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N his classical treatment of inbreeding, WRIGHT ( 1921 ) developed the con- I cept of the inbreeding. coefficient F, which he defined as the correlation 
between the genetic constitution of the gametes in the uniting egg and sperni. 
This is d.irectly related to the heterozygosity remaining. in the population 
which is equal to l - F  times the heterozygosity at the start of inbreeding. 
If a number of inbredelines are made without selection from a raildoni breed- 
ing population, the genetic variance due to genes which act additively increases 
between' lines as 2F and decreases within lines as 1 - F. (If inbreeding is 
rapid, the value 1 - F for the genetic variance within lines is not adequate, 
the correct expression being 1 + F - 2F, where F is the inbreeding coefficient 
of the hypothetical progeny produced by randoni mating within lines in the 
present generation and 2 F  is correct for the variance between lines.) For 
genes which do not act additively, there is not the same correspondence lie- 
tween heterozygosity and variance and the above relationships do not hold. 
A s  we know little about the dominance relationships of the genes controlling 
continuous variation, it seemed desirable to investigate theoretically the effect 
of inbreeding on the variation due to genes which are conipletely recessive and 
to genes which show overdominance. Particular attention is given to the case 
in which the recessive (or quasi-recessive) is at low frequency as this is the 
most probable situation in natural populations. 

We shall deal first with continued full-sib mating in which the results can 
be worked out by simple, if rather laborious, arithmetic and where the process 
can be most easily visualised. The more general situation of slow inbreeding 
in lines of' constant breeding size requires more sophisticated niatheniatics 
and the details of the derivations are given in an appendix. The two methods 
are in good agreement. 

CONTINUED FULL-SIB MATING 

This system of mating can be treated most siniply by the inethod of mating 
types, originally used by JENNINGS (1916) and, subsequently with the help of 
matrix theory by HALDANE (1937) and ,by FISHER (1949). If only two 
alleles, A and a, are present in the population at a locus, there are six possible 
types of matings. The relative frequencies of matings of different types in any 
generation can be calculated from the frequencies in the previous generation 

*Part of the cost of the accompanying mathematical formulae has been paid by the 
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on the assuniption that the offspring are mated at random. For instance, 
iliatirigs Aa x aa will give offspring 5 Aa, 5 aa and if these are mated at 
random, one quarter of the niatings will be of the type Aa x Aa, one half Aa x 
aa and one quarter aa x aa. The equations giving the frequencies of the six 
types in terms of the frequencies in the preceding generation are shown 
schematically in table 1 in which yo, for instance, signifies the frequency of 
AA x Aa matings in the zero generation. 

uo + $5 vu. 
If a is completely recessive to A and the phenotypic value of AA, Aa is taken 
as zero atid of aa as unity, the genetic variance within the progeny of Aax 
.\a and !\a x aa niatings is 3/16 and 1/4 respectively, the other niatiiig types 
having no variation within their progeny. (Throughout the paper, " genetic 
variance " will be used iii the sense of all variance due to gene segregation.) 
The average variance within lines (each line being in this case a single mat- 
ing) is 3/16 U t 1/4 v. The genetic variance between lines is easily calculated, 
as the expected value for the progeny is zero for all types except those repre- 
sented by U, v, atid w for which it is f i ,  5 and 1 respectively. 

Reading horizontally, we have, for instance, u 1  = yo + zo + 

TABLE 1 
Frequencies 01 the various mating types. 

M x A A  A A x  Aa A A x a a  A a x A a  A a x a a  a a x m  
=a Yo z, U0 V O  wo 

