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T is convenient, for purposes of description and analysis, to consider the

phenotypic expression of a characteristic as a sum of an hereditary or geno-
typic value and of an environmental value. If the actual joint results deviate
from this linear description (i.e., if interaction effects exist) the breeder or
geneticist must exercise caution in extrapolating from his results because in
this case the hereditary and environmental values are defined specifically in
terms of each other (NELDER 1950). For some characteristics a transformation
of scale may help in coming closer to additivity (WricaT 1950).

With this linear description, the total or phenotypic variance may be con-
sidered to consist of the hereditary, environmental and interaction variances,
and also of covariance terms if the components are correlated in their occur-
rence. The covariance between heredities and environments is often a trouble-
some feature in human and livestock populations. For example, where dairy
cattle are fed in proportion to their production, the better genotypes are pro-
vided better environments. However, in designed experiments correlation in
occurrence can, for the most part, be avoided by randomization devices.

FisHer (1918) partitioned the phenotypic variance further by subdividing
the hereditary variance into an additive portion resulting from average effects
of genes, a portion resulting from dominance effects (allelic interactions) of
genes and a portion resulting from epistatic effects (non-allelic interactions)
of genes. FisuER showed the distribution of the additive and dominance por-
tions in correlations between various relatives in a randomly mating popula-
tion. The present paper shows the subdivision of the epistatic variance into
components and gives the distribution of these epistatic components in the
covariances or correlations between relatives.

PARTITIONING THE HEREDITARY VARIANCE

The partitioning of the hereditary variance of diploid organisms that have
no multiple alleles can be illustrated by considering two loci, each with two

1 Contribution from the Experimental Statistics Department, North Carolina Agricul-
tural Experiment Station, Raleigh, North Carolina. Published with the approval of the
Director of Research as Paper No. 575 of the Journal Series.
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alleles (4, a and B, b). If the coupling and repulsion double heterozygotes are
identical phenotypically, 9 genetic types, as in table 1, are possible. The Y’s
and f’s in table 1 are the hereditary values and relative frequencies of the indi-
cated types, respectively. The hereditary values are actually phenotypic values
averaged over all other loci and environments. The subscripts are related to
the loci and to the number of genes present. A dot (.) indicates a marginal
frequency or mean.

1f frequencies at one locus are uncorrelated with frequencies at another locus
(algebraically, all f;;=1f;f;) the total variance among the Y’s in table 1 can
be partitioned exactly into a marginal variance for the A locus (i.e., variance
among the row means in table 1), a marginal variance for the B locus, and a
joint or interaction variance. Furthermore, each of the marginal variances can
be partitioned into a linear and quadratic variance; and correspondingly, the
interaction variances can be broken up into four components which are linear

TABLE 1

Hereditary values and relative frequencies of the nine
genetic types for two loci, each with two alleles.

AABB AABb AAbDL AA —
Yo Ya Y30 Y,.
f2 f21 f20 f,.

AaBB AaBb Aabb Aa —
Yy, Yy, Yo Y,.
f12 f1: f10 f,.

aaBB aaBb aabb aa —
Yo, . Yo Yoo Y,
foa for £ fo.

—-BB ~BB —bb
Yol Y 1 Y-O Y--
£, f., f.o f..=1

by linear, linear by quadratic, quadratic by linear, and quadratic by quadratic.
This linear and quadratic treatment of a 3 x 3 factorial, where each of the par-
titions corresponds to one of the eight degrees of freedom, is found in statisti-
cal textbooks. The loci are the factors and each factor has three levels repre-
sented by the three combinations that can occur with two alleles. In genetic
terminology additive and dominance are used in place of linear and quadratic,
respectively.

‘What is to be shown is equally true in the presence of linkage so long as the
frequencies at different loci are uncorrelated. If frequencies are correlated,
which they would be under phenotypic assortative mating, the following par-
titioning does not hold. Other causes of correlated frequencies are discussed
by Lusu (1948) under the subject of disequilibrium.

Partitioning the variance will be illustrated by using the eight orthogonal
scales in table 2. These orthogonal scales serve the same purpose as orthogonal
comparisons or polynomials (SNEDECOR 1946) in computing a portion of the
total variance for each degree of freedom. The only new feature here is that the
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joint frequencies are not equal to each other but are proportional to the margi-
nal frequencies. The requirements of the orthogonal scales are:

(1) ?‘.jf”wm=o, and (2) 12‘,jf”wm\1r/',”=o.

The first requirement insures that deviations around the mean are compared.
The second requirement insures that the comparisons are orthogonal, which
means simply that they are uncorrelated. The eight scales or partitions of the
variance are one for each of the eight separate degrees of freedom in a 3 x3
table. The symbols u, v, x and y in table 2 are the frequencies of the genes
A, a, B and b, respectively

The partition of the variance, ¢,%, corresponding to any particular scale, W,,
is found in the following manner :

oy = (lzjfu Yy Wtu)z/f,fu Wy

which, in statistical terminology, is

ok = (Cov YW, /oy = Byy, %%, = Py, o4,

where Cov, B and p are covariance, regression coefficient and correlation
coefficient, respectively. The tt" partition of the variance is the variance due
to regression on the t™ orthogonal scale.

