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‘WHILE the theory of the genetic changes in a population due to selection is

quite well understood for single loci, our theory for multiple-gene characters
is in a rudimentary stage. Most of the formulations for multiple-gene characters
are simply extensions of single-locus models, extensions which ignore the problem
of linkage. There are, however, a few papers in which the role of linkage has been
investigated for more or less special cases of selection (Kimura 1956; LEWONTIN
and Kosima 1960; Boomer and Parsons 1962). The results of these investiga-
tions were sufficient to show that even for relatively simple cases (two loci, simple
symmetrical selective values) linkage might have profound effects on the course
of natural selection and, pari passu, natural selection may have major effects on
the distribution of coupling and repulsion linkage in a population.

The results of the investigations of LEwonTin and Kosima (1960) of the two-
locus model can be summarized as follows: (1) If the fitnesses are additive be-
tween loci (no epistasis), linkage does not effect the final equilibrium state of the
population. (2) If linkage is tighter than the value demanded by the magnitude
of the epistasis (the greater the epistasis the greater the value) there may be
permanent linkage disequilibrium and alteration of equilibrium gene frequencies.
(3) The rate of genetic change with time is affected by the tightness of the link-
age. (4) In some cases stable gene frequency equilibria are possible only if link-
age is tight enough.

Although these conclusions were based only on two-locus model and for selec-
tive values of a fairly restricted sort, they point clearly to the importance of taking
linkage into account in understanding the changes of gene frequencies in popula-
tions. In fact, some experimental results (an example of which will be given
below) can be understood only if the interaction of selection and linkage is taken
into account.

The equations describing the interaction between selection and linkage (see
below) do not usually have general literal solutions. It is for this reason that the
authors cited above have restricted themselves to relatively simple cases. In view
of the interesting findings of those previous papers, however, it is worthwhile to
explore the subject more intensively. To do so requires the numerical rather than
general literal solutions to the equations, but such numerical solutions apply,
obviously, only to the particular parameter values chosen. To make such a nu-

1 This investigation was performed under Atomic Energy Commission Contract AT (30-)2620.
The extra cost of setting tables and formulas has been defrayed by this contract.
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merical approach at all useful, it is necessary to cover a variety of models of
selection and to vary each model so that an empirical “feel” for general results
can be obtained. In this sense, numerical calculations are like experiments: the
generality of the results depends upon the variety of conditions of the experiments.

In this and the succeeding two papers of this series, three main types of selec-
tion are discussed. While these are not completely exhaustive of all possibilities,
they represent the main modes of selection in natural and artificial populations.
In this paper I will consider heterotic models, in which heterozygotes at each
locus are more fit than homozygotes. In the second paper of the series optimum
selection will be examined; that is, selection operating against individuals whose
phenotypes deviate from some intermediate optimum. The last paper will deal
with unidirectional selection in which an extreme phenotype or genotype is select-
ed against. Since the effect of linkage is rather different in these three cases,
separate discussions of each are required.

THE MATHEMATICS OF SELECTION AND LINKAGE

A general treatment of the equations of gene frequency change with linkage
for the two locus case is given by Kimura (1956) for the continuous time model
and by LewonTIiN and Kosima (1960) for the discrete generation case. The re-
sults of these latter authors will be briefly recapitulated here and extended to
multiple loci. Let there be two loci with two alleles each denoted by A,a and B.,b
respectively. There are then four gametic types ab, aB, Ab, AB and these will have
the frequencies just after meiosis in any generation goo, o1, 10 and gu, respec-
tively. In these subscripts a 0 denotes the lower case letter allele (@ or b) and a
1 denotes the upper case allele (A or B). To simplify notation let these four fre-
quencies be, 1y, 71, 22, and x;. The subscripts of the z’s are the decimal equivalents
of the binary subscripts of the g’s. That is, 00 is binary 0, 01 is binary 1, 10 is
binary 2, and 11 is binary 3.

Further let

Z;; = the frequency of the zygote formed from the gametes whose frequen-
cies are z; and x;
W ;; = fitness of genotype whose frequency is Z,;

W, =X Wiz;
Z;
W=3W;xz (the mean fitness)
k2
R= recombination fraction between the loci
D =z,x; — 1,2, (the linkage disequilibrium determinant)

Then, LEwoNTIN and Koyima have shown that the change in genetic frequency
in one generation, A x;, is given by
i (W, — W)—(_l)i RDW,,
w
At gene frequency equilibrium a z; = 0 for all { and this will happen when one

of two conditions holds. First if D = 0 there is no linkage disequilibrium and for
A x; to be zero

(D az=
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(2a) W,, — W =0
or (2b) z; =0

for all 1.

The second possibility is that D 54 0, that there is permanent linkage disequilib-
rium in which case when A z; = 0.

In this latter case there is a balance between the loss or gain of a gametic type by
selection and the gain or loss of that type by recombination.

These relationships can be generalized to more than two loci fairly easily al-
though the resulting equations are rather cumbersome. Again let x; be the fre-
quency of the gametic type g; where the subscript of the z’s is the decimal equiv-
alent of the binary g subscripts. Thus, for five loci, gooooo, Zoo0o1, - - - 811111 have the
frequencies xy, ;. . . . 25:. The n— locus generalization of equation (1) has the
form

4) azi=[z:(Wi, = W)—p(z, R) /W
where p(x,r), the recombination function, has the following complicated and
unfortunate form:

7 (n—1)

(5) pcx,m:i (R, D] (i iz Wa]

i=1  jkLmeR

9mi—1

s JL”IkW‘k
Y o X mave]
. n(n-1) 7.k, l,meO
1= 2 +1

with n = number of loci.

R; = one of the [n(n — 1)]/2 recombination fractions between two loci among

n.
W i = fitness of a zygote formed from the gametic combination z;, s, (W =
Wlm)

H = number of heterozygous loci in the zygote jk&

R is the subset of all possible pairs x; 1%, 2; ., with the following characteristics:

(a)z;xy and x1x, must each be capable by some recombination event (includ-

ing no recombination) of producing the gamete x;.