.I 1 v, '4a 
Yl Y % 
21 Y 
U1 v, 1 v, % 
v1 v, Y 
'Rl '& 1: 1 

In the computations, we take as so, yu, zu, etc. the values for a random-bred 
population and evaluate the set xl, yl, zl, etc., and so on. Figure 1 shows the 
frequencies of mating types other than AA x AA for the case when q. = 0.1. 
The immediate effect of the inbreeding is to cause y to decrease and U and v 
to increase. After about 6 generations, the frequencies of all types of iiiatings 
except AA x AA and aa x aa become practically constant relative to one an- 
other and then decline to zero when inbreeding is complete. At that point, 
s = 0.90 and w = 0.10, as all lines become honicfzygous for either A or a. The 
variance within lines increases considerably in the first generittion (F = 0.25) 
to 2.99 times its randoni breeding value, remains fairly stationary for two 
further generations, and then declines. The variance between lines increases 
continually as the inbreeding progresses, the rise being almost linear for the 
first six generations (fig. 2). Consideration of the first generation only shows 
that the variance within lines will only increase above its random breeding 
value if the frequency, q, of the recessive gene is below 0.47. At low gene 
frequencies, at the start almost all the a genes will be carried in matings AA x 
Aa which will have frequency approximately 4q, the frequencies of other 
matings in which heterozygotes take part being in higher powers of q. Thus 
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all the matings, except those of type AA x AA, will derive froin an initial 
entry of yo as 4q. I t  follows that the shape of the curves showing the effect of 
inbreeding on variation will become independent of q as q decreases, as all 
entries will be multiples of q. Computation shows that in this case, the vari- 
ance within matings reaches its maximum value of 0.207q after three gen- 
erations of inbreeding (F = 0.50). Under random mating conditions, matings 
of type Aa x Aa will make the major contribution to the variance within mat- 

I 
GENERATIONS OF INBREEDING 

I 
GENERATIONS OF INBREEDING 

FIGURE 1.-Frequencies of various mating types (except AA-x AA) with continued 
full-sib mating. The mating types are designated as : y (AA x Aa), r. ( A A  x aa), U (Aa x 
Aa), v (Aaxaa),  and w (aaxaa). 

ings with freque.ncy 4q2( 1 - q)* +- 4q2 and variance 3/16, giving an average 
variance of % qz. At its maximum, the variance within matings is therefore 

0.75qa q 
for the different variances when q is very low, which are not very different 
from those in figure 2 for q = 0.10. 

The total genetic variance rises continuously as the inbreeding progresses. 
When complete homozygosis is reaehed, the total variance is q(  1 - q); q lines 
having phenotypic value unity and 1 - q having value. zero. With random 
mating, when a fraction q2 have genotype aa and phenotype value one and 

0'207q - P- 0'276 times its random breeding value. Figure 3 shows the curves 



1 92 ALAN ROBERTSON 

the rest have value zero, the total variance is qz( 1 - qz) . Of this, the additively 
genetic component, the portion usually detected in genetic analyses such as 
heritability studies, is only Zq3( 1 - 9). When inbreeding is complete, the total 
variance is equal to l/q( 1 - q) times its random breeding value and 1/2 q2 
times the part of the variation that can usually be detected in the absence of 
inbreeding. For genes which act strictly additively, the total variance at com- 
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GENERATIONS OF INBREEDING 

FIGURE 2.-Total variance (Vt), variance within lines (Vw), and variance between 
lines (V,) with continued full-sih mating and q. = 0.1. 

plete hoinozygosis is twice the total variance under randoni breeding condi- 
tions, the latter being, of course, equal to the additive component. 

JNBREEDING IN LINES OF CONSTANT BREEDING SIZE 

In the more general case with slow inbreeding, in which each line is of 
constant breeding size, it is more convenient $0 consider the inbreeding froni 
the point of view of the change of gene frequency in the several lines. Starting 
from a population with a given gene frequency, the frequencies in the lines, 
as inbreeding progresses, gradually scatter further and further from the 
original value due to sampling (the phenomenon which in discussions of 
evolution is often called the " Sewall Wright drift "). The frequency averaged 
over the whole population of lines remains the same as that in the original 
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random breeding population, if there has been no selection. When inbreeding 
is complete, the gene frequency in each line is either 0 or 1. The variance 
within and between lines can then be related to the distribution of the gene 
frequency in the several lines. Within a line in which the gene frequency is 
'11, the genetic variance is qI2 ( 1  - q12) 90 that the average value of the genetic 
variance within lines is p2 - pr ,  where the p's are the moments of the q distri- 
bution about zero. By a similar argument, the genetic variance ,between lines 
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FIGURE 3.-Total variance (Vt), variance within lines (V"), and variance between 
lines (vb) with continued full-sib mating and q. very small. 

