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IN his classical treatment of inbreeding, WricHT (1921) developed the con-
cept of the inbreeding. coefficient F, which he defined as the correlation
between the genetic constitution of the gametes in the uniting egg and sperm.
This is directly related to the heterozygosity remaining-in the population
which is equal to 1-F times the heterozygosity at the start of inbreeding.
If a number of inbred- lines are made without selection from a random breed-
ing population, the genetic variance due to genes which act additively increases
between lines as 2F and decreases within lines as 1-F. (If inbreeding is
rapid, the value 1-F for the genetic variance within lines is not adequate,
the correct expression being 1+ F — 2F, where F is the inbreeding coefficient
of the hypothetical progeny produced by random mating within lines in the
present generation and 2F is correct for the variance between lines.) For
genes which do not act additively, there is not the same correspondence Dhe-
tween heterozygosity and variance and the above relationships do not hold.
As we know little about the dominance relationships of the genes controlling
continuous. variation, it seenied desirable to investigate theoretically the effect
of inbreeding on the variation due to genes which are completely recessive and
to genes which show overdominance. Particular attention is given to the case
in which the recessive (or quasi-recessive) is at low frequency as this is the
most probable situation in natural populations. '

We shall deal first with continued full-sib mating in which the results can
be worked out by simple, if rather laborious, arithmetic and where the process
can be most easily visualised. The more general situation of slow inbreeding
in lines of'constant breeding size requires more sophisticated mathematics
and the details of the derivations are given in an apperidix. The two methods
are in good agreement.

CONTINUED FULL-SIB MATING

This system of mating can be treated most simply by the method of mating
types, originally used by JenniNGgs (1916) and subsequently with the help of
matrix theory by HALDANE (1937) and by Fismer (1949). If only two
alleles, A and a, are present in the population at a locus, there are six possible
types of matings. The relative frequencies of matings of different types in any
generation can be calculated from the frequencies in the previous generation

* Part of the cost of the accompanying mathematical formulae has been paid by the
GaLtoN and MENDEL MEMORIAL FUND.
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on the assumption that the offspring are mated at random. For instance,
matings Aax aa will give offspring 14 Aa, 14 aa and if these are mated at
random, one quarter of the matings will be of the type Aa x Aa, one half Aax
aa and one quarter aa xaa. The equations giving the frequencies of the six
types in terms of the frequencies in the preceding generation are shown
schematically in table 1 in which y,, for instance, signifies the frequency of
AA x Aa matings in the zero generation.

Reading horizontally, we have, for instance, uy = 14 yo+ 2o+ ¥4 o+ }4 Vo.
If a is completely recessive to A and the phenotypic value of AA, Aa is taken
as zero and of aa as unity, the genetic variance within the progeny of Aax
Aa and Aa x aa matings is 3/16 and 1/4 respectively, the other mating types
having no variation within their progeny. (Throughout the paper, * genetic
variance "’ will be used in the sense of all variance due to gene segregation.)
The average variance within lines (each line being in this case a single mat-
ing) is 3/16 u+ 1/4 v. The genetic variance between lines is easily calculated,
as the expected value for the progeny is zero for all types except those repre-
sented by u, v, and w for which it is }4, 14 and 1 respectively.

TABLE 1
Frequencies of the various mating types.