This particular set of scales (among the many others mathematically possi-
ble) was chosen for its utility. The scales pertaining to the marginal compari-
sons of each locus were chosen to separate the marginal variance into the same
additive (linear) and dominance (quadratic) portions that were long ago
shown to be useful for expressing simply the correlation between parent and
offspring and between other relatives. The other four scales, which relate to
the interactions among the loci, also permit expressing simply the correlations
among the interaction effects of one relative and those of another relative. This
is the primary purpose of introducing the orthogonal scales.

The first two scales, W; and W, are concerned only with the means for the
rows in table 1 and thus only with the marginal variance for the A locus. For
example, the means and frequencies for the 4 locus are:

Genetic type AA Aa aa
Mean Y,. Y, Y.
Frequency f,. £y, fo.
LA 2v veu -2u
v, 1/f,, =2/, 1/fo.

The marginal variance of Y for the 4 locus is broken into two parts, one part
being the variance due to the regression of the marginal means on the linear
scale designated as W, and the other part being the variance due to deviations
from this regression. The variance due to regression,
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f.. fo.
— (Y, =Y )+ —(Yy,. — Yo
u v

f f,
: a:.-=2uv(-—-'-+—')

u v f,, fo.
—_—t —

u v

is the additive variance for the A locus and the variance due to deviations
from regression on the linear scale,

(7; = 'fz‘.—f::'&:- [(Yz. b Yl.) - (Y . Yo.)]”
4uv - f,,
is the dominance variance for the A locus. This latter variance is also the
variance due to regression on the scale designated as W..

The additive variance is proportional to the square of the average effect,
Byw,, of the genes; this average effect being a weighted average of the two
effects or differences Y, —Y; and Y; — Y, corresponding to the comparisons
AA - Aa and Aa - aa. Each difference represents an effect of replacing a by 4,
A —~a, but in each case the effect is measured in the presence of a different
allele. If the two differerices are not exactly the same, ie., the effect of re-
placing @ by A changes according to whether @ or 4 is present, then the alleles
at this locus interact, and the interaction is reflected in the dominance vari-
ance, o, ‘

In a similar manner o4? and o,2 are the additive and dominance variances,
respectively, which sum to the marginal variance for locus B; i-e., the variance
between the means for the columns in table 1. The partitioning of the variance
to this point is the same as that of Fisger (1918) and WricHT (1935).

The last four components (o2 through o42) account for the remaining or
epistatic portion of the variance of Y. The naming of the epistatic components
corresponds to the relationships among the orthogonal scales:

Ws=W;xW; (additive x.additive)
We=W; x W4 (additive x dominance)
Wi=Wy:xW; (dominance x additive)
Ws=Wzex Wy (dominance x dominance).

The epistatic variance for the case of two loci, therefore, consists of four parts:
o,? is the additive in 4 by additive in B, o4? is the additive in 4 by dominance
in B, ¢, is the dominance in 4 by additive in B and o4? is the dominance in 4
by dominance in B. Fisger (1918) and other subsequent workers, in express-
ing the epistatic variancg for two loci, obtained one epistatic component which
is actually the sum of the four components indicated above.

The epistatic components arise because the effects of genes at one locus
depend on what genes are present at the other locus. For example, the domi-
nance by dominance component is
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f2.8,. 6.\ [fafifo 2
2 _ L Do, alal, €, — €5 — €43 + €11),
Oy (4uv—f1_ 4xy—f., (ea, 21 12 11

where the e’s designate the following comparisons among the hereditary
values:

€2 =Y, — Y,y =Y, + Y,
€1 = Yo = Yo~ Yy, + Yy
€12= Y1, = Yy — Yo + Yy,
€ =Yy~ Yy~ Yo + Yoo.

All four epistatic components of variance are functions of these four compari-
sons, and unless each of the comparisons is zero there will be epistatic vari-
ance. The comparison eg, for example, corresponds to (AABB - AABb)
- (AaBB - AaBb), and will be zero only if the gene effect at the B locus,
BB — Bb, is the same for each of the phases, A4 and Aa, at the A locus. The
other comparisons bear similar interpretations and each represents the failure
of the effect of a gene replacement at one locus to remain the same when a gene
is replaced at the other locus. The epistatic compornents of variance will be
illustrated in more detail later; the essential feature here being that they all
arise from non-allelic gene interactions.

The extension to 3 and more loci is apparent. For the case of 3 loci there
are 3 additive components, 3 dominance components and 20 epistatic com-
ponents. The 20 epistatic components are 3 axa, 6 axd, 3 dxd, 1 axaxa,
3Jaxaxd, 3axdxdand 1 dxdxd (a-=additive, d = dominance). For the
case of n loci there are 3"~ 1 components consisting of n components of the
additive type, n components of the dominance type and 3" -2n-1 epistatic
components. Of the 3*—2n 1 epistatic components there are 2n(n-1) two-
factor components of which one-fourth are of the type a x a, one-half are of the

type a x d and one-fourth are of the type dxd; %n(n -1)(n-2) three-factor

components of which one-eighth are of the type a x a x a, three-eighths are of
the type a xaxd, three-eighths are of the type axdxd and one-eighth are
of the type d xd xd; etc. For many purposes the components of the same type
may be combined. The types are designated separately because they present
different properties in the correlations among relatives which will be discussed
later.