is the variance of q12, ly - ~ 2 . a n d  the total genetic variance is ~ 1 2  -m2. The 
evaluation of general expressions for the moments, and therefore of the vari- 
ances, as inbreeding progresses, depends on matrix theory and is given in an 
appendix. The within line vdriance is given by 

V, = a (  1 - F) + b( 1 - F)* + c (  1 - F)6 
where a = 0.8 q( 1 - q)  

b = - q(1-  q) (1 - 2q) 
E = 0.2q(l-q)  - q y 1  - q y .  
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When F=O, V , = a + b + c = q 2 ( 1 - q 2 )  and when F = l ,  V,=O. The change 
of V, when F is small can he judged from the coefficient of F in the expansion 
of the above equation, which on simplification becomes q (  1 - q)  (1 - 6q2). 
V, will then only pass through a maximum if 1 - 6q2 > 0, i.e., q < 0.41 and 
will otherwise decline continuously. As F increases, the last two terms in V, 
decrease in importance until V, becomes proportional to 1 -- F. When q is 
small, V, becomes q [0 .8(1-F)-( l -F)s+0.2(1-F)"] ,  and rises to a 

FIGURE 4.-Additive variance within lines (V.), total variance (V,), variance within 
lines (V,) and variance between lines (VI,) with random mating in a population of con- 
stant size with q. very small. 

inaxinium of 0.280q, when F70.46, compared to q2( l  -q2)  in the random 

times the random- 0.280 lired population. The niaximum value is then roughly - 
4 

breeding value, in good agreement with the value of 'z6 obtained from 

continual full-sib mating. 
The additive component of the variance within lines, the component de- 

tectable by such techniques as parent-offspring regression, is for a given line 

'I 
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2qI3 ( 1  - ql) so that the average value of this, V,, is 2 (pa - p 4 ) .  In the above 
terminology this is given by .75a( 1 - F) + b( 1 - F)3 + 2c ( 1  - F)*. 

It is not possible to give simple formulae for the between line or total 
variance except when q is small. Then, expanding Vb as a power of F, the 
term with the lowest power of y is 3F3q. The total variance is then Fq. Fig- 
ures 4 and 5 show the behaviour of Vt, Vb, and V, when q is very small and 
when q=O.lO. The curves show clearly the main features of the effect of 
inhreeding on the variance. V, and V, increase to a maximum when F = 0.4 

0 0: 5 
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FIGURE 5.-Additive variance within lines (V.), total variance (Vt), variance within 
lines (V,) and variance between tines (V,) with random mating in a population of con- 
stant size with qn=O.l. 

to 0.5 and then decline, For small values of q, V. increases as F2 when F is 
low. As F approaches unity,*V, becomes equal to three-fourths of V,. V,, 
increases slowly at the start as FS but increases more rapidly when F is 
greater than 0.50. Vt increases almost linearly with F in both cases. 

Some discrepancies will be noted between the results obtained from the 
two models. For instance, in the continuous case there is no variation between 
lines at zero inbreeding whereas there is in the full-sib case. The continuous 
case, deriving from random mating ,between a chosen number of parents, 
automatically includes the possibility of some self-fertilization. The first 
generation tQ show variation between lines is therefore inbred. If self-fer- 
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tilization is explicitly excluded, as of course in a bisexual organism, it is 
possible to have variation between lines (or rather between families) without 
the animals being inbred. However, the two systems are otherwise in good 
agreement. 