AA X AA AA X Aa AA Xaa Aa X Aa Aa X aa aa X aa

Xo Yo Zo Wo Yo Wo
X3 1 Y Yo
Y1 % Y%
zy ‘/l
ux % 1 Vc '/4
Vi % }
w3 %0 1/4 1

In the computatlom, we take as Xy, yo, Zo, €tc. the values for a random-bred
population and evaluate the set x;, vy, z;, etc., and. so on. Flgure 1 shows the
frequencies of mating types other than AA x AA for the case when g, =0.1.
The immediate effect of the inbreeding is to cause y. to decrease and u and v
to increase. After about 6 generations, the frequencies of all types of matings
except AA x AA and aa x aa become practically constant relative to one an-
other and then decline to zero when inbreeding. is complete. At that point,
x =090 and w =0.10, as all lines become homo‘zygo‘us for either A or a. The
variance within lines increases considerably in the first generation (F =0.25)
to 2.99 times its random breeding value, remains fairly stationary for two
further generations, and then declines. The variance between lines increases
continually as the inbreeding progresses, the rise being almost linear for the
first six generations (fig. 2). Consideration of the first generation only shows
that the variance within lines will only. increase above its random breeding
value if the frequency, q, of the recessive gene is below 0.47. At low gene
frequencies, at'the start almost all the a genes will be carried in matings AA x
Aa which will have frequency approximately 4q, the frequencies of other
matings in which heterozygotes take part being in higher powers of q. Thus
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all the matings, except those of type AA x AA, will derive from an initial
entry of yo as 4q. It follows that the shape of the curves showing the effect of
inbreeding on variation will become independent of q as q decreases, as all
entries will be multiples of q. Computation shows that in this case, the vari-
ance within matings reaches its maximum value of 0.207q after three gen-
erations of inbreeding (F =0.50). Under random mating conditions, matings
of type Aa x Aa will make the major contribution to the variance within mat-
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Feure 1.—Frequencies of various mating types (except AAx AA) with continued
full-sib mating. The mating types are designated as: y (AAx Aa), z (AAxaa), u (Aax
Aa), v (Aaxaa), and w (aaxaa).

ings with frequency 4q2(1 —q)""~ 4q* and variance 3/16, giving an average
variance of 34 ¢2 At its maximum, the variance within matings is therefore
0.207q  0.276 . dom breedi lue. Fi 3 sh he <
075q —q times its random breeding value. Figure 3 shows the curves
for the different variances when q is very low, which are not very different
from those in figure 2 for q = 0.10.

The total genetic variance rises continuously as the inbreeding progresses.
When complete homozygosis is reached, the total variance is ¢(1-q), q lines
having phenotypic value unity and 1-q having value: zero. With random
mating, when a fraction g? have genotype aa and phenotype value one and
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the rest have value zero, the total variance is g?(1 — g2). Of this, the additively
genetic component, the portion usually detected in genetic analyses such as
heritability studies, is only 2q3(1 —q). When inbreeding is complete, the total
variance is equal to 1/q(1—q) times its random breeding value and 1/2 g*
times the part of the variation that can usually be detected in the absence of
inbreeding. For genes which act strictly additively, the total variance at com-

VARIANCE
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Fi1GURe 2.—Total variance (V:), variance within lines (Vu), and variance between
lines (V) with continued full-sib mating and g. =0.1.

plete homozygosis is twice the total variance under random breeding condi-
tions, the latter being, of course, equal to the additive component.

INBREEDING IN LINES OF CONSTANT BREEDING SIZE

_In the more general case with slow inbreeding, in which each line is of
constant breeding size, it is more convenient to consider the inbreeding from
the point of view of the change of gene frequency in the several lines. Starting
from a population with a given gene frequency, the frequencies in.the lines,
as inbreeding progresses, gradually scatter further and further from the
original value due to sampling (the phenomenon which in discussions of
evolution is often called the “ Sewall Wright drift ). The frequency averaged
over the whole population of lines remains the same as that in the original
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random breeding population, if there has been no selection. When inbreeding
is complete, the gene frequency in each line is either 0 or 1, The variance
within and between lines can.then be related to the distribution of the gene
frequency in the several lines. Within a line in which the gene frequency is
(1, the genetic variance is q;?(1—qi*) so that the average value of the genetic
variance within lines is uz — ps, where the p’s are the moments of the q distri-
bution about zero. By a similar argument, the genetic variance between lines
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Frcure 3.—Total variance (V.), variance .within lines (V«), and variance between
lines (V) with continued full-sib mating and qu very small.

is the variance of q;3, us — gs?-and the total genetic variance is pe —pue? The
evaluation of general expressions for the moments, and therefore of the vari-
ances, as inbreeding progresses, depends on matrix theory and is given in an
appendix. The within line variance is given by
Ve=a(l1-F)+b(1-F)3+c(1-F)*®

wherea 08q(1-q)

"b=-q(1-q)(1-2q)

¢=02q(1-q) -q*(1-q)%
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When F=0, Vo=a+b+c=q%(1-q?) and when F=1, V,=0. The change
of Vi when F is small can be judged from the coefficient of F in the expansion
of the above equation, which on simplification hecomes q(1-q) (1-6q2).
Vy will then only pass through a maximum if 1-6q2 > 0, 1.e.,, ¢ < 0.41 and
will otherwise decline continuously. As F increases, the last two terms in V.
decrease in importance until Vi becomes proportional to 1 - F. When q is
small, V, becomes q [0.8(1-F)-(1-F)%+0.2(1-F)%], and rises to a