Although the method presented here does not include multiple alleles,
Fisuer (1918) did partition the marginal variance for a locus with-any num-
ber of alleles in a randonr mating population into an additive part and a domi-
nance part. Correlations among the additive deviations and dominance devia-
tions of relatives in a randomly mating population were the same as those for
two alleles at a locus. It may be possible to partition the epistatic variance for
multiple alleles by multiple regression and correlation techniques into com-
ponents which will bear definitions similar to those where only two alleles a.¢
considered. Should the correlations among these epistatic deviations of relatives
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be the same as those when only two alleles are considered, the development
herein is general for any number of alleles. At present, this must remain as a
conjecture.

Explicit expressions (in terms of Y’s, gene frequencies and WRIGHT’S
inbreeding coefficient, F) are given in table 3 for the eight components of
variance for the case of two loci and for any amount of inbreeding. In an in-
bred population the marginal frequencies for the A locus are fy =u?+ Fuv,
fi.=2uv(1 - F) and {, = v2 + Fuv, and those for the B locus are f = x® + Fxy,
f1=2xy(1-F) and £y = y*+ Fxy. When the marginal frequencies are uncor-
related, which is the case under consideration throughout this study, the joint
frequencies are found by the simple relationship, fy; = f, f;.

The partitions for random mating can be found from those in table 3 by
letting F = 0. It should be recognized that when there is interaction among loci
the marginal means, Y;, and Y ;, vary with the degree of inbreeding, F. Thus
one cannot compare the same marginal partitions for different degrees of
inbreeding without writing out the marginal means in more detail. The Yy's
are also average values, averaged over the various gene combinations at other
loci and over the various environmental sources of variation which determine
the population of phenotypes. If interactions of 3 or more factors involve these
loci, the Yy's will also change with inbreeding. Thus the partitions of variance
are descriptions of the population under consideration at the moment and will
change with inbreeding.

How the inbreeding affects the partitions, or at least the ultimate end of the
partitions as inbreeding approaches one, can be seen in table 3. The dominance
variance disappears when F = 1. The disappearance is not linear with F, how-
ever. With some frequencies the dominance variance will actually increase for
a period of time with inbreeding (RoBerTSON 1952). The last three of the
epistatic partitions in table 3 also disappear as inbreeding becomes complete.
Note that these three partitions involve dominance in their nomenclature.
Their disappearance is not linear with F and is too complicated to allow any
lucid generalizations. In fact, all partitions involving dominance in their
nomenclature, and for any number of loci, will disappear as inbreeding becomes
complete. If all partitions involving dominance in their nomenclature are zero,
the effect of inbreeding on the additive partitions is to increase the one-factor
additive partitions by 1+ F, the two-factor additive partitions by (1 + F)?2, the
three-factor additive partitions by (1+ F)3, and so on. However, when par-
titions involving dominance in their nomenclature are not zero, the influence
of inbreeding on the additive type of partitions cannot be foretold without
specifying the hereditary values and gene frequencies.

CORRELATIONS BETWEEN RELATIVES

The covariances (or correlations) between the phenotypes of relatives can
be analyzed in terms of the covariances between their respective components:
that is, between the hereditary, environmental, and interaction values of one
relative and those of the other relative. Only the covariance between hereditary
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values will be considered here. The other covariances can sometimes be
assumed to be zero, but this will depend on the organism and the circum-
stances. In human and livestock populations these correlations are often a
troublesome feature. For example, in multiparous species, the environments of
littermates are correlated. It is always necessary to be wary about assuming
that the only covariances between relatives are those between their heredities.

The hereditary deviations of individuals are products of the regression coeffi-
cients, Byw’s, and the appropriate scale values, W’s. For example, the additive
genetic deviation of an individual for the 4 locus is Byw, W, where W is 2v,
v-u or -2u corresponding to whether the individual is A4, 4a or aa, respec-
tively. WricHT’s (1935, 1950) additive estimates, G’s in his notation, are
the additive genetic deviations plus the mean, Y. His dominance deviations,
D = H-G in his notation, are the same as the present dominance deviations;
for example, Byw,Wy's for the A4 locus. An individual’s hereditary value is a
sum of the mean and its hereditary deviations,

Y= ?4’ 2 BYWQWQ‘
° t

The correlations between the additive genetic and between the dominance
deviations of relatives in a randomly mating population were given by FISHER
(1918). He also gave the covariance between epistatic deviations of relatives
for the case of two loci. WricHT (1922), with his coefficient of relationship,
extended the correlations between additive genetic deviations of relatives to
include inbreeding. WRIGHT’s coefficient of relationship is the same as the
absolute value of the correlation between additive genetic deviations of rela-
tives as described in this paper. CockerHaM (1952) gave the correlations
between epistatic deviations of relatives in a randomly mating population.

The orthogonal scales may again be invoked to obtain these relationships for
a randomly mating population or an inbreeding population where gene fre-
quency is not changing, and to obtain the correlations among relatives for the
epistatic deviations. Although one cannot find a joint frequency distribution of
relatives which is general for all systems of inbreeding they can be computed
for any particular system of consanguine mating. Again, the case of two loci
with two genes each will be used for illustrative purposes ; however, the exten-
sion to any number of loci will be apparent.