GENES SHOWING OVERDOMINANCE 

It is possible that, at some loci, the phenotypic value of the heterozygote 
may lie outside the range of those of the homozygotes. Of the extent and kind 
of such ’’ overdominance ” we know very little. As a model, it will be assumed 

I 
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FIGURE 6.-Variance within lines for a locus with overdominance. Phenotypic values 
are AA=h,  Aa=O, aa= 1 arid q.=O.l. 

that the phenotypic values are AA = 11, :\a = 0 and aa = 1. IJsing the moment 
terminology, the variance hetween lines is then given by 

V,=2h2pl+ ( I  -211-5h2)w+4h ( l + h ) p a -  (1+h)2w. 
Figures 6 and 7 show the within and hetween line variances for several 

values of h when q = O . l O .  The curves for h=0.1 are little different from 
those for h = O  in figure 4 but as h increases, the increase of V, with F 
becomes less until for a value of h slightly over 0.3, V, decreases continu- 
ously with F. From these results, it seems likely that the general conclusions 
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arrived at for conipletely recessive genes will also apply to genes showing 
overdominance provided h is less than 0.2. 

THE EFFECTS OF SELECTION 

In the earlier analysis it was assumed that there was no selection against 
the recessive gene. As, in general, recessives cause some decline in fitness 
when they are homozygous, it seemed worthwhile to calculate the changes in 
variance in the extreme case when the selection against the homozygous re- 
cessive is coniplete. Here, the nieaii frequency of the recessive gene in the 

FIGURE 7.-Variance between lines for a locus with overdominance. Phenotypic values 
are A A =  h, Aa=O, aa= 1 and q.=O.l. 

population of lines will not reiliain the sanie but will gradually decline as selec- 
tion proceeds. The genetic variance will not depend on the inbreeding coeffi- 
cient alone but also on the amount of selection and therefore on the nun1l)er of 
generations that the inbreeding and selection has proceeded. There will thus 
be no general solution in terms of F and each inbreeding system will have to 
be treated separately. For continued full-sib matings, when selection against 
aa aniiiials is on an individual basis, there are only three possible types of 
mating as shown in table 2. 

The average variance within lines is 3u/l$ and that between lines is 
U( 1 - u)/16. The results obtained are shown in figure 8 for q = 0.10 and 
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TABLE 2 

Frequcncics o/ tbe various mating types with complete selection against 
the recessive /actor. 

AA X AA 
.o 

AA X Aa Aa X Aa 
Yo U0 

1 8  2 .I 1 14 

Y I  ?4 
U1 '/4 Y 

the curve for V, from figure 2 is included for coniyarison. Bbth V,, and V, 
rise at first and then decline to zero as inbreeding approaches coiiipletioii 
and all lines become A A  in constitution. In the early stages, the effect of 
selection on the behaviour of the variance within lines is fairly small. V, rises 
to 2.69 times its random-breeding value in the ,first generation and does not 
decline lbelow the random-breeding value for 7 generations. With no selection, 
the maximum V, is 2 . 9  times the random-breeding value and it takes 10 
generations to decline to that value again. The selection against the recessive 
on this model is the most stringent possible on an individual basis and one 
can safely make the generalization that in the early generations of full-sib 

5 
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IO 

FIGURE 8.-Variance within lines (V"), and variance between lines (Vb) with full-sib 
mating and coniplete selection against the recessive allele, whose initial frequency was 0.1. 
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mating, selection will not greatly affect tlie behaviour of the variance within 
lines. If the inbreeding proceeds more slowly, selection will be more iniyortant 
as it will have more opportunity to take effect. 

THE PERFORMANCE OF THE: LINES IN CROSSING 

From the practical point of view iiiore interest attaches to the yerforniance 
of the crosses between lines than to that of the lines theniselves. The per- 
formance of the crosses made between members of a group of lines is often 
discussed in terms of ‘’ general combining ability ” and ‘‘ special combining 
ability.” The ” general combining dbility ” of a line refers to the average per- 
formance of the crosses between that line and all the other lines. The ’’ special 
combining ability ” of a particular cross refers to the difference between the 
performance of the cross and what would have been expected from the geii- 
era1 combining abilities of the parent lines. In mathematical terms, the per- 
formance of a particular cross Pij between the ith and jtl’ lines is given by 