VARIANCE
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F1cure 4.—Additive variance within lines (V.), total variance (V¢), variance within
lines (V) and variance between lines (V») with random mating in a population of .con-
stant size with g. very small,

maximum of 0.280q, when F =0.46, compared to ¢*(1-q?) in the random

bred population. The maximum value is then roughly 0.280 times the random-

breeding value, in good agreement with the value of 0276 obtained from

continual full-sib mating.
The additive component of the variance within lines, the component de-
tectable by such techniques as parent-oﬁsprmg regression, is for 4 given line
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2q:*(1 - qy) so that the average value of this, Vy, is 2(ua —ps). In the above
terminology this is given by .75a(1-F) +b(1-F)3+2c (1-F)s,

It is not possible to give simple formulae for the between line or total
variance except when q is small. Then, expanding V), as a power of F, the
‘term with the lowest power of y is 3F3q. The total variance is then Fq. Fig-
ures 4 and 5 show the behaviour of Vi, V,, and V,, when q is very small and
when q=0.10. The curves show clearly the main features of the effect of
inbreeding on the variance. Vy and V, increase to a maximum when F =04
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Freure 5.—Additive variance within lines (V.), total variance (V.), variance within
lines (V) and variance between lines (V») with random mating in a population of con-
stant size with q.=0.1. :

to 0.5 and then decline. For small values of q, V, increases as F? when F is
low. As F approaches unity, V, becomes equal to three-fourths of Vy. V)
increases slowly at the start as F3 but increases more rapidly when F is
greater than 0.50. V, increases almost linearly with F in both cases.

Some discrepancies will be noted between the results obtained from the
two models. For instance, in the continuous case there is no variation between
lines at zero inbreeding whereas there is in the full-sib case. The continuous
case, deriving from random mating between a chosen number of parents,
automatically includes the possibility of some self-fertilization. The first
generation to show variation between lines is therefore inbred. If self-fer-
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tilization is explicitly excluded, as of course in a bisexual organism, it is
possible to have variation between lines (or rather between families) without
the animals being inbred. However, the two systems are otherwise in good
agreement.

GENES SHOWING OVERDOMINANCE

It is possible that, at some loci, the phenotypic value of the heterozygote
may lie outside the range of those of the homozygotes. Of the extent and kind
of such ** overdominance ”’ we know very little. As a model, it will be assumed

M= Ot
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FiGUre 6.—Variance within lines for a locus with overdominance. Phenotypic fralges
are AA=h, Aa=0,aa=1and q.=0.1. ‘

that the phenotypic values are AA =h, Aa=0 and aa = 1. Using the moment
terminology, the variance hetween lines is then given by

Vw=2h%;+ (1 -2h-5h%)ps +4h (1 +h)pg— (1 +h)3pu.
"Figures 6 and 7 show the within and hetween line variances for several
values of h when q =0.10. The curves for h=0.1 are little different from
those for h=0 in figure 4 but as h increases, the increase of V, with F

becomes less until for a value of h slightly over 0.3, V,, decreases continu-
ously with F. From these results, it seems likely that the general conclusions
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arrived at for completely recessive genes will also apply to genes showing
overdominance provided h is less than 0.2.

THE EFFECTS OF SELECTION

In the earlier analysis it was assumed that there was no selection against
the recessive gene. As, in general, recessives cause some decline in fitness
when they are homozygous, it seemed worthwhile to calculate the changes in
variance in the extreme case when the selection against the homozygous re-
cessive is complete. Here, the meari frequency of the recessive gene in the

VARIANCE BETWEEN LINES
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FIGURE 7.—Variance between lines for a locus with overdominance. Phenotypic values
are AA=h, Aa=0,aa=1and q.=0.1.

population of lines will not remain the same but will gradually decline as selec-
tion proceeds. The genetic variance will not depend on the inbreeding coeffi-
cient alone but also on the amount of selection and therefore on the number of
generations that the inbreeding and selection has proceeded. There will thus
be no general solution in terms of F and each inbreeding system will have to
be treated separately. For continued full-sib matings, when selection against
aa animals is on an individual basis, there are only three possible types of
mating as shown in table 2.

The average variance within lines is 3u/ 16 and that between lines is
u(1-u)/16. The results obtained are shown in figure 8 for q =0.10 and
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TABLE 2

Frequencies of the various mating types with complete selection against
the recessive factor.