(b) zjxx and xix, must both be heterozygous for the two loci corresponding to

the R;.

(¢) at the two loci in question x;x, must be in the same linkage phase as the

gamete to be produced, x;, while x;x,, must be in the opposite linkage phase.

O; = special recombination fractions which are not conventional recombina-
tion distances between pairs of genes.

S = total number of exchanges for a given O; (see below).

These special O; arise in the following way. When n loci are heterozygous, the
gametic output of a given heterozygote is completely specified by the probabilities
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of exchange in the 7 — 1 intervals between the genes. If we do not assume inde-
pendence of the intervals, that is, if we allow interference, there are obviously
271 parameters made up of the noncrossovers, and single, double, triple, etc. ex-
changes. These parameters (probabilities) add to unity however, so there are only
27t — 1 independent parameters. For five loci, for example there are 15 param-
eters consisting of the four single exchange probabilities (S, S, S, S, the six
double exchange probabilities (D, Dys, D14, Dss, Dsy, Ds.), four triple exchanges
(T'123, T4 T23:) and one quadruple exchange (Qiz:.). On the other hand there
are only n(n — 1) /2 conventional recombination fractions among n genes taken
two at a time. For five loci there are ten such recombination fractions. Thus, any
formulation of the results of crossing over cannot be put only in terms of the
usual recombination fractions for n> 3. The O; referred to in equation (5) are
extra orthogonal recombination values necessary to make up the full set of 2-1—1
recombination values which are linear combinations of the 2"'—1 exchange
probabilities. Table 1 shows the relationships between the R; and O; and the vari-
ous exchange probabilities for the five locus case. Figure 1 shows the definitions of
the ten conventional recombination fractions, R;.

The 15 equations in Table 1 may be solved for the exchange probabilities with
the result shown in Table 2. The Table shows the sign (+ or —) associated with
each R; and O; in the linear combination

10 5
. 1 1
(6) Exchange probability = 5 Z =R+ -8~Z + 0.
=1 1=1
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Freure 1.—Definition of the ten recombination fractions R,~R,, among five genes A-E as
used in the text.



SELECTION AND LINKAGE 53
TABLE 1

Relationships between the recombination factions r; and O, and the probabilities of single,
double, triple and quadruple exchanges for five loct

ry =8 + Dy + Dy + Dy + Tipy + Ty + Ty + Q)
rg = (8 + Dyg + Doy + Dy A Tipy + Typy + Typy + Q)
rg = (8 + Dyy + Dyy + Dyy 4 Typg + Typy + Ty + Q)
ry, = (S + Dy + Dy + Dy + Ty + Ty + Ty + Q)
rs = (8 + 8 + Doy + Dy + Dy + Dy + Tyyy + Toyy)
re = {83 4+ S; + Dy, + Dy + Dy + Dy + Typy + Ty34)
r; = (83 4+ S+ Dyy + Dy + Dpy + Dy + Ty + Tiyy)
0, = (8; + 83 + Dy, + Dy + Doy + Dyy + Ty + Tyyy)
0, = (8, + Sy + Dy, + Doy + Dy + Dyy + Ty + Ty30)
O, =, + S+ Dy, + Dy + Dy + Dyy + Tipy + Tyy)
re = (8, + 8 +8 + Dy + Dy, + Dy + Ty + Q)

rg = (8 + 83 + 8, + Dyy + Dyy + Dy + Tyyy + Q)

O, =+ 8+ 8 + Dy +Dyy + Dy + Ty, + Q)

O, =, + 8, + 8 + Dy + Dy + Dy + Ty, + Q)
ro= (8 + 8 + S + Sy + Tipy + Toog + Togy + Tiay)

TABLE 2

The linear combinations of the r; and O, which are equated to the various exchange probabilities.
See text for explanation.

Exchange

probabilities ry 7y g r, ry re r; rg 7y 1o 0, 0, O, (o Oy
S, — — — 4+ - — +F — ¥ + — + + +
S, — + — — + 4+ — 4+ + + — + — — +
S — — + — — + + o+ 4+ o+ o+ = = 4 =
S, — — — + — — 4+ — 4+ + — + + + +
Dy, + o= = = 4+ = — 4 — + F + 4 —
Dy, — 4+ + — + — + — — — 4+ + — + +
D, — — + 4+ — + — + — — + + + — +
Dy + — + — 4+ + + — + — — — + — +
Dy — 4+ — 4+ + + + + — — — — 4+ + —
Dy + — — 4+ + — 4+ + + — 4+ + - — —
T123+++“‘“——++'“+—++_—'
T + + — + — + + — — + + — — — 4+
Ty — + + + + — — — + + + — + — —
Ty + — + 4+ 4+ + — — — + — + — + —
e+ + + + - — — + = - - — +

The orthogonality of the complete set of 15 R; and O; is seen from the table
since every row and every column contains eight plus and seven minus terms.

The necessity of introducing extra orthogonal parameters in the study of linkage
of more than three genes has also been discussed by Jonges (1960) and in a very
illuminating paper of Sca~eLL (1961). (It is a curious sidelight on the progress
of science that within a period of two or three years, three of us have found it
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necessary to develop independently nearly identical linkage theory for three quite
different purposes in a field that was first exploited mathematically 20 years ago
by GerriNGER [1944].)