Pij = ni +ai + aj + ail 
where in is the mean of all crosses, ai, aj are the general combining abilities 
of the ith and jth lines and aij is the interaction term, the special combining 
ability. The term ‘‘ top-cross ” refers to the crosses made between a line and 
a sample of individuals from the random-bred population. The average top- 
crossing performance of a line should be equal to the general combining 
ability in crosses with lines drawn without selection from the random-bred 
population, because the gametes froin a group of inbred lines made without 
selection are exactly equivalent to a random sample of gametes from the 
randoni-bred population. In a similar manner, a series of crosses made at 
random between completely inbred lines made without selection are equivalent 
to a group of individuals drawn from the random-bred population. 

Consider two lines in which the gene frequencies of the recessive are q1, 
‘12. Then, assuming complete dominance, the average performance of the cross 
hetween them is q1 (I.’. The general combining ability of a line with gene 
frequency q 1  is qlq where q is the average gene frequency in the lines and in 
the original population. The variance between lines in general conibining 
ability is q2 var q1 = Fq3( 1 - (1). The variance between crosses is var ((11 92) 

where 91, qz are independent samples from a known distribution. This can 
be evaluated from the moments about zero of the distribution as pz2 - p14 and 
is equal to q2( 1 - q)  F(F + 2q Fq), being equal to the variance in the ran- 
domabred population, q2( 1 - q2), when F = 1. From the above equation for Pi, 
the variance between crosses due to special combining ability is equal to the 
total variance between crosses minus twice the variance between lines in gen- 
eral combining ability. This equals F2 q2( 1 - q)’. When F is small compared 
to q, therefore, the variance between crosses is mostly due to general com- 
bining ahbility but as F increases, the special conibining ability becomes much 
niore important. Figure 9 shows the relative contributions that the two parts 
make to the variance between crosses when q = 0.10. From the practical as- 
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pect, it is the best cross between nieiiibers of a group of lines that is important. 
For a given nuniber of lines, the probable superiority of the best cross above 
the mean will be proportional to the standard deviation between crosses and 
will be proportional to the first power of F if q is small. 

The correlation between the performance of lines in crossing when the 
lines are partially inbred with the performance when inbreeding is complete 
is of some practical interest. . \s  inlreeding causes the gene frequencies to 
deviate Ixtween lilies but does not change the average gene frequency in the 
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FIGURE 9.-Relative contribution of general and specific conibining ability to the vari- 
ance bet\\een crosses with change in inbreeding. q = 0.1. 

whole population of lines, it follows that the expected gene frequency in coin- 
pletely inbred lilies deriving from a given partial inbred line is equal to the 
gene frequency in that line. Taking the cross between two partially inbred 
lines in which the frequency of the recessive is q1 and q2, we want to know 
the espected value of q1 q: when the inbreeding is complete. Because inbreed- 
ing does not change the expected gene frequency, it also does not change the 
expected value of the cross between two lines in the absence of environnieiital 
variation or errors of measurement. In other words, the regression of the 



INBREEDING ANI) VARIATION 20 1 

future performance of a cross between two lines on its present performance 
will always be unity, irrespective of the stage at which the lines are measured. 
From this, it follows that the correlation between future performance and 
present performance will he equal to 

variance of present performance v- variance of future perfarmance 

In particular, for general combining aldity, this equals 

and for the performance of a specific line cross it is 

q'( 1 -9) F(F + 2q -Fq) F(F +2q -Fq) c=c 
\vhich is equal to 1; when q is small. 

'Hie correlation hetween the phenotypic value of a line and its general 
cnnrhining ability will he generally for a single gene fairly close to one, being 
:L correlation hetween q1 and qI2. 