Let Y and Y’ be the hereditary values for two relatives (parent and off-
spring, full-sibs, etc.) and let W¢ and W,/ be the orthogonal scales of their
respective generations. The scale values (terms of the scale) vary with the
genotypes of course, but the entire scale may vary with the generation (e.g.,
when there is inbreeding). In a randomly mating population where gene fre-
quencies do not change, relatives with the same genotype have the same heredi-
tary deviations and the same scale values. The different notation (prime)
simply designates whether the hereditary deviation or scale value is used for
one relative or the other relative. In any system of inbreeding relatives with
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the same genotype will have the same deviations and the same scale values
provided they are in the same generation but can have different deviations and
different scale values if they are in different generations, even though gene
frequency does not change.

The covariance between Y and Y’ may be expressed as

Cov YY' = 3, Cov(ﬁthWt) (BY'W'( W), (,t'=1...8)
tot

which is equivalent to

'2( P(Byy LY (ﬁY'W'( W ow'y

because o} = 3’th Ozwt- Now, p (Bywth) (ﬁY'W'( W)=t Pw Wy

because the regression coefficients are constants and do not affect the absolute
value of the correlation coefficients. The sign (+ or —) will be the same as the
sign of the product of the two regression coefficients, and will be considered in
more detail later. It is necessary then to determine the correlation between the
eight orthogonal scales of one relative and the eight orthogonal scales of the
other relative. This is done by constructing a nine by nine joint distribution
table for the two relatives. Although the results are simple, the development is
involved and is given in an Appendix. If the genotypic frequencies for all rela-
tives are proportional to the marginal frequencies of the loci, if the genes
recombine independently, and if gene frequencies do not change, the correla-
tions between the epistatic scales of two relatives are products of the one-
factor correlations as given in table 4.

TABLE 4

Correlations between the eight scales of one relative
and the eight scales of another relative.

v, W, W v v Ve v; v
W, Pw,w; Pw,w; O 0 0 0 0 0
Y, Pw,w; Pw,w; O 0 0 0 0 0
¥, © 0 pw,w Pw,w, 0 0 0 0
v, O 0 pww; PW‘W; 0 0 0 0
w. 0 Y Y 0 Pw,w Pw,w; Pw,w; Pw,w, Pw,w; Pw,w; Pw,w; Pw,W,
W 0 0 Y 0 pw,wi Pw,w; Pw,w; Pw,w, Pw,w; Pw,w; Pww, Pw,w,
w, 0 0 0 0 pw,w{ Pw,w; Pw,w; Pwiw, Pw,W; Pwyw, Pw,w; Pw,w,
Vs 0O 0 Y 0 Pw,w{ Pw,w; Pw,w; PW,W, PW,W; PW,w, Pw,w; Pw,w,

Two simple generalizations are apparent from table 4. (1) One-factor devi-
ations (additive or dominance) of one relative are correlated, if at all, only
with one-factor deviations of the other relative, and also the deviations must
pertain to the same locus. This is actually a particular case of the broader
generalization that n-factor deviations of one relative are correlated, if at all,
only with n-factor deviations of the other relative, and the deviations for both
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relatives must involve the same loci. (2) The correlations between the epistatic
or multi-factor deviations are functions of the correlations between one-factor
deviations.

Relatives in a randomly mating population

If the one-factor additive deviations of either relative are uncorrelated
with the one-factor dominance deviations of the other relative, i.6., Pw, Wy
= pwyw,’ = 0 for all loci, then all the correlations in table 4 are zero, except for
the diagonal ones. This means that a deviation in one relative is correlated,
if at all, only with the same deviation in the other relative. This condition is
fulfilled in a randomly breeding population. Since the one-factor additive corre-
lations are the same and the one-factor dominance correlations are the same for
all loci, a simple rule can be used for computing the various correlations. Let
p be the correlation between one-factor additive deviations of the relatives, and
let q be the correlation between one-factor dominance deviations of the rela-
tives. The correlation between any type of deviation of the relatives is

(r)*(1)”,

where A is the number of factors (loci) entering into the deviation with addi-
tive nomenclature and D is the number of factors entering into the deviation
with dominance nomenclature. The deviation is an (A + D)-factor deviation.
When the two relatives are parent and offspring, p = 74 and q = 0. No devia-
tions involving dominance in their nomenclature are correlated between parent
and offspring. The correlations between the indicated types of deviations are:

a axa axaxa

ot Gor-t (or-!
7) @=7 \g) =3 \7) 9 =3

Dominance is illustrated by considering the relationships between full

1 1 .
sibs; i.e. p= 3 and q= ry The correlations between the epistatic devia-

tions are

axa axd dxd
2

OE- GOt G-

The correlations between the various deviations of relatives in a randomly
mating population are all positive, since each one involves the same deviation
and the two regression coefficients, Syw and By-w-, are identical in each case.

Since the partitions of the variance are the same for each relative in a
randomly mating population the covariance between the hereditary values of
two relatives can be given in terms of partitions of the hereditary variance.
Also since the correlations among hereditary deviations are the same for all
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those of the same type it is convenient to designate the sum of the components
of variance of the same type by a single term. Let o,5,% be the sum of all the
components in whose nomenclature additive appears A times and dominance
appears D times. For example, o;,2(A =1, D =0) is the additive genetic vari-
ance which is the sum of all the one-factor additive components (one from each
locus), op,? is the dominance variance, o;,? is the a x d epistatic variance, and
s0 on. Symbolically, the total hereditary variance is

n
o’ =
Y UzAD'
ADw=o
1A +D%n

where n is the number of loci. The summation is over both A and D where
each varies from 0 to n but subject to the limitations that for any term A and
D cannot both be zero nor can their sum be greater than n. The covariance
between relatives can be given in terms of these partitions,

n
Cov YY' = pAqDl o .
AD=0
1$A + D&n

When the two relatives are parent and offspring the covariance reduces to

2R

which is one-half the additive genetic variance, plus one-fourth the a x a vari-
ance plus one-eighth the a x a x a variance, and so on.