It is from Table 2 that equations (4) and (5) have been constructed. For ex-
ample, a contribution to the gamete class gi1000 from the zygote gi1111/8o0000 would
occur when a single exchange in the region 2-3 occurred. The contribution will be
one half of the probability of the appropriate exchange, S.. The frequency of the
Zygote Zii111/Booooo after selection is 2x,x5, W 5 so that the net contribution to
gamete class gi1000 18, from Table 2

X"?“ (-R,+R.—R,—R,+R,+R;—R:,+R.+R,+ Ry,
—0,+0,—0;,— 0,4 0;) Wy

The last term in equation (5) will be positive or negative depending upon
whether § is even or odd. To understand the significance of § we must interpret
the orthogonal recombination values O; as simultaneous recombinations in non-
adjacent intervals rather than between pairs of genes (ScuNeLL 1961). Looking
at Table 1, O, is the recombination fraction for intervals 1 and 3, O, for 2 and 4,
etc. Then § is the number of recombinations in these intervals for a given O;
necessary to produce the gamete in question from the zygote x;zr. For example,
to produce a gamete go1001 from the zygote gogooo/g11111 We must have an exchange
in regions 1, 2 and 4. From Table 1 we see that O; concerns exchanges in intervals
1 and 3. Then for O,, § = 1. On the other hand O; concerns regions 1, 2 and 4 so
that for O, § = 3.

Using equations (4) and (5) it is possible to follow the change in gametic fre-
quencies generation after generation or else to examine equilibrium conditions by
setting the A z; = 0. Gene frequencies, rather than gametic frequencies are found
by summing the appropriate gametic frequencies over all other loci.

The measure of linkage disequilibrium. Another question of interest is the in-
tensity of linkage disequilibrium among the loci either at gene frequency equi-
librium or at some intermediate stage of population evolution. For the two-locus
case, the measure of linkage disequilibrium usually used is the gametic determi-
nant since this appears explicitly in the equation for change in gametic frequency
(equation 1) and because D = 0 when there is complete linkage equilibrium. This
measure can also be used for multilocus cases by computing separate D values for
each pair of loci. Thus the linkage disequilibrium for loci 1 and 3 in the five-locus
case would be D3 = g11. goo.. — 81.0.. go.1.. Where the dot subscripts mean summa-
tion over those loci. Formulas for higher order disequilibrium are given by Ben-
NETT (1954).

One difficulty about this measure is that it is sensitive to the gene frequencies
so that changes in D reflect both real changes in the intensity of the linkage cor-
relation, but also changes in gene frequency. If p, and p. are the gene frequencies
of A and of B respectively, then at linkage equilibrium the frequency of a gametic
type is the product of the appropriate gene frequencies. That is

811 = P1 P 810 — P1 (1 ‘“pg)
g = (1 = p1) p goo = (1 = p1) (1 —p2)
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for the two-locus case. It follows from these relationships that the gametic de-
terminant can be written

D=[pip:tell(l =p)(1—p) +e] — [p(1 —p.) — €]

[A—p)p.—e]l=e
where e is the deviation of the actual gametic frequency from linkage equilib-
rium. The largest positive value e can take is p, (1 —p,) or p, (1 — p;), which-
ever is smaller, while the largest negative value e can take is either p;p, or
(1 —py) (1 — p.), whichever is smaller. For example if p; =p, = .50, then e can
be as great as = .25 while if p, = .10 and p, = .70, e must be in the limits — .07 to
+.03. A simple measure of the intensity of linkage disequilibrium then is the
ratio of D to the maximum possible e for given gene frequencies. This relative
value of disequilibrium, D’, is given in the succeeding sections along with D when
appropriate.

Numerical solutions by “Genetic Operators.” It is clear that equations (4) and
(5) are impossible to work with from a practical standpoint. For five loci, for
example, equation (5) alone has 660 terms, so that equation (4 has 693 separate
terms and there are 32 simultaneous equations like this to be solved. Previous
work has been somewhat restricted in its generality precisely because of the prac-
tical mathematical difficulties of handling so many very cumbersome equations.
General literal solutions to such equations are usually impossible to find except
in the very simplest cases. A reasonable insight into two-locus models has been
gained in the works previously cited, but even there the most general two-locus
models could not be handled. While the theoretical population geneticist would
prefer to state his results in general and usable symbolic terms, we have reached
an impasse which can only be broken by a more empirical, numerical approach.

Even the decision to attack only specific numerical examples has not made the
problem much easier, practically, because even high speed computers cannot cope
easily with so many large equations. The method I have used is to bypass equa-
tions (4) and (5) completely and go to a more basic method of genetic operators.
This method is to consider an initial vector of gametic frequencies [g], which is
transformed to a new vector [g];, by a transformation 7. That is

(1) [g)=T([glo)

We wish to do two things. First we would like to apply the transformation n times
so that we can get the gametic frequencies after n generations. Second, we would
like to find the value of the vector components, g*, such that

T([g*1s) = [g*To
That is, [g*] is the equilibrium vector so that T is an identity operator for [g*].
There will, in general, be more than one such vector, but we are interested in
those cases in which more than one of the components is non-zero. Thus, the 2"

trivial solutions of the form [0, 0,0, ..., 1, ..., 0] in which all gene frequencies
are fixed, are known in advance to be solutions but we want to know if there are
any others. ‘

The operation T is really a sequence of operations and the flow from [g], to
[g]: can be described as in Figure 2. M is the mating operator and for the case
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fg), M —[2 —S—[zs] - [g,].¥—q

| |

Ficure 2.—The genetic transformation, T, broken up into its components during a single
generation.

of random mating it is the row by column multiplication of the vector [g], by its
transpose [g]’, to produce the symmetric zygotic matrix [Z].

(8) (2] =M ([gl) = [glo X [g]s

S is the selection operator and consists in multiplying each element Z;; of the
zygotic matrix [Z] by an appropriate fitness value W;; bearing in mind that
Wij = Wji and Zij = ZN

The matrix of selected zygote frequencies [Z,] is then used to produce a new
vector of selected gametes [g;] by the recombination operator, R. This operator
consists in multiplying a given element of [Z,] by each of the 2 exchange
probabilities (including the probability of no exchange) and adding the result of
each multiplication to the appropriate element of [g,]. This is then repeated for
each element in [Z,]. Finally, [g,] is converted to [g];, by the scalar multiplica-

tion [g]: = [gs] . This normalizes the selected g,i, bringing their sum back

1
Egsi

to unity. The sum of the unnormalized g,; is W, the mean fitness of the popula-
tion.

The operations described above are particularly easy to perform in a binary
digital computer.