VARIATION DUE TO MANY RECESSIVE GENES 

We have been dealing above with the variation due to a single recessive 
gene. In practice, the genetic variation may he expected to be due to many 
genes with different gene frequencies and effects of different magnitude. 
Fortunately, this does not greatly complicate the pictiire and many of the 
results c?ii he taken over directly from the single gene case. The resultant 
w-iance will be merely the sun1 of the variance due to the separate genes, 
so that a generalization can be made a b u t  the variation due to recessive genes 
at frequencies less than about 0.3, that the within line variance will increase 
until F is in the region of 0.5 and then decline and that the between line 
variance wid1 increase at first as F3. Indeed, the presence of variation due to 
many genes means that as far as the within line variance is concerned, lines 
\vi11 deviate less from the predicted hehaviour than they would if the varia- 
tion were due only to a single gene. In B similar way, the formulae referring 
to the crossing performance of lines for genes of low frequency can also he 
taken over to the general case as can those for the correlations and regression 
of future performance and present performance of crosses. 

DISCUSSION 

The actual experimental evidence on the effect of inbreeding on the varia- 
tion within lines is fairly scanty but, in general, the decline in phenotypic 
variation is slight and in some cases it is known to have increased above the 
original value after several generations of brother-sister matings (e.g., PEASE 
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1948). Apart from the possibilities arising from the present paper, there are 
three other possible causes for such a phenomenon. 

(a)  Natural selection for heterozygotes may he opposing the trend towards 
homozygosis produced by inbreeding. 

(b) In many characters, the greater part of the variation is environniental 
in origin and therefore will not be affected by inbreeding. In characters like 
egg production index in poultry or litter size in swine, 'the changes in genetic 
variance may be undetectable against the hackground of the environmental 
variance. 

(c) The inbred lines may differ from the random-'bred stock in their re- 
sponse to environmental changes. WRIGHT (1935) has described a line of 
guinea-pigs in which a proportion of animals are otocephalic. There is con- 
siderable variation in head shape within the line which, on testing, was found 
to be not genetic in origin. It seeins that the line has shifted towards some 
critical threshold in the process of head formation over which a proportion of 
the environmental variations takes the animals in the course of development, 
resulting in a variety of different ahnornialities of head shape. 

To these three factors affecting the total variation within lines, we may 
now add a fourth-that the variation due to recessive genes at low frequency 
will increase with inbreeding until F is about 0.50 and may not return to its 
original value until F reaches close to 1. 

We are still fairly ignorant about the exact behaviour of the genes respon- 
sible for continuous variation. In some characters, e.g., fat percentage in milk 
in cattle, it is likely that the genes are acting mostly in an additive manner. 
In other, in particular, characters with low heritability that show inbreeding 
depression, e.g., egg production index in poultry, yield in maize, a high pro- 
portion of the genetic variation might he due to recessive or overdominant 
genes. Such genes will generally he held at a lcnv frequency in the population 
I)! natural selection. The possihle increase of the genetic variance due to such 
genes with increasing inhreeding has therefore some practical importance. 
'There are some writers who maintain that animals whose performance is in- 
ferior are so hecause they are homozygous for deleterious recessives. They 
argue that the only way to improve the general level of the stock is to uncover 
the recessives by inhreeding and so to produce a population with a uniformly 
high level of performance. In fact, even with stringent selection against such 
recessives. i t  will take several generations of hrother-sister matings in which 
the recessives are segregating out before the genetic variance within such an 
inbred population will decline to its original value. This is only one of several 
objections to such a pror, * a nime. 

The results presented here may be of some use in providing a possible 
explanation for some peculiar experimental results but it is douhtful whether 
they can he of any precise value in the analysis of continuous variation. When 
the variation is due to several recessive genes at different frequencies, this 
treatment can only supply a general description of the probable behaviour 
of the variances. not of sufficient precision for the experimental results to be 
used to give niuch information about the behaviour of the genes themselves. 
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The only situation in which the gene frequencies are known accurately-in 
a cross between two inbred lines-the position is complicated by linkage. 
J n  discussing the variation due to several genes almve, it has been assume!l 
that in the initial random-bred popidation there is no correlation between 
the genes present at adjacent loci in a gamete. In  the F2 of a cross I)etween 
two inbred lines, there will he such a correlation Iletween genes at adjacent 
loci and any analysis will tell 11s almout the properties of such blocks of genes 
rather than of the individual genes. In the absence of overdominance at indi- 
vidual loci, such blocks of genes will tend to show overdominance themselves, 
due to the usual covering-up of recessives. It seems therefore that unfortu- 
nately the use of such a cross cannot tell 11s much about the dominance rela- 
tionships of the individual genes. 

