
A GENERAL METHOD FOR INVESTIGATING THE EQUILIBRIUM 
OF GENE FREQUENCY IN A POPULATION* 

R. C. LEWONTIN 

Genetics Faculty, North Carolina State College, Raleigh, N .  C .  

Received July 10, 1957 

T is a well known fact that nearly all, if not all, natural populations are in I some degree polymorphic. On a phenotypic level, this simply means that there 
exist a number of different morphological or physiological types in the popula- 
tion. On a genotypic level, this often, although not always, means that there exists 
in the population more than one allelomorph at a given locus. The fact that alter- 
nate states of a gene persist over long periods in a population has been one of 
great interest to students of evolution. 

In  a recent paper LI (1955) discussed various cases of equilibrium and demon- 
strated that the adaptive value or average fitness of a population is maximized 
at the equilibrium value of the gene frequency, 4, when this equilibrium is stable, 
and minimized when it is unstable. Unfortunately, in order to make this generali- 
zation, it was necessary in most cases to define average fitness in a way which is 
not intuitively obvious. In addition, for the case of an equilibrium due to a balance 
of selection and mutation, the adaptive value of the population is not quite maxi- 
mized. Despite these reservations, however, the principle of maximization of 
adaptive value does, in some sense, tie together the diverse conditions of equi- 
librium. It is interesting to note the parallel between LI’S approach and the con- 
ditions for equilibrium of a physical particle subjected to various forces. For such 
a particle the condition of stable equilibrium is that of minimum potential 
energy, while unstable equilibrium is characterized by maximum potential 
energy. 

A further, and extremely important, contribution to the general theory of 
genetic equilibria has been made by KIMURA (1956) in which that writer has de- 
veloped general conditions for the stability of equilibria when more than two al- 
leles exist at a locus. The restriction on these general conditions is that the selec- 
tive forces be constant, irrespective of gene frequency, and that mating be at 
random. 

In this paper I will propose a further extension of the general treatment of 
gene frequency equilibria in a different direction than did KIMURA. While he 
held selection and mating system constant and allowed the number of alleles 
to be n, I shall deal with only two alleles, but allow the factors acting on the gene 
frequency to have the widest possible scope. The methodology developed will 
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apply irrespective of the nature of selection, the mating system, the presence of 
mutation or migration, or the normality of Mendelian segregation. 

To this end, a slightly different approach to finding the equilibrium value, 4, 
will be used, and it will be shown that with this method of attack, the general con- 
ditions for stability take an extremely simple form. 

To complete the deterministic theory of gene frequency equilibria. it remains 
to draw together the n-dimensional generalization of KIMURA, with this treat- 
ment, a problem which, to this moment, has not been solved. 

The method of weights 

Let us assume that there are two alleles at a locus, a and A, and that in any 
particular generation they are in the relative proportions qo and po = (1 -qo) . In 
the next generation the three genotypes AA, Aa, and aa will be present in the 
relative frequencies : 

AA Aa  aa 
(1) U11 Po2 U12 2 P O Q O  U13 402 

This will be true irrespective of the mating system, mode of selection, muta- 
tion, migration, or any other force acting on the population. The U's are not to be 
confused with the adaptive value, W ,  used by LI. The U ' s  are simply an arbitrary 
set of weights chosen in order to make expression (1 ) true. Thus, despite the 
superficial resemblance of ( 1 ) to the distribution of genotypes in a random mat- 
ing population under selection, it is actually a perfectly general statement. These 
weights will generally be a function not only of the selection coefficients, muta- 
tion rates, migration, and inbreeding coefficient of the population, but also of q 
itself. 

Now the gene frequency of allele a in this next generation is: 

and the change in gene frequency from the initial generation is 

By equilibrium of gene frequency is meant simply the value or values of q for 
which A q  = 0. Setting A q  = 0 in equation ( 3 )  there are three possible solutions. 
Two of these (4 = 1, 4 = 0) are trivial. We are not concerned with loss or fixation 
of the allele. The third solution is given by 

This expression (4) is analogous to LI'S equation (4) which is simply a special 
case when the weights are the adaptive values of the three genotypes. 
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By substitution of the appropriate weights in (4), the value or values of q for 
which there is an equilibrium can be immediately found. 