The procedure described above produces the generation by generation change
in the vector [g]. To study equilibrium, only a slight modification is necessary.
The unnormalized vector [g.] can be expressed as

9 [ ? % aijx 8 8 ] = [gs]

where the a;;x are the elements of the transformation, 7, introduced by the oper-
ators § and R. Then, by postulating some initial vector we can solve the vector
equation
(10) [ XX Ak g8r— gsi :l =0
ik o
by the standard iteration method of NEwroN.

HETEROTIC SELECTION

There is increasing evidence (Warrace 1958) that if heterosis at the locus
level is important in natural populations, the degree of heterosis at each locus is a
function of the amount of heterozygosity at other loci. That is, there is epistatic
interaction in the determination of heterozygote superiority. Such epistasis will
cause an interaction of linkage and selection at gene frequency equilibrium as
shown by LEwonNTiN and Kosima (1960). In the rest of this paper we will ex-
amine the results of this interaction for some two-locus and five-locus models. The
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dynamics of two-locus models has been discussed by LEwonTin and Kosima, but
solutions of their equations were possible only in certain restricted cases. The
present paper will examine some two-locus heterotic models in which symmetry
of fitness is not assumed, so that numerical solutions are necessary or in which
the stability of equilibria is not obvious and considerable numerical calculation
was necessary to test the stability of the equilibria.

Two-locus models: Model 1, whose fitnesses are given in Table 3(a), is a simple
heterotic model with epistatic interaction. Each locus shows heterosis in every
combination with the other locus, but the heterosis is not additive between loci.
Thus, the degree of heterosis at locus A is greater when in the presence of Bb than
in the presence of BB or bb. A similar inequality holds for the B locus, where
heterosis is also more pronounced when A is heterozygous than when it is homo-
zygous. This is then a curnudative heterotic model, fitness increasing more rapidly
the more loci that are made heterozygous.

The stable equilibria for Model 1 are given in Table 4. In all results that follow
only stable equilibria are given. What is shown are the frequencies of the four
gametic types, the gene frequencies of the two loci, the linkage disequilibrium
parameter, D, the relative disequilibrium, D’, and the mean fitness of the equi-

librium population, W. Several points are worth noting. First, the stable equilib-
rium of gametic frequencies does not correspond to linkage equilibrium even with
free recombination (R = .50) although the degree of linkage disequilibrium is
small. That is, there is a significant excess of coupling or repulsion at equilibrium
no matter how much recombination goes on. Second, there are pairs of solutions
for each recombination value, one corresponding to an excess of coupling (D
positive) and one to an excess of repulsion (D negative). These paired solutions
which are only shown for the tighter linkage values are not symmetrical as was
the case in the symmetrical models discussed by LEwonTin and Kosyima, Thus
there are two possible sets of equilibrium gene frequencies for each value of re-

TABLE 3

Relative fitnesses of the nine genotypes for two-locus heterotic models

(a) Model 1: asymmetric heterotic model with epistasis

AA Aa aa
BB 40 .60 .30
Bb .60 1.00 .50
bb . .50 .70 40
(b) Model 2: asymmetric partially heterotic model with epistasis
AA Aa aa
BB 5000 5000 3750
Bb 5625 1.0000 3125
bb 3750 4375 - 3750
(c) Model 3: mixed overdominance, underdominance model
AA Aa aa
BB .90 20 .90
Bb .20 1.00 .20

bb 90 20 90
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TABLE 4

Results of Model 1. Symbols are as explained in the text

R &0 8 &10 2y P r D D W

.00 50000 .00000  .00000 50000 50000  .50000 +4-.25000 +-1.00000  .70000
.00000 58333 41667 .00000 58333 41667 —.24306 —1.00000 .70836
.01 46225 05195 01777 46805 51420 48002 21543 -}-.92384  .69014
02359 55936 38914  .02791 58295 41273 —.21700 —.90191  .70378
.02 42023 10875 .03871 43231 52898 45894 17746 82093  .68044
04984 53246 35855 .05915 58230 40839 —.18797 —.79042 68902
.03 37049 17398  .06621 38932 54447 43670 4-.13272 -.66717 67088
08051 50089 32332 .09528 58140 40383 —.15449 —.65799  .67950

o 11793 46211 28148 13848 58004 39941 —.11374 —.49096 67038
o 20082 37418  .19621 22879 57500 .39703 —.02747 —.12033 65954
o 21773 35566 18039 24622 57339  .39819 —.01054 —.04616 .65882
0 22172 35125 17676  .25032 57297 39848 —.00659 —.02836  .63878
:O 22703 34539 17195 25563 57242 39898 —.00135 —.00591 65862
50

22766 34473 17141 256200 57239 39907 —.00076 —.00327  .65862

combination, one corresponding to a coupling equilibrium and one to a repulsion
equilibrium. Moreover, gene frequencies change with recombination.

Third, the mean adaptive value of the population is highest when there is close
linkage and it is higher for repulsion equilibrium than for coupling equilibria.
The ratio of fitness at complete linkage to that with free recombination is 1.075,
not an immense increase due to the linkage. The most profound change in the
population due to linkage is in the genotypic distribution at equilibrium which is
in turn a reflection of the very large differences in gametic frequency from one
value of linkage to another.