SUhIMARY 

The effect of inbreeding on the variation due to recessive genes has been 
treated theoretically both for the case of continued full-sib mating and in line5 
of small breeding size. If the recessives are at low frequency, the variation 
within lines increases to a maximum when F is close to 0.50, and declines to 
zero when inbreeding is complete. The additive coinponent of the variance 
within lines behaves in a similar manner. The variance between lines is small 
at first, increasing as F3 when F is small. The total variance in the population 
of lines increases almost linearly with F. The variance in the performance of 
crosses between lines is made up of a component due to the general conibiniiig 
aldity of lines proportional to F and to a component ascribable to the special 
combining ability in particular crosses proportional to F?. The special coni- 
hining ability thus becomes much more important as inbreeding progresses. 
The effects of overdominance and selection are also briefly treated. 
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APPENDIX 
A GENERAL DERIVATION OF THE RELATIONSHIP OF THE GENETIC VARIANCE To THE 

COEFFICIENT OF INBREEDING, F 
In terms of gene frequency, the effect of injxeeding can be looked upon as. the gradual 

widening of the distribution of gene frequencies until, when inbreeding is complete, q may 
only take the values 0 or 1. Starting with a known gene frequency, q, in lines of constant 
breeding size of 4 2  animals, we can consider the second generation as derived from the 
first by the sampling of groups of n haploid sets, the gene frequency in the different 
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groups being distributer1 hinoniially with mean nq and index n. The next generation is 
then the repetition of this process, each line giving rise to a group of lines whose gene 
frequencies are binomially distributed about the mean of the parent line. If the number of 
lines is constant, the sample of existing lines can be considered as a random saniple from 
the above hypothetical population. 

Consider, in the rt" generation, the lines (having frequency f , )  in which the gene fre- 
quency is q,. These lines will then by the ahove operation give a new group of lines in 
which the moments about zero of the gene frequencies are by the usual formulae for a 
binomial distribution, 

The moments of the total population of lines will be the sum of the moments of the groups 
of lines, arising from each value of ql with appropriate weights fi. 

1 

n 
= -r Pi + (I - Pa (the r subscripts referring to generations.) 

Similarly we have three other equations relating the moments in the (r t 1)" genera- 
tion to those in the r" generation, which can be written diagrammatically as follows: 

r P *  r P a  rFs r k  

r+l P1 1 

1 3 
r + l P r  na - n -(I - ;) (I - ;) (I - ;) 

Thus, knowing the values in the zero generation, we could work out the values in 
any generation. By the use of matrix theory, it is possible to 0btain.a general expression 
for the moments in any generation. For a four-rank matrix such as the above, there are 
four latent roots, XO, XI, XZ, b, and to each latent root there corresponds a latent vector t 
(a  linear function of the moments) such that : 

r +:te ho r b  
r + a t l =  L r t r  
r + I t a  = ha rta 
t + I t J r  h r t S  
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Knowing the zero value for the latent vectors, t, we can easily calculate the values in 
the rth generation as .to = “to io‘ and so on, and therefore also calculate the moments by 
expressing then1 as functions of the t’s. As the elements to the right-hand of the diagorlal 
are zero, tlie four latent roots are simply the entries in the main diagonal. As an example 
nf tlie evaluation of the latent vectors, consider tlie vector tr corresponding to the rnnt A:. 
We may express t2 as alpl + a+? + alpl t a+pr. We then ohtain the roeficieiits by cquatiw 
the coefficients of the f i ’s  deriving from the t recurrence equations with those deriving 

from the P reciirrence equations. Writing 1 - - = b. etc. we have 

a4Al = a4hi 

a& = a4 - + aihl 

1 
n 

6ha 
n 

7x1 311 
nr n 

ho ho ho 
n’ na n 

asha = a4- + a,- + aJ l  

a l l 2  =a4 - + as -+a ,  - + alho 

giving 

Then 

a4 = 0 
a, = 1 (M arbitrary value) 