If only the heredities of relatives are correlated, the covariance between
their phenotypes is the same as the covariance between their heredities. In this
case the phenotypic correlation or the phenotypic regression of one relative on
the other is the ratio of the covariance between the heredities of the relatives
to the total phenotypic variance.

Relatives in a self-fertilizing population

Although the correlations among epistatic deviations of relatives in an inbred
population are functions of the correlations for one-factor deviations, several
new considerations are involved. The absolute values of the correlations between
one-factor additive deviations are the same as WrIGHT’s (1922) coefficient of
relationship (the correlations can be negative when the relatives are in differ-
ent generations depending on dominance and epistatic effects of the genes).
This means that the absolute values of the correlations between the epistatic
deviations of relatives involving only additive in their nomenclature can be
found in the same manner as when mating is random. The correlations between
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one-factor dominance deviations of relatives must be computed for each system
of inbreeding and involve considerable labor. Also; one-factor additive devia-
tions of one relative are correlated with one-factor dominance deviations of the
other relative. This means that many more. of the epistatic deviations of one
relative are correlated with those of the other relative than in a randomly
breeding population.

Self-fertilization was chosen as the system of inbreeding to illustrate the
correlations among relatives in an inbred population for three main reasons.
First, it is the most extreme form of inbreeding and relationships in a milder
system of inbreeding should fall between these for selfing and those indicated
earlier for random mating; second, considerable work is being done in plant
breeding with normally selfed organisms or by selfing organisms; and third,
it is by far the easiest system to work with computationally. The correlations
between hereditary deviations of parent and of offspring will be considered at
first.

The correlation between one-factor additive scales of the parent and one-
factor additive scales of the offspring is

1+F +2F
2WIi+F Vit F '

where F’ and F are the inbreeding coefficients of the parent and the off-
spring, respectively, When selfing
1+F*

F >

(LUSH 1948)

so that the correlation becomes

2F
1+F

The correlation between the one-factor dominance scales of parent and of
offspring in a self-fertilizing population is
1 -|/(1 +F)Y(u—v+ 2Fv) (v—-u+ 2Fu)
5 F(u + Fv) (v + Fu)

which involves gene frequency, u and v at the A locus in this example. Also
in a self-fertilizing population, the one-factor additive scales of the parent
may be correlated with the one-factor dominance scales of the offspring.
This correlation is

(u-v)(1-F) (1-F)
2 F(1+ F) (u+ Fv) (v + Fu)’

which is zero when gene frequency is one-half. The dominance scales of the
parent and the additive scales of the offspring are not correlated.



872 C. CLARK COCKERHAM

The correlations among the epistatic:scales can be found from the one-factor
correlations by substitution in table 4. The simple rule used for computing the
correlation between any type of deviation in a randomly mating population
cannot be used here because (1) the one-factor dominance correlations involve
gene frequencies and can differ from locus to locus, (2) different types of epi-
static deviations may be correlated, and (3) in terms of hereditary deviations
the correlations may be negative.

The signs (+ or —) of the correlations vary with the dominance and epistatic
effects of the genes. For example, even in the absence of epistasis, the correla-
tion between the additive deviations of non-inbred parents and first generation
selfed offspring is negative for an over-dominant locus when the frequency of
the favorable gene is slightly higher than the frequency that would make the
mean of the parents a maximum. For any given situation the sign can be found
and is the same as the sign of the product of the two regression coefficients,
Byw and By-w, corresponding to the deviations under question. When the rela-
tives are in the same generation the correlation hetween the same type of
deviation will always be positive because the two regression coefficients are
identical, but even here the signs of the correlations between different types of
deviations have to be determined and also all of the correlations involve gene
frequency. The knowledge required to determine the correlations, gene fre-
quencies and regression coefficients, precludes any use of this type of biometri-
cal analysis, with one exception, and this is when all gene frequencies are one-
half. In this case a deviation of one relative is correlated, if at all, only with the
same deviation of the other relative, as is true for relatives in a randomly
mating population.

The frequencies of segregating genes can be reasonably assumed to be one-
half in subsequent generations of a cross between two homozygous linés. How-
ever, the applicability of the following results is limited somewhat because of
the assumption, necessary in this analysis, that the genotypic frequencies are
proportional to the marginal frequencies of the loci. Even with random mating
following the cross it is several generations before the genotypic frequencies
can be reasonably assumed to be proportional to.the marginal frequencies of
those loci which are closely linked. When generations subsequent to the cross
are selfed or inbred rapidly the genotypic frequencies cannot ever be reason-
ably assumed to be proportional to the marginal frequencies of the linked loci
because the parental types are fixed much more rapidly than the recombinants.
In this case the partitions of the varianice and the following correlations among
relatives apply strictly only to those combinations of loci whose genes recom-
bine independently.