Model 2, whose fitnesses are given in Table 3b and whose results are shown in
Table 5 is slightly different from Model 1. Again there is cumulative heterosis but
here the heterosis disappears in one case: when B is homozygous A shows com-
plete dominance. The results of this model show the same features as Model 1
with a few exceptions. In this case it is the coupling rather than the repulsion
equilibrium which have the highest fitnesses. In addition, the general effects of
linkage are a great deal stronger. The value of D is ten times greater when there
is free recombination than was the case in Model 1, and the ratio of mean fitnesses
with complete linkage and free recombination is 1.22. In addition, there is a very
strong effect of linkage on the equilibrium gere frequencies. In Model 1 the gene
frequencies at equilibrium were

R=.00 p = .58333 7= .41667
R=.50 p=.57239 7= .39907
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TABLE 5

Results of Model 2. Symbols are as explained in the text

R 8go 8o1 810 8u p r D D w

.00 55556 .00000 .00000 44444 55556 55556 .24691 --1.00000 .72223
00000 50000 50000 .00000 50000 50000 —.25000 —1.00000 .68750

.01

01664 48928 48593 00815 50592 50257 —.23762 —.96684  .67849
.02 54063 02385 01668 41884 56448 55731 4.22604 -}-.93128 70255

03563 47750 47063 01624 51313 50626 —.22415 —.90940 .66738
.03 53282 03652 .02543 40523 56934 55825 +.21499 89423  .68779

05457 46552 45443 02548 52009 50900 —.21016 —.89190  .65730
.05 51637 06352 .04396 37615 57989 56033 4-.19144 481325 67350

10201 43688 41605 04506 53889 51806 —.17717 —.79727 63669
.07

16945 39738 36821 .07036 56683 53226 —.13225 —.65273  .61463
.075

19509 38244 34280 .07967 57753 53789 —.11556 —.59187  .60815
10 46805 14242 09854 29099  .61047 56659 --.12216 55351  .62830
15 41262 21957 (15828 20953  .63219 57090 -+-.05170 -+.24621 59970
20 38645 24803 18406 .18146 .63448 57051 1.02447 .11734 59356
.35 36977 26391 19969 16663 .63368 56946 +.00891 -+.04271 59138
50 36582 26743 20328 16347  .63325 56910 4.00544 +.02606 59101

for the repulsion equilibria. This is a very small effect. However, in Model 2 the
results are

R =.00 P = 55556 # = 55556
R= .50 P = 63325 #= 56910

which represents a considerable change for the first locus.

The fitnesses for third model to be considered are given in Table 3c. This is a
symmetrical model of the kind considered by LEwonTiN and Kosima, but has
certain peculiarities which require careful investigation. Here there is strong
heterosis at one locus provided the other locus is heterozygous, but selection
against the heterozygote when the other locus is homozygous. This model is not
presented as representing a particular natural situation, but rather to show the
intricacy of the possible interactions between linkage and natural selection.

The results for this model are given in Table 6. These values were computed by
formula (18) of LEwonTIN and KoJima

1 .1 4rd
Y=g Vil
for symmetrical fitness models and were checked by the method of genetic op-
erators. There was perfect agreement between them. The startling feature of the
results is the existence of three distinct regions of solutions. From complete link-
age to R = .10 there is a stable equilibrium of gene frequencies with both loci
held at a frequency of .50, but with very intense linkage disequilibrium. As with
all such symmetrical models there are two complementary equilibria, one in
coupling (D positive) and one in repulsion (D negative). Above R = .10 and be-
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TABLE 6
Results of Model 3
R Eoo En B0 &1t P r D’ w
.00 .50000 0 0 .50000 .50000 50000 1.00000 .95000
.01 49667 .00333 .00333 49667 .50000 .50000 .98658 94000
.02 49324 .00676 00676 49324 50000 .50000 97297 .93000
.03 48979 .01021 .01021 48979 50000 50000 .95916 .92000
.04 48629 .01371 01371 48629 50000 50000 94516 .91000
.06 47913 .02087 .02087 47913 .50000 .50000 91651 .89000
.08 47174 02826 .02826 A7174 .50000 50000 .88694: .87000
.10 46409 .03591 .03591 46409 50000 50000 .85636 .85000
.10 t0 375 no stable equilibrium of gene frequencies
375 to .50 .25000 25000 .25000 25000 .50000 .50000 0 57500

low R = .375 there is no stable equilibrium of any kind. That is, the gene fre-
quencies go to fixation under natural selection. Then when R exceeds .375 there
is a stable equilibrium with gene frequencies at .50 and perfect linkage equilib-
rium. Thus we have a case where either tight or loose linkage results in the main-
tenance of genetic variation, but intermediate linkage results in a loss of genetic
variation.

Five-locus models: For the five-locus models the following simplifying assump-
tions have been made: (1) The loci are interchangeable in their effects; for ex-
ample, the genotypes

01110 11001 00101

01010’ 11000’ 00111° °™°
are indistinguishable in their fitnesses since each one is homozygous 0/0 at two
loci, homozygous 1/1 at two loci and heterozygous 1/0 at one locus. (2) There is
some heterosis for each locus, irrespective of whether the other four loci are het-
erozygous or homozygous. This assures that all gene frequencies will come to a
stable equilibrium of gene frequencies at an intermediate value. (3) In view of
(2) there is no loss of generality by further specifying that 0/0 and 1/1 homo-
zygotes have equal fitness so that the gene frequencies at each locus come to equi-
librium at p = ¢ = .50.

These assumptions do not restrict the generality of the results, but have been
made in order to make the problem more manageable. With five loci there are
35 = 243 different genotypes and each one could be given a unique fitness. As-
sumption 1 reduces this number to 21, since it would be impossible to explore the
immense variety of possibilities with 243 different fitnesses. The three restrictions
together result in there being only six different fitnesses depending upon the num-
ber of loci heterozygous. Table 7 gives the fitnesses of these genotypes for two
models of heterotic selection to be discussed.

Both models show curnulative heterosis. That is at each increase in heterozygos-
ity there is a more than linear increase in fitness, this more than linear increase
representing the epistatic interaction among the loci. Let W, W, and W, repre-
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TABLE 7

Fitnesses of genotypes with different numbers of loci heterozygous for the two
five-locus models with heterosis

Model 4 Model 5
Number of

loci heterozygous w E w E
0 06 .03
1 .09 .. .06 ..
2 18 33 12 25
3 33 .18 24 25
4 54 A1 48 25
5 .81 .07 .96 25

sent the fitnesses of three successively greater degrees of heterozygosity. Then
_ Wi+ W,—2W,
= W
is a measure ofthe relative epistatic effect of increasing heterozygosity. As Table 7
shows, Model 1 was chosen to have decreasing epistatic interaction with added
heterozygosity, so that the increase from four to five loci heterozygous is accom-
panied by an increase in fitness nearly equal to that found in the increase from
three to four loci heterozygous. Models 2 however, shows a constant epistatic in-
teraction from level to level of heterozygosity.