AA X AA AA X Aa Aa X Aa
Xo Yo L
b 41 1 1/; !/9
Y1 % %
Uy Y %

the curve for Vy from figure 2 is included for comparison. Both V, and V.
rise at first and then decline to zero as inbreeding approaches completion
and all lines become AA in constitution. In the early stages, the effect of
selection on the behaviour of the variance within lines is fairly small. V, rises
to 2,69 times its random-breeding value in the first generation and does not
decline helow the random-breeding value for 7 generations. With no selection,
the maximum V,, is 2.99 times the random-breeding value and it takes 10
generations to decline to that value again. The selection against the recessive
on this model is the most stringent possible on an individual basis and one
can safely make the generalization that in the early generations of full-sib

VARIANCE

Vy in the absence of selection (Flg.z)

GENERATIONS OF INBREEDING

FiGure 8.—Variance within lines (V«), and variance between lines (V) with full-sib
mating and complete selection against the recessive allele, whose initial frequency was 0.1.
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mating, selection will not greatly affect the hehaviour of the variance within
lines. If the inbreeding proceeds more slowly, selection will be more important
as it will have more opportunity to take effect.

THE PERFORMANCE OF THE LINES IN CROSSING

From the practical point of view more interest attaches to the performance
of the crosses between lines than to that of the lines themselves. The per-
formance of the crosses made between members of a group of lines is often
discussed in terms of “ general combining ability ” and “ special combining
ability.” The * general combining ability ” of a line refers to the average per-
formance of the crosses between that line and all the other lines. The ** special
combining ability ” of a particular cross refers to the difference between the
performance of the cross and what would have been expected from the gen-
eral combining abilities of the parent lines. In mathematical terms, the per-
formance of a particular cross Pj; between the i and j* lines is given by

PU =m +43; + a; + 2y

where. m is the mean of all crosses, a;, a; are the general combining abilities
of the i™ and j* lines and ay; is the interaction term, the special combining
ability. The term “ top-cross ”’ refers to the crosses made between a line and
a sample of individuals from the random-bred population, The average top-
crossing performance of a line should be equal to the general combining
ability in crosses with lines drawn without selection from the random-bred
population, because the gametes from a group of inbred lines made without
selection are exactly equivalent to a random sample of gametes from the
random-bred population. In a similar manner, a series of crosses made at
random between completely inbred lines made without selection are equivalent
to a group of individuals drawn from the random-bred population.

Consider two lines in which the gene frequencies of the recessive are q,
gs. Then, assuming complete dominance, the average performance of the cross
between them is q; ¢». The general combining ability of a line with gene
frequency q; is ¢yq where ¢ is the average. gene frequency in the lines and in
the original population. The variance between lines in general combining
ability is q* var q; = Fq®(1 - q). The variance between crosses is var (¢ gz)
where q;, g, are independent samples from a known distribution. This can
be evaluated from the moments about zero of the distribution as pe® — pmy* and
is equal to q2(1-q)F(F +2q - Fq), being equal to the variance in the ran-
dom-bred population, q*(1-q*), when F = 1. From the above equation for Py
the variance between crosses due to special combining ability is equal to the
total variance between crosses minus twice the variance between lines in gen-
eral combining ability. This equals F? q2(1-q)% When F is small compared
to q, therefore, the variance between crosses is mostly due to general com-
bining ability but as F increases, the special combining ability becomes much
more important, Figure 9 shows the relative contributions that the two parts
make to the variance between crosses when q = 0.10. From the practical as-
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pect, it is the best cross between members of a group of lines that is important.
For a given number of lines, the probable superiority of the best cross above
the mean will be proportional to the standard deviation between crosses and
will be proportional to the first power of F if q is small

The correlation between the performance of lines in crossing when the
lines are partially inbred with the performance when inbreeding is complete
is of some practical interest. .\s inbreeding causes the gene frequencies to
deviate between lines but does not change the average gene frequency in the

VARIANCE BETWEEN CROSSES

Special combining ability

General combining abllity
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Ficure 9.—Relative contribution of general and specific combining ability to the vari-
ance between crosses with change in inbreeding. ¢=0.1.

whole population of lines, it follows that the expected gene frequency in com-
pletely inbred lines deriving from a given partial inbred line is equal to the
gene frequency in that line. Taking the eross hetween two partially inbred
lines in which the frequency of the recessive is q; and gz, we want to know
the expected value of q; g2 when the inbreeding is complete. Because inbreed-
ing does not change the expected gene frequency, it also does not change the
expected value of the cross between two lines in the absence of environmental
variation or errors of measurement. In other words, the regression of the
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future performance of a cross between two lines on its present performance
will always be unity, irrespective of the stage at which the lines are measured.
From this, it follows that the correlation between future performance and
present performance will be equal to