Where each generation after the first generation of a cross between two
homozygous parental lines is obtained by self-fertilizing the previous genera-
tion, the coefficient of inbreeding in the gth generation is

2872 -1
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The correlation between the parent in the (g ~ 1)th generation and the off-
spring in the gth generation is then:

2(2672 - 1)

286"l
] /2272 =]

28~

for the dominance scales. These correlations have meaning only when g is
greater than two.

By using the correlations between parent and offspring a more general
scheme can be developed for indicating the correlations hetween any two
relatives. Let 2, . k.x20 De the correlation hetween the additive scales of one
relative, Oy, in the g;th generation and of another relative. Py,, in the g.th
generation hoth of whom descended from the last commou parent, Cy, in the
kth generation. Let pgk,g,, 1, De the correlation hetween the dominance scales

of the same two relatives. The following path coefficient diagram shows the
relationships between these relatives.

for the additive scales, and

ag,~1 %g
0 l...oh_z—g—‘é—*oh—l—‘l’ozx

A k+

Ck % p(“-lhlz)
P

P’s are used to indicate the parents of Py, and O’s are used to indicate the
parents of O, in their descent from the last common parent in the kth genera-
tion. The single-headed arrows are path coefficients (WRIGHT 1934), and the
double headed arrow indicates a correlation coefficient. The only connection
hetween the genotypes of the two relatives is through the chain of parents via
the common parent. Since the additive scales of one individual are correlated
only with the additive scales (and not the dominance scales) of the preceding
parent (or succeeding offspring), the path coefficient, a, for the additive scales
is actually the correlation coefficient between the additive scales of the parent
and of the offspring. The correlation between the additive scales of Oy, and Py,
is computed hy multiplying together all the path coefficients:

ag,~1 ag
k +1‘“Pn-2—a—" Pg-1—> P,

= LR 2 LI Y
pA(k.s;.zz) as; an—l ak+l ag;"'l ax,'

~| /2(23—2 -1)
o = —_—
€ 22"1 -1 ’

the correlation between the additive scales of the two relatives is

Substituting
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2(¢l+‘2-2k)/2 (zk—l - 1)

Pa =
(k,g1.22) \/(zg;-l -1 (28:"1 -D

The correlation between the dominance scales of Og and Pg are found in
1 2

the same manner, except of course, the path coefficients are correlations
between the dominance scales, Substituting

2672 -1
al = 2("‘1_ 1 !
the correlation between the dominance scales of the two relatives is
2k 1.1
Pd(k.xnlz) - \/223‘—1 - 1) (2‘3_11" l)

The correlation between the various epistatic scales can be found by the
familiar formula:

A D
[pl(k,g“ga)] [pd(k,_g‘g‘)]

When the relatives are in the same generation the covariance between
their hereditary values can be given in terms of partitions of the hereditary

variance,
n

v YY = E A b g
CovY Pa(k,g,) Pdik,g,¢) 7AD"

AD~0
1A + D&n

as was done for the randomly mating population. Remember that these par-
titions of variance are for the inbred populations and change with the degree
of inbreeding. As an example of the procedure, consider a population of Fy
individuals which are classified according to their Fy parents and F. grand-
parents. The total hereditary variation of these F individuals is distributed in
the following analysis of variance as

Source Variance
Between F, progeny Z P:(z, “h pg(z, “6 0.2\9
means AD
Between F, progeny
mean A A D SR 3 D 2
eans within F, ; [P-(3.4.4) Pacs,4,0) ~ Pacz,4,9) ”d(z.4.4)] %Ap
parents .D
Between F, individuals
with the same F, Z [1 - P:(3,4 ® pf;(s'4 4):] oip>
parent AD ’ "
where

A D
Z Pac2,4,4) Pac2,4,4) aD
AD
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is the covariance between the hereditary values of F, individuals which de-
scended from the same F, grandparents but different F, parents, and

] A D 2
z : Paca o o
yws a(3,4,4) “d(3,4,4) "AD

is the covariance between the hereditary values of F, individuals which de-
scended from the same F; parent. The one-factor correlations are a2, 4,4) =4/7,
Pa(3,4,4) = 6/7, Pa(2,4,4) = 1/7 and P4(3,4,4) = 3/7

Relatives from randomly mated inbred parents

The final situation to be considered is one in which several inbred lines are
made from a randomly mating population. The inbreeding program is inter-
rupted at any desired stage of inbreeding to cross the inbred individuals at
random. Although the parents are inbred, the offspring will not be. Barring
selection and linkage, the offspring will reconstitute the original randomly
breeding population from which the inbred individuals were obtained. Whether
one can actually obtain unselected inbred lines or individuals is questionable.
If the genotypic frequencies are proportional to the marginal frequencies of
the loci and if gene frequencies do not change (no selection), the gametic
arrays from any generation of inbreeding will be the same as those in the
randomly mating population. Thus the offspring from the randomly mated
inbred parents will be a reconstitution of the original population. However,
the genotypic frequencies among the inbred parents, at least when the parents
are the result of self-fertilization, will not be proportional to the marginal fre-
quencies of those loci which have recombination values less than one-half. This
will affect the joint distribution of full sib offspring and of half sib offspring.
In a few examples considered, the effect on the joint distribution is small.
Nevertheless, if the inbreeding is between zero and one (0 < F < 1), the
results are accurate only for those combinations of loci which have recombina-
tion frequencies of one-half. The frequencies of genotypes among parents in-
bred to homozygosity (F =1) are proportional to the marginal frequencies of
the loci, regardless of linkage relationships, if the genotypic frequencies in the
original population were proportional to the marginal frequencies of the loci
and if there has been no selection or change in gene frequencies.