Each model has been examined for the equilibrium conditions of gametic fre-
quencies. Because of the symmetry of the models, gene frequencies at equilibrium
always equal .50 at all loci, and reciprocal gametic types always have equal fre-
quenCieS- That is: £11111 = Zooooo, 11110 — Foooo1, €LC.

The results, then, show only the frequencies of the first 16 gametic types gooooo
through go:1:,. In addition the values of the relative linkage disequilibrium pa-
rameters among all pairs of loci are given, D’;, through D’,;. Since the gene fre-
quencies all equal .50, these D’ values are always four times the equivalent D

values. Finally W, the mean fitness is also given.

Tables 8 and 9 show this information for the five-locus models investigated for
different values of recombination. The model is that the five genes are equally
spaced along the linkage map with a linkage distance R between adjacent genes.
Thus, for R = .05 the total linkage distance between Loci 1 and 5 is .20. -

In both models certain features are common. Linkage is only effective for fairly
small recombination values between adjacent loci. However, there is a cumulative
effect along the chromosome so that the outside genes are in linkage disequilib-
rium even though they are quite far apart on the linkage map. Selection holds
Loci 1 and 2 out of linkage equilibrium and also Loci 2 and 3 with the result that
1 and 3 are also out of equilibrium, and so on down the chromosome. The closer
the loci, the greater the linkage disequilibrium, the values of D’ being in the order

Dy, > D’13 > D"m > D,15
In addition, there is a small effect of absolute position in the linkage maps as far
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TABLE 8

Results of Model 4. Symbols are as explained in the text

R between adjacent loci

Gametes 000 002 .01 .02 .03 0325 .0338 .0350 .0367 2.04-
00000 50000 .48860 43945 .36690 .27027 .23742 21789 .19440 .13407 .03125

00001 0 00339 01718 03474 05166 .05534 05694 .05822 .05762 .03125
00010 0 00002 00057 .00286 00886 .01164 .01346 .01578 .02222 .03125
00011 0 00226 01155 .02363 03585 .03876 .04015 04144 .04250 .03125
00100 0 00001 .00038 00199 .00636 .00846 .00987 01170 .01718 .03125
00101 0 00000 00002 .00024 00154 00248 00322 .00433 .00872 .03125
00110 0 00001 00044 00224 00707 00938 01092 .01293 01894 03125
00111 0 00226 01155 .02363 .03585 .03876 04015 04144 04259 .03125
01000 0 00002 00057 .00286 .00886 01164 01346 .01578 .02222 03125
01001 0 00000 .00002 .00027 .00173 .00278 00361 .00485 .00977 .03125
01010 0 00000 00000 00003 .00037 .00072 .00104 .00159 .00441 03125
01011 0 00000 00002 .00024 00154 .00248 00322 .00433 .00872 .03125
01100 0 00001 00044 00224 00707 .00938 01092 .01293 01894 03125
01101 0 00000 .00002 .00027 .00173 .00278 .00361 00485 .00977 03125
01110 0 00002 00061 .00310 .00960 01264 .01463 01722 02462 .03125
o111t 0 00039 01718 03474 05166 .05534 05694 05822 05762 .03125
D', 1.00000 .98624 .92456 .82492 .66980 .60000 57032 52092 37572 0
Dy, 100000 97716 87740 72616 51652 44312 30904 34556 .20048 O
D, 1.00000 96812 .83232 .63808 .39688 .32116 27804 .292828 .11316 O©
D', 1.00000 95480 .76984 52892 27384 20512 16868 .12928 .05040 0
D, 1.00000 .99076 .94800 .87396 .74676 .69320 65816 .61224 46984 0
D,, 100000 .98164 .89940 .76796 57192 49948 45496 40004 25184 0
D,, 1.00000 .96812 .83232 .63808 .39688 .32116 27804 22828 .11316 0
D, 1.00000 .99076 .94800 .87396 .74676 .69320 .65816 .61224 46984 O
D, 100000 .97716 .87740 .72616 .51652 44312 39904 .34556 .20648 0
D, 1.00000 .98624 92456 .82492 .66980 .60900 57032 52002 37572 O
w 43500 42852 40251 36941 33395 .32030 31838 31218 .20851 28500

as linkage distance is concerned, Loci 1 and 2 are equivalent to Loci 2 and 3, yet
in all cases D’;, is smaller than D’,;. In general

D =Dy <Dy = Dy,
and D'y, =D’y < Dy,
That is, a pair of loci in the middle of the linkage group is held in greater disequi-
librium than a pair of loci near the ends of the linkage group.

A third feature, also seen in the two-locus models, is that the mean fitness, W,
of the population at equilibrium is greater for linked cases than for unlinked ones.
This is a result of the simultaneous selection in a single individual of several dele-
terious homozygotes. When there is linkage disequilibrium, the death of one or-
ganism removes from the population homozygous genotypes at several loci in a
greater frequency than when the loci associate at random, with the result that
fewer individuals need be selected against: the segregation “load” is less and the
mean fitness is greater.
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TABLE 9
Results of Model 5. Symbols are as explained in the text

R between adjacent loct

Gametes 000 .01 .02 .03 04 .05 .06 .063 0645 .065
00000 .50000 .46199 42053 37444 32183 .25904 .17488 .13627 .09817 .03125