‘/variance of present performance
variance of future performance

Tn particular, for general combining ability, this equals

Fq*(1-q) =\[l‘:

q*(1~-q)

and for the performance of a specifi¢ line cross it is

‘/q’(l—q) F(F+2q-Fq) |/ F(F +24~Fq)
q'(1-q") 1+q

which is equal to I¥ when q is small.
The correlation between the phenotypic value of a line and its general

combining ability will he generally for a single gene fairly close to one, heing
a correlation hetween q, and q,2.

VARTATION DUE TO MANY RECESSIVE GENES

We have been dealing above with the variation due to a single recessive
gene. In practice, the genetic variation may he expected to be due to many
genes with different gene frequencies and effects of different magnitude.
Fortunately, this does not greatly complicate the picture and many of the
results can he taken over directly from the single gene case. The resultant
variance will be merely the sum of the variance due to the separate genes,
so that a generalization can be made ahout the variation due to recessive genes
at frequencies less than about 0.3, that the within line variance will increase
until F is in the region of 0.5 and then decline and that the between line
variance will increase at first as F3, Indeed, the presence of variation due to
many genes means that as far as the within line variance is concerned, lines
will deviate less from the predicted hehaviour than they would if the varia-
tion were due only to a single gene. In a similar way, the formulae referring
to the crossing performance of lines for genes of low frequency can also he
taken over to the general case as can those for the correlations and regression
of future performance and present performance of crosses.

DISCUSSION

The actual experimental evidence on the effect of inbreeding on the varia-
tion within lines is fairly scanty but, in general, the decline in phenotypic
variation is slight and in some cases it is known to have increased above the
original value after several generations of brother-sister matings (e.g., PEASE
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1948). Apart from the possibilities arising from the present paper, there are
three other possible causes for such a phenomenon.

(a) Natural selection for heterozygotes may be opposing the trend towards
homozygosis produced by inbreeding.

(b) In many characters, the greater part of the variation is environmental
in origin and therefore will not be affected by inbreeding. In characters like
egg production index in poultry or litter size in swine, the changes in genetic
variance may be undetectable against the background of the environmental
variance.

(c) The inbred lines may differ from the random-bred stock in their re-
sponse to environmental changes. WRIGHT (1935) has described a line of
guinea-pigs in which a proportion of animals are otocephalic. There is con-
siderable variation in head shape within the line which, on testing, was found
to be not genetic in origin. It seems that the line has shifted towards some
critical threshold in the process of head formation over which a proportion of
the environmental variations takes the animals in the course of development,
resulting in a variety of different abnormalities of head shape.

To these three factors affecting the total variation within lines, we may
now add a fourth—that the variation due to recessive genes at low frequency
will increase with inbreeding until F is about 0.50 and may not return to its
original value until F reaches close to 1.

We are still fairly ignorant about the exact behaviour of the genes respon-
sible for continuous variation. In some characters, e.g., fat percentage in milk
in cattle, it is likely that the genes are acting mostly in an additive manner.
In other, in particular, characters with low heritability that show inbreeding
depression, e.g., egg production index in poultry, vield in maize, a high pro-
portion of the genetic variation might he due to recessive or overdominant
genes. Such genes will generally be held at a low frequency in the population
Dy natural selection. The possible increase of the genetic variance due to such
genes with increasing inbreeding has therefore some practical importance.
There are some writers who maintain that animals whose performance is in-
ferior are so because they are homozygous for deleterious recessives. They
argue that the only way to improve the general level of the stock is to uncover
the recessives by inbreeding and so to produce a population with a uniformly
high level of performance. In fact, even with stringent selection against such
recessives, it will take several generations of hrother-sister matings in which
the recessives are segregating out before the genetic variance within such an
inbred population will decline to its original value. This is only one of several
objections to such a programme,