It was stated at the outset that only the case of two alleles at a locus was being 
considered here. In  the last section of this paper the most general expression for 
the stability of equilibria involving n alleles will be given. It still remains to 
translate this general condition into restrictions upon the weights themselves. 

The stability of equilibria 

By analogy to the equilibrium of mass points in physics, we may classify 
equilibria as stable, unstable, or neutral. In  a stable equilibrium, the gene fre- 
quency will return to the equilibrium point, 4, if it is displaced slightly in the 
positive or negative direction. The stipulation af a slight disturbance is necessary, 
for if several equilibria exist a large disturbance from one equilibrium point may 
cause the frequency to change toward another equilibrium. Mathematically we 

may say that the equilibrium is stable if ___ t t q , l q  is negative. 

Conversely, the equilibrium is unstable if the gene frequency continues to move 
away from the equilibrium point following a slight displacement. This may be 

Finally, the equilibrium is neutral if the gene frequency moves neither toward 
nor away from equilibrium following a small displacement, but remains at the 

point to which it has been displaced. This means that ~ 1 ~ is zero. 

does not exist at the point cj. There are a great many It may happen that ~ 

functions for which this may be true. When such is the case, a slightly more 
general set of criteria may be useful. Let 6 q be an increment of q taken to be 
arbitrarily small. Then the conditions are: 
(5a) stable: A ($+6q) < 0 < A (4 -6q) 
(5b) unstable: A ($+6q)  > 0 > A ( $ - 6 q )  
(5c) neutral: A ($+ 6q) = 0 = A (4 - 6q) 

region of $ and see which of these relations holds 

d A q  

d q  

In  certain complex cases it may be most convenient, simply to graph A q in the 

It has been called to my attention by DR. A. R. G. OWEN of Cambridge, that 

the criterion of stability, involving only the sign of ___ as it does, might 

not suffice since the absolute magnitude of this derivative also seems to affect the 
nature of the equilibrium. As the following demonstration proves, the absolute 

. 

"d': I $  
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magnitude of ~ in no way complicates the problem. 

Let us assume that at a given instant the gene frequency is at the value of q*. 

Then the various'possibilities for ~ ;nay be written as: 

(6e) -2 = ~ Yqq 1 Q* 

Condition 6a represents no equilibrium (instability) for after a perturbation 
of q away from q* the gene frequency will continue to move away from q* in 
the same direction as the initial change. 

Condition 6b is a state of neutrality since there is no further change of q either 
away from or toward q* after the initial perturbation. 

Condition 6c states that if q is moved away from q* it will return toward q* 
but not pass it. q* is then a point of stable equilibrium. 

Condition 6d represents a state of damped oscillation. After a change of q, the 
gene frequency will return toward q* but will pass it, coming to rest at a new 
value of q which deviates less in absolute magnitude from q* than did the initially 
perturbed value of q. The result of such a process is an oscillating return to q* 
by an infinite series of positive and negative steps. Strictly speaking q* in such 
a case is a point of stable equilibrium, 

Conditions 6e and 6f represent, respectively, uniform and increasing oscillation 
around q*. Then at q*, A q is not zero because q will pass through q* and move 
to a new position deviating more than, or as widely from q* as did the initially 
perturbed value. But 6, the equilibrium value, has been defined as the value of q 

for which A q is zero. Than any q* for which ___ < - 2 is not 4. Conversely, 

if there is any value of q for which A q = 0 neither conditions (6e) or (6f) can 
apply to it. The only possible conditions on the derivative at i j  are, thus, the first 
four, which accord completely with the sign criterion of stability. 

Having established that the condition ___ :t ' 1 ~ < 0 is a necessary and sufficient 

criterion of stability, we may now convert this inequality into restrictions on the 
weights themselves. 