060001 O 01083 02193 .03316 .04418 .05411 .05997 .05874 .05413 .03125
00010 O 00016 00074 .00201 .00438 .00863 .01675 .02119 .02567 .03125
00011 O 00775 01572 02384 .03192 .03947 .04495 .04515 .04336 .03125
00100 O .00010 .00048 .00133 .00299 .00611 .01254 .01642 .02087 .03125
00101 O 00000 .00003 .00013 .00044 .00135 .00458 .00754 .01213 .03125
00110 0 .00013 .00061 .00166 .00363 .00723 .01443 .01869 .02344 .03125
o011t 0O 00775 01572 02384 .03192 .03947 .04497 .04515 .04336 .03125
01000 O 00016 .00074 00201 .00438 .00863 .01675 .02119 .02567 .03125
01001 O .00000 .00003 .00015 .00050 .00155 .00524 .00859 .01370 .03125
01010 O .00000 .00000 .00001 .00006 .00029 .00164 .00341 .00700 .03125
01011 O .00000 .00003 .00013 .00044 .00135 .00458 .00754 .01213 .03125
01100 0 .00013 .00061 .00166 .00363 .00723 .01443 .01869 .02344 .03125
0110t 0 .00000 .00003 .00015 .00050 .00155 .00524 .00859 .01370 .03125
01110 0 .00019 .00088 .00234 .00504 .00985 .01905 .02410 .02912 .03125
ot111 0O .01083 02193 .03316 .04418 .05411 .05997 .05874 .05413 .03125
Dr,, 1.00000 .95476 .90300 .84164 .76508 .66172 .49236 .39660 .28448 O
D', 1.00000 .92352 .83888 .74296 .63072 .49236 .20912 .20836 .11928 O
Dr,, 1.00000 .89284 .77752 .65208 .51380 .35836 .17452 .10408 .04720 O
D . 1.00000 .85140 .69840 54184 .38376 22808 .08192 .03984 .01344 O
Dr,, 1.00000 .96744 .92944 88300 .82260 .73604 .58104 .48584 .36680 O
Ir,, 1.00000 .93572 .86316 .77876 .67656 54488 .34880 .25104 .15068 O
Dr,, 1.00000 .89284 .77752 .65208 .51380 .35836 .17452 .10408 .04720 O
Ir,, 1.00000 .96744 92044 88300 .82260 .73604 .58104 .48584 .36680 O
D, 1.00000 .92352 .83888 .74296 .63072 .49236 .29912 .20836 .11928 O
D, 1.00000 .95476 .90300 .84164 .76508 .66172 49236 .39660 .28448 0
w 49500 45688 41927 38203 34491 30738 .26720 25240 24021 22781

A final feature of these models, also seen in two-locus models, is the existence
of multiple equilibrium conditions. Tables 8 and 9 only show a single equilib-
rium array of gametes for each value of R. Actually there are 15 additional arrays
for each case which are complementary to the one shown. This is because the
model is symmetrical with a 0/0 homozygote equivalent in fitness to a 1/1 homo-
zygote and all loci identical in effect. Thus by interchanging 0 and 1 at any locus
a new array can be produced. The sign of the D values will depend upon the ar-

ray but the absolute values will be the same, as will the mean fitness, W. When
0/0 and 1/1 homozygotes have identical fitness there is no meaning to “coupling”
or “repulsion’ gametes and the signs can be ignored.

The difference between the two models is in the direction expected. The first
model in which there is decreasing epistasis with increasing heterozygosity shows
no effect of linkage above R = .04. The critical value of R above which there is no
effect of linkage was not determined exactly but it lies between .038 and 0.04. In
Model 5 where the epistasis is constant, the critical value is approximately .065.
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In Model 4 the ratio of fitness with complete linkage to fitness with free recombi-
nation 1s .435/.285 = 1.53, while in Model 5 this ratio is 2.17.

Correspondence to Experiments

The models discussed above make specific predictions about the course of se-
lection in a population segregating for several genes in the same linkage group. If
there is heterosis and epistasis it is predicted that there will be permanent linkage
disequilibrium when recombination is within certain limits, and that genes at op-
posite ends of the linkage group map be held out of linkage equilibrium by their
association with genes between them in the sequence. Any eract comparison of
prediction to experiment is virtually impossible with five loci, since the fitnesses
of all the genotype would be virtually impossible to measure. However, the quali-
tative aspects of these predictions can be tested in experimental populations in
which five loci are segregating, and Table 10 shows such experimental results.
This table comes from the experiments of Dr. Grace B. CanNon of the Zoology
Department of Washington University, St. Louis, to whom I am deeply grateful
for allowing me to make use of her experimental data and analysis. These data
have since been published (CanNon 1963).

The experiment involves five mutant markers on the third chromosome of
Drosophila melanogaster. These markers have the following linkage relations

se-32.5—s5-5.5-k—6.7—~20.4-ro
The original populations were made up by introducing into a wild-type popula-
tion a few chromosomes with the constitutions: se ++ -+ +, + ss ke + and
+ =+ + -+ ro. The initial gene frequencies are shown in Table 10 for three repli-

TABLE 10

Resulis of five-locus experiments in Drosophila melanogaster with genes
se, ss, k, e and ro. Data of Dr. Grace B. CanNow ‘

Population and week

Population 20 Population 21 Population 22
0 28 50 0 28 50 0 28 50
(a) Gene frequencies
se .007 102 .058 .007 .044 .073 .005 .026 .037
ss 012 052 216 012 078 203 .009 106 .186
k .012 .026 .200 .012 100 A77 .009 .092 175
e 012 .013 A74 012 133 219 .009 .106 .181
ro .007 .064 .084 .007 .066 .094. .005 .026 .048
(b) D and D’ values
ss-k D + .0247 -+.1408 +.0610 4-.1166 -+.0693 4-.1328
D -+1.0000 +4-.8980 -.6616 .8265 —+.8426 +-.9323
ke D — 0003 -}-.1182 +.0781 +-.1231 -+.0823 -}.1173
D —1.0000 -.8491 —+.9008 --.8905 —+1.0000 -.8184
ss—e D + .0123 +-.1154 -+.0588 +-.0907 -1-.0810 +-.1039

D +1.0000 —+.8459 -+.8695 +-.5721 +.8547 4-.7052
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cate populations. Two subsequent samples were taken from the populations, one
after 29 weeks and one after 50 weeks, or approximately 15 and 25 generations
after introduction of the mutant genes. The gene frequencies at these times are
shown in Table 10a. Dr. CANNON’s samples were taken in such a way that ga-
metic frequencies could be estimated, and the results for the three sample periods
are given in Table 10, in terms of D’;;, the relative linkage disequilibrium pa-
rameters between gene pairs.