3 

2 
al  e-- 

1 
a1 = - 

2 
1 3 

2 2 
t a = - P i -  -Pa+Pi 

The four equations for the t’s are then: 

Aa = I t o  = PI 
1 

n 
x i =  1-- t 1 =  -P1+ P l  

1 3  

2 2  
tl = -Pi -- Pa + Pi  

n - 1  6 n - 7  

5n-6 Sa-6 
hi= (1 - ;) (1 - ;)(I - ;) [,=-- PI+-  Pa- 2Pi P4 

If n is lorle, r e  may write 
1 6  

5 5  
t )  =- -Pi +-Pa - 2Pi+ P L ~  

Correspondingly, we have four equations for the moments in terms of the latent 
vectors. 

P S ” b  
Pa = to  + tl 

3 
p, = to +-tl + t a  

2 
9 

p4 = to +-t, + 2ta + tl  
5 
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In the zero generation, we have o Pn = q" giving 

* o = q  
at1  =-dl  - q) 

1 
0ts = - -q( l  - q) + q y l  - q)l 5 

Then for Vw in the rth generation, 

r v w  = r p a  - r P 4  

1 
is the expected relative decline in heterozygosis each 

generation, (1 -3 is the proportion remaining after r generations and i s  equal to 

l * F .  If n is large, then (l-$r= ( l - : r r = ( l - F y .  T h u d h : = ( I - F Y  ap- 

proximately and A: = (1 - FF, giving 

V, = a(1 - F )  + b(1- FY + c ( 1 -  F)9  

Similarly, rv-, = 2(, p, - p,) 

3 

4 
= -a(1 - F) + M1- F)' t 2 4  1 - F)6 

vt is given by the erpression, Vt = pa - pi 
where PI = q - q(1- q ) ( l -  F) 

= q' + q(l - q)F, giving 
Vt = q(1- 9) [q( 1 + (1) + F( 1 - 2q') - F'q( 1 - q)l 

If q is small, this reduces to Fq. 
simple expression seems to exist. Expansion gives, in order of powers of F, 

VI, is then obtained as Vt-V, but unfortunately no 

Vr- q(1-  q) { Flq't F2[14q(l - 4) - 6ql t F8[3 +2q- 20q(l- q)] 1 +. . . . 
If q is small, the first and second terms, being of the third and second order in q, will 

be small compared to the third term and therefore if F is small, Vh = 3FSq. 
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For the genes showing overdominance, the general principles are the same except that 
the values for the first and third moments also enter into the calculation. 

The variance between the performances of the lines on top-crossing to the original 
~ml~ulatiori can easily he calciilated. If the gene frequency in a line is (11 then the propor- 
tion of honiozygons recessives in back-crossing to tlie original populatioii ( in whicli the 
gem frequency is q )  is qql, and this \vi11 be the iiieaii pheiiotype value of tlic ww. 

I hevariaiicerequiredistlienc~var q, = q ~ ( ~ ~ - p , ~ ~ ~ ~ i ~ l q - q ( l - q )  (1 -F)-$1 =Fq"(l-q) 
which increases as the first power of I;. If we cross two lines in which the gene frequriicirs 
are q,, qs the mean phenotypic value of the cross is q3*. To calculate the total variance 
between such crosses, we have to find tlie variance of qlqr when q1 and q2 are independent 
members of the q distribution. Actually the moments about zero of such a distributioii of 
a product are the products of the moments of the parent distributions. A s  in this case, the 
two samples are from the same distribution, the moments about zero of the product dis- 
tribution are the square of the moments of the q distribution. In terms of those moments 
tlie variance between line crosses = pi" - pl' 

-. 

= q'( 1 - 9) F(F + 2q - Fq) 

Thus tlie variance het\vrcn liiic crosses is proportional to F if q is small. 