Zq j q * -  
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Restrictions on the weights 
Defining 

(7a) a = U,, - U,, 
(7b) b U,, - U,, 
(7c) 
then from ( 3 )  

(8) A q  = 

0 = p ,  U,, + 2pq U,, + q' U,, 

pq [ - a  + 4 ( a  + b) l  
0 

Noting that at equilibrium q ( a  + b )  - a = 0 and that 0 and pq are always 

< 0 is equivalent [from (8) ] d A q  I 
d q  14 positive quantities, the requirement that ___ 

to the condition 

d 2  B be negative when 
d 4' 

This expression is identical with the requirement that ~ 

the weights are constant since the expression in brackets is the first derivative of 
0 for constant selection. For selection which is functionally dependent upon gene 
frequency, this bracketed expression is easily shown to be equivalent to 

which is LI'S expression ( 1  7). 
On simplification (9) becomes 

The stability of the equilibrium, then, depends upon the sign of the two quantities 

Ignoring for the moment the differentiated ( a + & )  and 1 -  - d q  (&)I$* d 

function, the condition on the sign of (6  + &) is exactly that given by KIMURA 
and LI for constant selective values. Since $ must be a positive quantity in the 
interval 0, 1 for a nontrivial solution, 2 and & must be of the same sign. Still 
ignoring the differentiated quantity, the condition for stability would then be: 
(12) &=U,, ($1 - U,, ($1 

b =  U22 ($1 - U,, (4) 
< 0 
< 0 

That is, at equilibrium the heterozygote must have a higher fitness than either 
homozygote. 

For the general case in which the weights are functionally related to q, how- 
ever, the differential quantity cannot be ignored and its sign and magnitude 
become important. The most general conditions for a stable equilibrium are then 
(i) The heterozygote is greater in fitness than either homozygote at equilibrium 
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a 
in which case the slope of the line f (4) = q - ___ must be positive at 6 

a f b  
or else 

(ii) The heterozygote is lower in fitness than either homozygote in which case 

the slope of the line f (q)  = q - -- must be negative at 6. a 
a + b  

It should again be noted 1ha.t in deriving (1 1 ) it was assumed that E q e x i s t e d  

at 4. There is a set of functions for which this is not true so that recourse must be 
had to the more primitive conditions 5a, 5b and 5c. A case of this sort will be 
reviewed in the next section. 

Two simple examples will show that an unstable equilibrium may exist even 
when the fitness of the heterozygote is greater than either homozygote at equili- 
brium, and that a stable equilibrium may result despite the inferiority of the 
heterozygote. To demonstrate the first case, consider the weights: 

from (4) 

d q  

U,, = 1 U,, = 2 q *  + 1 U,, = 4 q2; 

At equilibrium, then, the fitnesses of the genotypes are: 
AA A a  aa 
1 .o 1.5 1 .o 

but 

so that 

The equilibrium is thus an unstable one. 
The second case can be illustrated by the weights 

AA A a  aa 

so that at equilibrium the fitnesses of the genotypes are: 
AA Au aa 
1 .o 0.5 1 .o 

1 1-2 q2 2-4q2 . 
Again 4 is 

and the heterozygote is inferior. The fact that (ci + 9) is equal to unity but 
d U 

1 - - - 

(1 ) ( - 1 ) = - 1, shows the equilibrium to be stable. 
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Determination of t h e  weights 

