
the point 0 along the scale (thereby changing the mean mortality) the mean of 
all the probits will be altered by a constant amount, and‘the variance will re- 
main constant. That is to say, the genetic variance on the probit scale is inde- 
pendent of mean mortality. We can thus predict the variation of heritability 
with p, since 

ux2 ’ 22 
heritability = 

P(1 - P) 
and ux2 is constant (see figure 4 below). This point has essentially been made 
by FISHER (1947, p. 217) in noting that if the dosage-mortality relationship 
(corresponding to the standard deviation of the distribution mentioned above) 
has been determined, the toxicity of any material (and correspondingly the 
toxicity of a given material to an unknown genotype) can be established with 
an accuracy proportional to z2/pq. The analysis presented will, however, not 
be applicable if ux2 is large. Because of the interaction introduced by the 
change of scale, p( 1 -p)/Z2 is no longer an accurate measure of the total vari- 
ance. There is, for instance, no a priori limit to ax2 and therefore the heritability 

0 MORTALITY I 

FIGURE 4.-The relationship between heritability and mortality level, in the case a) where 
mortality is due to a single cause to which the concept of sensitivity is applicable, where 

and in the case b) where the total mortality is compounded from that due to ten such independent 
equivalent causes, where hT* is obtained as in the text expression. 
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could be greater than one. There seems to be some confusion on this point in 
the report of LUSH, LAMOREUX and HAZEL (1948). They have introduced the 
concept of “heritability on the probit scale,” which, however, is not the real 
heritability of sensitivity but the genetic variance. The assumption implicit in 
their reasoning is that the probit units for the whole population and for the 
individual genotypes are the same, whereas in reality they are different. The 
probit for individual genotypes takes as its unit of measurement the environ- 
mental standard deviation on the sensitivity scale. That for the whole popula- 
tion takes as its uriit the total phenotypic standard deviation. In  terms of 
variance the latter is (l+ax2) times the former. Thus, the heritability on the 
sensitivity scale is equal to 

ax2 

1 + ux2 

rather than to ax2 as considered by LUSH, LAMOREUX and HAZEL (compare 
WRIGHT 1934a). 

The above discussion applies only to mortality from a definite single cause 
whose “dosage” scale has a definite biological meaning. In  omnibus classifica- 
tions such as “total mortality” and “other mortality” considered by LUSH, 
LAMOREUX and HAZEL from a similar viewpoint, the dosage scale ceases to 
have any definite meaning. It can only be defined in terms of the mortality 
level itself, which is made up of any number of different factors with different 
heritabilities, and may be so made up in an infinite number of possible ways. 
The situation is considerably removed from the case of the single disease where 
the change in mortality can be described as a point moving along a sensitivity 
scale. We can then only speak of the average heritability a t  a given level, the 
average being taken over all possible components of the factors which combine 
to give that total level. It is obvious that if we have two separate factors with 
very different heritabilities, the heritability of the joint mortality a t  the level 
of 50 percent will differ greatly depending whether, for instance, the highly 
heritable factor has a level of 40 percent and the other a level of 17 percent, or 
vice versa. 

The problem may be considered by use of the method presented in the last 
section for calculating the total heritability of two factors. The method can be 
extended to any number of factors (A, B, C, etc.) to give the general result 

where ICa is the genetic variance of mortality due to A on the probit scale, and 
rab the genetic correlation of mortality due to A and B, or A and C, and so 
forth. 

This formula has been applied to two cases as follows: 
(i) the total mortality is made up of ieveral equivalent uncorrelated factors. 

Figure 4 shows the heritability of total mortality made up of ten factors, 
the upper curve being the heritability of one such factor alone. It will be 
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seen that the heritability of the compound mortality is always less than 
that  of the single factor a t  the same level, the relative difference being 
greater a t  high mortalities. At 50 percent mortality it seems to be roughly 
true that the heritability of mortality due to m equivalent factors is 1/-\& 
times the heritability of one such factor a t  the same level. In  addition, the 
curve is no longer symmetrical but is pushed over towards the lower mor- 
tality levels. It is obvious that the variation with mortality level is quite 
different from that of the single factor. 

(ii) the total mortality is made up of two uncorrelated factors, the variation 
from season to season being due mainly to one factor only. Figure 5 shows 
the variations of heritability with total mortality when two factors, A and 
B, are involved, such that:  
(a) A has a heritability of 0.10 a t  its mean level of 10 percent with a stand- 

ard deviation of mean level from season to season of 0.04. 
(b) B has a heritability of 0.02 a t  its mean level of 33.3 percent with a 

standard deviation of mean level from season to season of 0.13. 

0.04 * k 

Here the curve is very skew with a maximum around 20 percent mortality. 
In  fact, the heritability varies little over the range 0.10-0.50. By varying 
the different constants controlling A and B, the maximum could be shifted 
to any desired level. This case, in which most of the yearly variation is 
contributed by a component, whose heritability is relatively low, will be 
the one departing most from the theoretical curve. 

I t  would seem likely from these two instances that in the majority of prac- 
tical cases, although it will be impossibKe to predict the exact variation of 
heritability of total mortality with incidence, the maximum will probably be 
in the region between 25 percent and 60 percent mortality. 

The genetic variance on the probit scale of any two independent factors 
would not be expected to be additive, due to the high interaction between the 



410 ALAN ROBERTSON AND I. MICHAEL LERNER 

TABLE 2 

Probit values in relation to the level of mortality f r o m  two causes 

MOBTALlTY 

DUE TO 
LEVEL PROBIT 

ADDITIONAL 

DUE TO A 

B 
A+B 

B 
A+B 

3.72 
4.12 
5.00 
5.12 

0.40 

0.12 

two probits as is shown by table 2, which illustrates the effect of adding factor 
A at 10 percent mortality to factor B at  10 percent and 50 percent. The 
difficulties of the use of the probit transformation id the case of deaths from 
independent causes has been fully discussed by FINNEY (1947 p. 136). 

SUNMARY 

1. A method is presented for the determination of the heritability of all-or- 
none characters, with special reference to mortality. It can be extended to 
cover the genetic correlation between mortality from two different causes. 

2. Analysis of the mortality records of the production flock of the UNIVER- 
SITY OF CALIFORNIA gave a heritability of 0.089 for total mortality, 0.026 for 
deaths from reproductive disorders, 0.048 for deaths from lymphomatosis and 
0.066 for deaths from other causes than lymphomatosis. The genetic correla- 
tion between mortality from lymphomatosis and from other causes was found 
to be +0.26. 

3. The heritability varied considerably with the mean level of mortality. A 
theoretical expression for this variation is derived for the case of mortality 
from a single specific cause. 

4. The relationship of the heritability of total mortality to incidence is, 
however, more complex and formulae are presented giving the heritability of 
total mortality in terms of the levels and heritabilities of its components. These 
are applied to two general cases, showing that the simple laws pertaining to 
deaths from single causes do not hold for aggregates of causes. The deviations 
are likely to be greatest when the variation in mean level from season to 
season is mainly due to a factor with relatively low heritability. 
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