The covariance between offspring with both parents in common, full sibs,
and the covariance between offspring with one parent in common, half sibs, will
be considered. The joint distribution of full sibs from randomly mated inbred
parents for the A locus is given in table 5. From this table the following correla-
tions are found: Pwiwy = (1 + F)/Z, PW Wy = PWawy’ = O, Pwowy = [(1 + F)/2]2,
i.e,, the correlation between the additive deviations of full sibs is (1+F)/2,
the additive deviations of one full sib are not correlated with the dominance
deviations of the other full sib, and -the correlation between the dominance
deviations is the square of the correlation between the additive deviations.

In an analogous manner it is found that of the one-factor deviations only
the additive deviations of half sibs are correlated, and this correlation is
(1+F)/4
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The correlations between the epistatic deviations are found in the manner
given previously.: (p)4(q)®. The correlations are all positive.

When the parents are inbred to homozygosity, F = 1, the correlations between
hereditary deviations of half sibs are the same as those between parent and
offspring in the original population. This is a reasonable result when one con-
siders that the relationship, in both cases, is between two individuals in a
randomly mating population with a gamete in common.

Again, the covariance between the hereditary values of these relatives, which
is the same as the covariance between their phenotypes if only their hereditary
values are correlated, can be expressed in the familiar form,

n

Cov YY' = E pA qP ok .

AD=0
1€A +DSn

The partitions of variance are the same as those in the original randomly
mating population.

SUMMARY

The hereditary variance of diploid populations, whose genotypic frequencies
are proportional to the marginal frequencies of the loci, was partitioned into
3 -1 partitions analogous to the linear and quadratic analysis of a 3® factorial
representation, where n is the number of loci (factors) each with three genetic
phases or levels (no multiple alleles). These partitions are grouped into types
of which there are s+ 1 types of s-factor partitions. The one-factor types are
(1) additive (linear) variance, or additive genetic variance, which is the sum
of the n partitions, one for each locus, resulting from additive effects of genes
and (2) dominance (quadratic) variance which is the sum of the n partitions
resulting from dominance or allelic interactions of genes. The remaining two
and more factor partitions result from non-allelic interactions of genes and
constitute the epistatic variance, The three types of two-factor epistatic vari-
ances are (1) additive by additive variance which is the sum of the n(n-1)/2
partitions, one for each combination of two loci, resulting from joint additive
by additive effects of non-allelic genes, (2) additive by dominance variance
which is the sum of the n(n—1) partitions resulting from joint additive by
dominance effects of non-allelic genes and (3) dominance by dominance vari-
ance which is the sum of the n(n-1)/2 partitions resulting from joint domi-
nance by dominance effects of non-allelic genes. The three (or more) factor
types of epistatic variance bear similar interpretations.

Correlations between the hereditary deviations (a, d, a x a, a xd, and so on;
a = additive, d = dominance) of relatives were considered for the following situ-
ations: (1) relatives in a randomly mating population, (2) relatives in a self-
fertilizing population and (3) relatives which are offspring from randomly
mated inbred parents. For situations 1 and 3, and for situation 2 when gene
frequencies are one-half and the relatives are in the same generation, the corre-
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lations between the epistatic deviations of the relatives are products of the one-
factor additive and dominance correlations. For each of these situations only
the same types of deviations involving the same locus or loci are correlated and
the correlations are the same for deviations of the same type. Therefore, the
correlations between the hereditary deviations of the relatives may be generally
expressed as
(P)*(Q)®,

where additive appears A times and dominance appears D times in the nomen-
clature of the deviation, and where p and q are the correlations between the
additive and dominance deviations, respectively. Thus the covariance between
hereditary values of the two relatives is

n

E pha ok,

AD=0
1$A + D&n

For example, where the two relatives are parent and offspring in a randomly
mating population, p = 1/2 and q = 0. The covariance between the heredi-

tary values of parent and offspring is $ (/2)* 04o» which is 1/2 the ad-
A=1

ditive genetic variance, plus 1/4 the a x a variance, plus 1/8 the ax ax ¢
variance, and so on.

LITERATURE CITED

CockeraaM, C. CLARK, 1952 Genetic covariation among characteristics of swine. Un-
published Ph.D. Thesis. Iowa State College Library. Ames, Iowa.

Fisuer, R. A,, 1918 The correlation between relatives on the supposition of Mendelian
inheritance. Trans, Roy. Soc. Edinburgh 52: 399-433.

Lusn, J. L, 1948 The genetics of populations. Ames, Iowa. Mimeo.

RoBerTSON, ALAN, 1952 The effect of inbreeding on the variation due to recessive
_genes. Genetics 37: 189-207.

NELDER, J. A,, 1953 Statistical models in biometrical genetics. Heredity 7: 111119,

SNEpECOR, G. W., 1946 Statistical methods, 4th edition. Iowa State College Press.
Ames, Towa.