The determination of the weights is generally a very simple matter and will be 
illustrated for some cases which demonstrate the generality of the method. The 
cases chosen are those which have already been attacked by other methods and 
whose results are known, providing some sort of check on the procedure. 
(a) Inbred population w i t h  constant selection: Under certain conditions a popula- 
tion may reach an equilibrium under inbreeding different from complete homozy- 
gosis. For example, a population of plants, a proportion, K ,  of which are out- 
pollinated and a proportion ( 1  - K )  of which are selfed will reach an  equilibrium 

l - K  
value of F ,  the coefficient of inbreeding, such that F = ___ 

1 + K ’  
In an inbred population at equilibrium with respect to inbreeding, the zygotes 

forming the second generation will not be in the ratio po2 : 2p0q0  : qo2. As 
WRIGHT shows, the zygotic ratio may be put in the form 
( 1 6 )  ( 1 - F ) p o 2 + F p o  : 2 p 0 q 0  ( 1 - F )  : ( 1 - F ) q o 2 + F q 0  
where F is the equilibrium inbreeding coefficient. After selection, then, the three 
genotypes are in the relative frequencies 

A A  Aa aa 
( 1 7 )  Wit [ (1 -F)po2+FpoI  Wiz ( 1 - F )  2 ~ o q o  W,z L ( 1 - F )  q,’+FqoI 

Now by factoring out the appropriate quantities from each of these expressions, 
distribution ( 1 7 )  may be rewritten as: 

A A  Aa aa 
F F 

Po 40 
( 1 8 )  W,, ( l - F + - ) p o z  W,, ( l . - F )  2 p 0 q 0  W2,(  1-F+-)q,2 

‘These are in the form given by ( 1  ) and 
F 

U11 = W,, ( l - F + - )  Po 

F 

q o  
U,, = W,, ( 1 - F + - )  . 

Substituting these values in the basic equation (4), and solving for 4, yields: 
( 1  - F )  (W11- W,,) + F (W,,-W,,> 
( 1 - F )  [(W,,-W,,) + (W,2-W1,>1 

( 1 9 )  4 = 

which is identical with LI’S solution ( 2 1  ), in his 1955 paper. 

shows that it is always a number smaller than 
d 

d q  & I 4  Expansion of - 

d 
unity, thus assuring that 1 - - o! I is always positive. 

The conditions for stability then become: 
F 

(20) 0 > W,, - W,, ( 1 - F )  
W 
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and 
F 
4 

(21) 0 > W,, (l-F+,) - W,, (1-F) 
or their equivalents: 

In order that relations (22 )  and (23)  hold it is necessary that the heterozygote 
be superior to both homozygotes. This is not sufficient however. Rearrangement 
of (22 )  and (23)  yields 

(24 )  6 > -- 
(25 )  4 > -- F (--) w22 

1-F W,,-W22 
which by addition results in 

This last requirement, together with that of overdominance defines stability. 
(b) Compensation: An excellent illustration of variable selection coefficients is 
provided by the phenomenon of compensation. By compensation is meant the pro- 
duction of a relatively greater number of offspring by certain matings. This is 
not the same as simple selection since the differential fecundity is a function of 
the mating combination, rather than of the genotypes of the parents alone. LI 
(1953) dealt with the case of selection against heterozygotes, accompanied by 
compensation in those matings which would produce heterozygotes. Homozygous 
recessive females when mated either to heterozygous or homozygous dominant 
males, produce ( 1  + t )  offspring for each offspring produced by other matings. 
Here t is the compensation coefficient. The assumption is made that for the selec- 
tion coefficients W,, = W,, = 1 and W,, = ( 1  -s). LI then shows that the relative 
frequencies of the three genotypes following selection and compensation are: 

A A  Aa aa 

(27 )  Po2 ( 1 -  2 s q o  ) 2Po 40 (1 + t Po 40) 40, 

On substituting these weights into the basic equation ( 4 )  we find that 

t + s - p T F -  

2 t  
(28)  4 = 

which is identical with LI’S solution. By inspection of the weights, it is clear that 
for all q # 0 
(29a) U11 > U,, < U22 



EQUILIBRIUM OF GENE FREQUENCY 427 

In addition 
d U 2 s t  

which is smaller than unity for all s, t. The equilibrium is Len, unsta 
cluded by LI ( 1953). 

e, as con- 

LEWONTIN (1953) investigated the equilibrium for the case of compensation 
and selection for a dominant gene. Using LI'S notation the weights are found to be 
(30) U,, = (1-S) ( 1 + t )  

U,, = (1-s) (1 + t )  
U,, = l+ t ( l -qZ)  

U,, (4) = U,, (4) = U,, (4) 
Now, since U,, = U,, for all q, the only possibility of equilibrium is when 

The only value of q which satisfies (31) is 
(31) 

Moreover, this is a stable equilibrium since q will increase if U,, (4) =U,,(q) 
< U,,(q) while it will decrease if U,,(q) = U 1 2 ( q )  > U,,(q).  