The results presented here may be of some use in providing a possible
explanation for some peculiar experimental results but it is doubtful whether
they can be of any precise value in the analysis of continuous variation. When
the variation is due to several recessive genes at different frequencies, this
treatment can only supply a general description of the probable behaviour
of the variances, not of sufficient precision for the experimental results to be
used to give mucli information about the behaviour of the genes themselves.
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The only situation in which the gene frequencies are known accurately—in
a cross between two inbred lines—the position is complicated by linkage.
In discussing the variation due to several genes above, it has heen assumed
that in the initial random-bred population there is no correlation between
the genes present at adjacent loci in a gamete. In the F. of a cross hetween
two inbred lines, there will he such a correlation hetween genes at adjacent
loci and any analysis will tell us about the properties of such blocks of genes
rather than of the individual genes. In the ahsence of overdominance at indi-
vidual loci, such blocks of genes will tend to show overdominance themselves,
due to the usual covering-up of recessives. It seems therefore that unfortu-
nately the use of such a cross cannot tell us much ahout the dominance rela-
tionships of the individual genes.

SUMMARY

The effect of inbreeding on the variation due to recessive genes has been
treated theoretically both for the case of continued full-sib mating and in lines
of small breeding size. If the recessives are at low frequency, the variation
within lines increases to 2 maximum when F is close to 0.50, and declines to
zero when inbreeding is complete. The additive component of the variance
within lines behaves in a similar manner, The variance between lines is small
at first, increasing as F3 when F is small. The total variance in the population
of lines increases almost linearly with F. The variance in the performance of
crosses hetween lines is made up of a component due to the general combining
ability of lines proportional to F and to a component ascribable to the special
combining ability in particular crosses proportional to F2. The special com-
bining ability thus becomes much more important as inbreeding progresses.
The effects of overdominance and selection are also briefly treated.
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APPENDIX

A GENERAL DERIVATION OF THE RELATIONSHIP OF THE GENETIC VARIANCE TO THE
COEFFICIENT OF INBREEDING, F

In terms of gene frequency, the effect of inpreeding can be looked upon as.the gradual
widening of the distribution of gene frequencies until, when inbreeding is complete, g may
only take the values 0 or 1. Starting with a known gene frequency, g, in lines of constant
breeding size of n/2 animals, we can consider the second generation as derived from the
first by the sampling of groups of n haploid sets, the gene frequency in the different
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groups being distributed hinomially with mean ng and index n. The next generation is
then the repetition of this process, each line giving rise to a group of lines whose gene
frequencies are hinomially distributed about the mean of the parent line. If the number of
lines is constant, the sample of existing lines can be considered as a random sample from
the above hypothetical population. :

Consider, in the r*" generation, the lines (having frequency f,) in which the gene fre-
quency is ¢i. These lines will then by the above operation give a new group of lines in
which the moments about zero of the gene frequencies are by the usual formulae for a
binomial distribution.

[ﬂ-:]x =q

[#,],=—+(1 —ni)'qs
(=2 s 3(1 -f)qa . (1 -f)(x-:—)qa
S A R TR TR

The moments of the total population of lines will be the sum of the moments of the groups
of lines, arising from each value of q: with appropriate weights f,.

9 n q

fiq 1
Thus: ré1 M3 = hod i +3 (l - _) fral
n

1 1
=—¢tq + (l - -'). #a (the ¢ subscripts referting to generations.)
n n

Simila'r'ly we have three other equations relating the moments in the (r+1)*" genera-
tion to those in the r*™ generation, which can be written diagrammatically as follows:

rHe rHa s M3 r M
41 My 1
1 1
r1 Mg - 1=—
n n
2 He) 96D
rH1 My - —11 -~ -— -
n? n n n n
1 7( 1) 6-( 1( 2 1 z)( 3)
rét My - ) ] - — -—— - — - -
n® n? n n n n n n n

Thus, knowing the values in the zero generation, we could work out the values in
any generation. By the use of matrix theory, it is possible to obtain-a general expression
for the moments in any generation. For a four-rank matrix such as the above, there are
four latent roots, Mo, M, Az A5, and to each latent root there corresponds a latent vector t
(a linear function of the moments) such that:

reito= Rorto
reits = Ag gty
re1ta= Az gty
retty = As ety
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Knowing the zero value for the latent vectors, t, we can easily calculate the values in
the r'™ generation as rto=ote A" and so on, and therefore also calculate the moments by
expressing them as functions of the t’s. As the elements to the right-hand of the diagonal
are zero, the four latent roots are simply the entries in the main diagonal. As an example
of the evaluation of the latent vectors, consider the vector t. corresponding to the root A
We may express t: as s+ 2spa+ aaps + 2. We then obtain the coefticients hy cquating
the coefficients of the #’s deriving from the t recurrence equations with those deriving

from the u recurrence equations. Writing 1 g A, etc. we have
n

n.)\, = 347\;