WRIGHT, SEWALL, 1922 Coefficients of inbreeding and relationship. Am, Nat. 56: 330-338.
1934 The method of path coefficients. Ann. Math. Stat, 5: 161-215,
1935 The analysis of variance and the correlations between relatives with respect
to deviations from an optimum. J. Genet. 30: 243-256.
1950 The genetics of quantitative variability. Colloquium at the Institute of Animal
Genetics of the University of Edinburgh, 1949-1950.



PARTITIONING HEREDITARY VARIANCE 879

APPENDIX

GENERAL DERIVATION OF THE CORRELATIONS BETWEEN
SCALES OF RELATIVES

Consider at first the joint distribution of two relatives for the A locus averaged over
all other loci, table 6. The h's are the joint frequencies of the two relatives; for example,

TABLE 6
Joint frequency of two relatives (A locus).
P G ti
Relative teyn : e:c f v, LA
by, h,, hyo AA f,. 2v /£,
Relative hy, h,, h, Aa f,. veu -2/f,,
h, by, hgo aa fo. =2u 1/f,,
Genetic
type AA Aa aa
f f. . fo.
v, 2v v-u -2u
LA /1, -2/, 1/,

ha is the frequency with which the 4.4 relative appears with the 44 relative’. The row
and column frequencies add to the marginal frequencies of the relatives

f;'. = %hu’- .= ?hu"

which are also the margina] frequencies for the A4 locus in each of the relative’s gener-
ation. The correlation between a one-factor scale for the A locus of one relative and a
one-factor scale for the A locus of the other relative is

Sh . .WW,
1,1 it i Cov WW

BRGS0k owow

(1)

Pww’

As an example let the primed relative be the offspring and the unprimed relative
be the parent in a randomly mating population where the gene frequency is the same
in the two generations. The joint frequencies are: he=u% ha=u’, ha=0, hi=u'v,
hu=uv, ho=uv’, he=0, ha=uv’, ho=v". The correlations are from (1): Pw; w, =14,
Pwy Wy = Pugr Wy = Pug wy = 0.

The joint frequencies, k-, of the two. relatives for the B locus are shown similarly
in table 7.

When the joint frequencies of relatives for two loci are proportional to the joint
frequencies of the relatives for each locus, the joint frequencies for both loci (table 8)
can be found by multiplying together the joint frequencies for each locus (tables 6
and 7). They are proportional in randomly matiig populations and in inbreeding popula-
tions if gene frequencies are not changing, if genotypic frequencies in each generation
are proportional to the.marginal frequencies of loci and if loci are not linked. The
frequency with which the 44BB relative appears with the AABB relative’ is ha ke, and
so on for the other genotypes. The frequency of the 44ABB relative is fs.fs=fx and
the frequency of the AABB relative’ is f.’f4'=fx. The joint frequencies for locus 4
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TABLE 7
Joint frequency of two relatives (B locus).
. Genetic
Relative type f LA LA
ky, k;y kzo BB £, 2y /£,
Relative ky, k,, k0 Bb £, y-x -2/f,,
ko ko, koo bb fo -2x £,
Genetic
type BB Bb bb
£ £, £ £l
LA 2y y-x -2x
v, /£, -2/f, 1/£,

are on the left side of the block of joint frequencies for locus B in table 8. To complete
the table, the frequency for 4 must multiply each term in the block.
The covariance between a scale of one relative and that of the other. relative is

= ’ "I
Cov WW = Z 11u k”fWh.Wij. (2)

td
7,4,

These covariances simplify when we consider the relationships among the orthogonal
scales. Only the first four scales are given for each relative in table 8 since these can
be used to construct the remaining four which pertain to epistasis. Note in table 8 (and
in table 3) that the individual terms of the scales have the following relationships:

Wiy =W, or is constant for each i, for scales W1 and W,
relating to the 4 locus

=W.,,, or is constant for each j, for scales W: and W,
relating to the B locus,

and remember that
Wi = Wi W,y for W5, We, Wiz and W or the epistatic scales.

(The subscripts i and j designate terms of a particular scale.) The same relationships
hold among the W”s. Thus, Wi. W.; may be substituted for Wy, and W,.” W3/ may
be substituted for Wit in (2) for the epistatic scales. With these substitutions the
covariance in (2) becomes

CovWW =2 h W W, Zk WV, (3)

’
»

i,i Jui
But 2’ h“zVi W;f is the covariance pertaining to the one-factor scales for locus
i A

A in (1), and 2’ k”fW jW'jf is the covariance pertaining to the one-factor scales
i3 oo

for locus B, so that the covariances between the épistatic scales can be evaluated

in terms of the covariances of the one-factor scales for each locus. For example,

Cov WyWg = S h..W W, Tk

W W' R4
1,i g0 35 3 s

i

= Cov, W,W; Cov W,W;.
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The covariance between the additive by additive epistatic scales of one relative and the
additive by additive epistatic scales of the other relative is the product of the covariance
between the additive scales of the two relatives for one locus and of the covariance be-
tween the additive scales of the two relatives for the other locus. The same relationship
exists between the correlations as between covariances,

Pws wg' = Pwy wy’ Pwg Wy

because w;=%w,%w; and %wy; =%w,%wy. The correlations between the eight scales of one
relative and the eight scales of the other relative are given in table 4.