These are equivalent to 

q (1 + t )  (33a) Increase of q : q < 
t 

q - s  ( 1  + t )  
(33b) Decrease of q : q > 

t 
This solution by inspection is simply a special application of condition (5a) above, 

d (&) 1  does not exist. 
and is necessary because -- 

d q  
(c) Selection and mutation: The simplest form of balance between selection and 
mutation will be considered. It is assumed that the homozygous recessive genotype 
is selected against. Its adaptive value is W,, = (1 -s) . At the same time A mutates 
to a at a rate p per generation. If po and qo are the gene frequencies in the initial 
generation, then the relative frequencies of the gametes will be po - p  po  and 
qo + p po  for A and a respectively. 

FollowiEg random union of gametes and selection, the relative frequencies of 
the genotypes in the next generation will be: 

A A  A a  aa 
(34) Po2 (1-P), 2po q o  (1-p) [ q o  (1-p) + P I  [ q o  (I-;&) +PI2W22 

On factoring out the appropriate terms in each entry we have: 
A A  Aa aa 
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Substituting the weights given by (35 )  into equation (4) and solving for @ 
yields 

(36) @ = - 
S 

This solution differs slightly from that given by LI for two reasons. The model 
we have used is slightly more exact since LI assumes selection and mutation to act 
simultaneously on the same gene frequency q, while we assume selection to act 
on the altered gene frequencies arising from mutation. In addition LI rejects 
higher powers of p and assumes (1 2 p )  to be not different from unity. For the 
usual mutation rates postulated of the order of these assumptions are quite 
reasonable. Applying them to equation (36) we have 

(37) q V T  
S 

which is identical with that givien by LI, and is the form usually accepted. NOW 
it is clear that for all values of q, 

moreover 

if s > p. In order for there to be any nontrivial equilibrium the selection against 
the gene must be greater than the mutation rate. 

Moreover this equilibrium is stable since, for and s > p, ci + & < 0 

< O  
d - (1 - P I z  P ( S - P )  

dq 1 @ =  [ C l ( 1 - p ) + ( s - p )  ( q - p q + p ) ] Z  
(d) Abnormal segregation ratios: To complete the picture of the generality of 
equation (4) as a means of finding equilibrium conditions, it is interesting to 
apply the method of weights to the case of abnormal segregation of genes. DUNN 
(1953) has described a highly aberrant condition in mice in which males hetero- 
zygous for a recessive allele, t ,  do not produce t and + gametes in a normal 1 : 1 
ratio. In an accompanying article PROUT (1953) demonstrated that this aberrant 
segregation ratio could lead to an equilibrium when the various genotypes were 
differentially selected. PROUT’S result applies only when the segregation abnor- 
mality is present in both sexes. Let 

qo = frequency of t alleles in the gametic pool after segregation 
1 - r = w,, 
1 - s = w,, 

and m = proportion of t alleles among the gametes produced by heterozygotes. 
Then, following random mating and selection, the three genotypes will be in 

the proportions 
+/+ +/t t l t  

(40) Po2 (1-r) 2 Po 40 q o 2  (1 -SI 
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Following selection, segregation will take place. The gametes will then be in 
the proportion 

+ t 

Unlike the previous examples, the application of a complete cycle of selection and 
segregation, results in ratios of the gametes, not the zygotes. The weights of the 
zygotes are very simply determined, however, by finding what weights could 
have been applied to the zygotes in order to yield the gametic ratios (41 )  if 
segregation had been normal. This is done by adding and subtracting the quantity 
4 poqo m in the frequency of + gametes. This yields 