6Aa

a3y = a4 ——+ azA,
n

AL 30\
ay = as— tay—— + agh
n n
Ro o
Bg)\g =a4_’+lj -—:—+a,——+n;7\.
n n n
giving
Aq = 4]
as = 1 (an arbitrary value)
‘ 3
aa =—-—2-
1
ay = 2
1 3
Then tg= —f1— —Ha+ My
2 2
The four equations for the t's are then:
=1 to = My
1
M=1-— t=—fy + g
n

X ( ! 2) —l ~—3
= -—— — e = -— Ha+ B
2 a n t2 2 Hy 2 2 s

A (1 1)( 2) 3 n-1 6n—7“ st
= —_— - — —— = -y + -
} n n n “ Sn~6 ' Sn~6 ! ! ‘

If o is large, we may write

1 6
ty =~ s—l-‘n +?F'a =24y + Hy

Correspondingly, we have four equations for the moments in terms of the latent
vectors.

Hy=to
Hy=tot ty

3
My =to +?tl +t2

9
Me*=tg +;t; + 2': + tsy
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In the zero generation, we have o iy = q™ giving

oto=q
ot1 =—q(l1~-q)

1
m=q(1—q)(;—q)

1
o:.=-;q(l—q)+ q¥(1-qp?

Then for Vy in the rth generation,

Yw S rMa—rhy
9
= ,to + ety — | £lo +“Sftg+ 2,!3"‘;!:

4

= —;ttl = 25t3 = 4t
4
= —?otx AL —20ta Af—ots M

4 1
=-;q(1 ~QP AN ~ql=-q)(1-2q9) A\j+ [—5 q(1 - q)~q*(1 -q)’] A3

r
Now Al = ( - -—) and as — is the expected relative decline in heterozygosis each
n

n
l I
generation, ( -—) is the proportion remaining after r generations and is equal to
n
2\r 1\3*
1~F, If n is large, then ( *-—') = 1-—) =1 ~FpP., ThusAj=(1~F) ap-
n n

proximately and AJ = (1 — F¥, giving

Ve =a(l-F)+b(1=F) +c(1 - F)S,
Similarly, Va=2(thy = 1y)

3 9
=2 [rto + ;'rtl +rta — (rto +’; gty + 2,83 + rh)]

2( >
=2 =ty — gty =gt
mrt 1= sls

3
= ;—a(l ~F)+ b(1 ~F) + 2¢(1~F)*

Vi is given by the expression, V¢ = g — u}
where 43 =q~q(1-q)(1—-F)
=q* + q(1 — q)F, giving
Ve =q(1 - 9)la(1+ @) + F(1-2¢% - Fq(1 = @]

If q is small, this reduces to Fq. Vs is then obtained as V.-V but unfortunately no
simple expression seems to exist. Expansion gives, in order of powers of F,

Vi=q(1-q) {F4q®+ F*{14q(1 - q) - 6q] + F*[3+2q-20q(1- )]} +....

1f q is- small, the first and second terms, being of the third and second order in q, will
be small compared to the third term and therefore if F is small, V»=3Fq.
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For the genes showing overdominance, the general principles are the same except that
the values for the first and third moments also enter into the calculation.

The variance between the performances of the lines on top-crossing to the original
population can easily be calculated. If the gene frequency in a line is q. then the propor-
tion of homozygous recessives in back-crossing to the original population (in which the
gene frequency is q) is qqi, and this will be the mean phenotype value of the cross.
The variance required is then ¢* var qi = ¢* (o — ) =*lq-q(1~q) (1 - F) - ¢*1 = F¢*(1 - q)
which increases as the first power of F. If we cross two lines in which the gene frequencies
are qi, gs, the mean phenotypic value of the cross is q.q=. To calculate the total variance
between such crosses, we have to find the variance of qiq: when q: and g- are independent
members of the q distribution. Actually the moments about zero of such a distribution of
a product are the products of the moments of the parent distributions. As in this case, the
two samples are from the same distribution, the moments about zero of the product dis-

tribution are the square of the moments of the q distribution. In terms of those moments
the variance between line crosses = us® — p,*

=q’(1-q)F(F +2q-Fq)

Thus the variance between line crosses is proportional to F? if q is small.