(41) ~ ~ ~ ( 1 - r )  + 2 p o q ,  (1-m) 2 Po go m + q o 2  ( 1  -s> 

+ t 
(42)  Po' ( f - - r )  + 2Po go + 2 Po go m - 4  Po go m 2 Po 40 m + q o 2  ( 1  -.v> 

But this would be the gametic ratio resulting from normal segregation had the 
zygotes been in the frequency 

+/+ +/t t / t  
(43)  Po2 (1-r) +2poqo ( 1 - 2 m )  4 Po q o  m q o 2  ( 1 - s )  

Factoring out the appropriate terms in each entry the weights are seen to be 

U,, = 2 m  
U,, = 1-s  

Substituting these weights in the basic formula ( 4 )  yields 
1+2m-1 

s + r  
(44)  4 = 

as a solution. This is identical with PROUT'S result. 
Thus the method of weights is applicable not only irrespective of the mating 

system and the form of selection, but also of any assumption about the normality 
of the underlying Mendelian segregation. 

The various combinations of s, I and m which satisfy the stability requirement 
are too numerous and complex to preseLit. It is sufficient to observe that the 
numerical cases discussed by PROUT in his original paper all satisfy conditions 
( 1 1 ) and so are stable. 

Multiple alleles 

Suppose that at any locus there are n alleles a, each present in the the fre- 
quencies q,. Then in a manner entirely analogous to the case of two alleles the 
genotype frequencies can be written as: 

a, a,  : U,, q,5 i = 1,2,3, . . . n 
a,a3 : 2 u,j 4% q3 i < i  = 2 , 3 , 4 .  . . n 

LI (1955) and WRIGHT (1949) show quite simply that 
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where the U are constants but this applies equally well to variable weights. In 
expression 45 

n 
(46) Ui. = )= qj Uij 

j=1 

and 
n 

(47) 0 = z QiUi. 
a = i  

That is, Ui. is the average weight for allele ai in all its combinations and U is the 
grand average weight of the population. 

At equilibrium A qi = 0 for all i. There are n - 1 independent equations of the 
form Ui. - 0 = 0 and the solution to these simultaneous equations can easily be 
shown to be the determinantal equations: 

Di 
(48) Qi = 3 
where 
(49) 

except that the ith column is replaced by the elements: 

and 
n 

(50) D = Di 
a=*  

It should be remembered that U i j  = U j i .  This is the most general form of the 
determinatal equations which have been given by LI (1955) for the case of n = 3 
and constant selective values. 

The stability of equilibria involving more than two alleles where the U'S are 
constant has been discussed, as I have already pointed out, by KIMURA. When the 
U ' s  are functions of gene frequency, however, KIMURA'S rules do not apply al- 
though a general expression can be derived using the same logic as KIMURA. 

Let Q represent a point of equilibrium in n-1 dimensional space (corresponding 
to the n-I independent gene frequencies) given by equations (48), and let 8Q be a 



EQUILIBRIUM OF GENE FREQUENCY 43 1 

vector representing a small displacement of gene frequencies away from Q to a 
new point Q*. If Q is a point of stable equilibrium there will be a new change 
in gene frequencies from Q* back toward Q which change can be represented by 
a vector AQ*. What is meant by back toward Q is best illustrated in Figure 1.  
An n-I dimensional sphere is drawn with Q at its center and SQ as its radius. 
Then if Q is a point of stable equilibrium AQ* will carry the gene frequency to a 
point Q** which lies within the sphere. I n  order for this to be true, two require- 

FIGURE 1.-Geometrical representation of the conditions for a stable equilibrium with more 
than two alleles at a locus. See text for explanation of symbols. 
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ments must be satisfied. First, the angle 0 must be strictly less than 90" which is 
equivalent to requiring that the angle + between the two vectors be strictly greater 
than 90". Second, the vector AQ* must not be too long or it will carry Q** outside 
of or exactly on to the sphere, no matter what the angle 8. 

The cosine of an angle between two vectors is defined as the ratio of the inner 
product of those vectors to the product of their lengths. The requirement that + 
be greater than 90" can then be written as: 

(51) c o s + =  l A Q *  . SQI .,o 
l A Q *  I . I S Q 1  

The requirement that the length of the vector AQ* be short enough to insure 
that Q* * lies strictly within the sphere is equivalent to 

(52) i A Q * I  < - 2 c o s 9  
I S Q  I 

by the simple geometry of Figure 1.  Combining (51) and (52) gives the most 
general requirement for stability 

Condition (51) is given by KIMURA and condition (52) appears to be his con- 
dition that no "cyclically winding paths" are involved. A cyclically winding path 
in n-I dimensions is the equivalent of an oscillating equilibrium in one dimension 
and while we showed that oscillation around 4 is not possible by definition in the 
one dimensional case, this is not true for higher dimensions, so that the second 
requirement must be added. If expression 53 is reduced to the one dimensional 
case it becomes simply 

(54) 0 >- 
' I '  

which was shown earlier to be precisely the condition for stability (6c and 6d). 
Whereas condition 53 can be written in terms of the weights in any specific 

case, I have been unable to find a general restriction on the weights analogous to 
(1 1 ) so that for the present, at least, it is necessary to treat each case specially. 

DISCUSSION 

As was pointed out at the beginning, the methodology described here is de- 
signed as a constructive tool for investigating the equilibrium condition of a 
population under a wide variety of situations. The examples given merely serve 
to illustrate the power and generality of the method. It is becoming apparent 
that the adaptive values of genotypes in populations are functions, and often 
complex functions, of the gene frequency. This is not surprising since the en- 
vironment of an organism includes the relative frequencies of other sorts of 
organisms in the population (See LEVENE, PAVLOVSKY and DOBZHANSKY 1954; 
LEWONTIN 1955). As various new situations arise, the method may be used in 
investigation of the equilibrium conditions. 
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Perhaps the most suggestive result of the mathematical analysis is the demon- 
stration that stable equilibria may exist despite an inferiority of the heterozygote, 
provided that the adaptive values of the genotypes change properly with gene 
frequency. Whether evolution does in fact produce such balanced, nonheterotic, 
polymorphisms is problematical, but their existence is at least possible. 

Whereas a general theory of equilibria encompassing adaptive values func- 
tionally related to gene frequency on the one hand and multiple allelism on the 
other is a step in the direction of increased reality of our models of population 
dynamics, there are a number of areas for theoretical study which are yet un- 
touched or virtually so, but which are essential to a proper understanding of nat- 
ural events. Among the most important are a study of general equilibrium con- 
ditions for many loci interrelated by linkage and epistasis, and the problem of 
environments which vary both in time and in space. This latter problem demands 
a revision of our static concept of equilibrium to include the idea of a dynamic 
and ever fluctuating genetic structure of a population. It is impossible to say 
whether such problems will ever be amenable to general mathematical analysis, 
but if population geneticists are to lay any claim to an understanding of the forces 
molding the genetic structure of natural populations, attempts upon these prob- 
lems must be made. 

SUMMARY 

A basic method has been suggested for investigating the equilibrium condition 
of gene frequency in populations. The method is applicable to any population 
irrespective of the nature of the forces which change gene frequency. It applies 
equally well to random and nonrandom mating schemes provided an equilibrium 
condition of inbreeding can be specified, and irrespective of any assumptions 
about the regularity of Mendelian segregation at meiosis. It cannot be applied 
to more than one locus if epistasis is present nor is it useful if the various forces 
change over time in a way unrelated to gene frequency. 

Within these limits it has been shown that superiority in fitness of the 
heterozygote is neither a necessary nor sufficient condition for equilibrium but 
that nonheterotic balanced polymorphic systems may exist. Conversely heterotic 
systems do not lead ineluctably to stable equilibria. 
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