Table 10b shows only the D’ values for the three middle genes, ss, &k and e for
the following reason. The frequency of the two outside genes se and ro is quite low
so that gametes carrying them are rare. As a result estimates of linkage disequi-
librium involving these genes are variable and unreliable. The significance of D
values can be tested by a two-by-two chi-square, testing the association between
two loci. Such tests performed on the results of the last generation (Week 50)
give probabilities between .1 and .8 for all associations involving the outside genes
se and ro. That is, there is no significant linkage disequilibrium involving these
genes. The three D values among the central three genes, however, are highly
significant with probabilities much less than .01 for all three D values in all three
populations. It is only the significant D values that are shown in Table 10b.

As a whole, the results are clear-cut and in excellent agreement with the theo-
retical prediction. All mutant genes increased in frequency during the time of
the experiment. Whether or not they have reached equilibrium it is impossible
to say, but the fact that they have increased is remarkable in the face of our usual
assumption that visible mutants are deleterious. Either these mutations are het-
erotic, or there is gene-frequency-dependent selection keeping them in the popu-
lation, or else they are tightly linked to other genes affecting fitness. Whatever
the explanation, the mutants are maintained at high frequency.

When we look at Table 10 we see that accompanying the maintenance of these
genes is the maintenance of pronounced linkage disequilibrium of the three
closely linked genes ss k and e which are all within a map length of 12 centimor-
gans. Without taking selection into account we would expect the linkage disequi-
librium among these genes to have decayed considerably in the 25 generations of
the experiment. Taking into account the lack of recombination in males, we would
expect for ss and e that

D’y = (.939)% D/, = 207
whereas D’;5 is actually .846 (Population 20). The same lack of decay is also
seen for the ss—k and k—e intervals. On the other hand the outside genes se and ro
are not in intense disequilibrium with each other or with the middle three genes,
since the chi-square tests on all three populations show that the only linkage dis-
equilibrium values significantly different from zero are among the three middle
genes ss, k and e.

Another way of seeing the selection of linked blocks of genes is shown in Table
10a. The three middle genes have all increased in frequency together while the
two loosely linked genes se and ro have much lower frequencies. Thus selection is
operating on the unrecombined block as a whole.
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General Implications of the Results

One of the most important and difficult problems in population genetics at the
present time is the extent to which heterosis accounts for the observed genetic
variation in populations. A telling argument that has been advanced against wide-
spread heterosis is that the cost (genetic load) to a population of maintaining
many heterotic genes is unbearable, especially if we assume that this load acts
through loss of zygotes. Thus if a single locus has a heterotic loss of say, 5 percent,
then only .95 of the population survives. Adding a second locus like this leaves
only .9025 of the population and so on, so that 100 such heterotic loci could be
maintained only at a cost of killing .995 of the population. What the results of the
investigation of linkage show is that this load on the population is considerably
reduced if the genes are linked to each other so that simultaneous elimination of
homozygotes at different loci can occur. In particular, the fitness in Model 2 of
the four-locus models can be more than doubled by this linkage effect.

As I have repeatedly pointed out, epistasis is required in order for linkage to be
important in natural selection. Can interaction between genes be sufficiently
strong and widespread to make linkage important? The answer is clearly, yes,
because epistasis as defined in this context always occurs on the scale of adaptive
values in nature. By epistasis (or interaction) we mean a deviation from arithme-
tic additivity of the effects of genes at two different loci. But arithmetic additivity
is not a usual property of fitnesses. For example if homozygosity for allele A at
one locus results in a fitness of .5, and homozygosity for allele B at a second locus
also results in a fitness of .5, then perfect additivity requires the fitness of AA BB
to be zero whereas in fact it is likely to be about .25. Fitnesses tend to be rnulti-
plicative rather than additive and this fact, in itself, gives rise to interaction as
we have defined it. Model 5 of the five-locus models (Table 7) is a perfectly mul-
tiplicative model, each substitution of a homozygous genotype cutting the fitness
by one half. In one sense there is no interaction in this model since the genes can
be thought of as acting independently, yet the effect is to produce considerable
epistasis on the additive scale and this is sufficient to make linkage important. The
fact that Dr. Cannon’s data on five loci chosen at random shows such pronounced
effects of linkage is added evidence for the importance of taking linkage into ac-
count in our formulations.

Finally, the five-locus models add an important observation not seen in the two-
locus models. This is the curnulative effect of the linkage along the chromosome.
Even if two genes are loosely linked, they may be held out of linkage equilibrium
with each other if loci between them are out of linkage equilibrium because of se-
lection.

Part of this investigation was made during the tenure of a National Science Foundation Senior
postdoctoral fellowship and a Fulbright Travel Award, held jointly at the Department of Zoology
of the University of Sydney and the Division of Animal Genetics of C.S.1.R.0. I am most grateful
to the Department and the Division for the facilities they put at my disposal, especially the
SILLIAC computer. Work on the five-locus models was made possible by a program written by
Dr. Jou~ BurcHer of the Applied Mathematics Department in Sydney. I have already indicated
the debt I owe Dr. Grace B. CannNow of Washington University.
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SUMMARY

The general problem of the interaction between linkage and selection has been
examined for a number of multilocus models. General equations and a method of
“genetic operators” are given for the solution of this problem. Specific numerical
cases for two- and five-locus models exhibiting heterosis have been examined with
the following results: (1) Loci may be kept in permanent linkage disequilibrium
despite gene frequency equilibrium, by natural selection. (2) When epistasis be-
tween loci is strong enough disequilibrium will be maintained for genes that are
completely unlinked. (3) The epistasis which results in disequilibrium can be
generated by simple multiplicative fitnesses, a common situation, if not the most
common. (4) The linkage disequilibrium results in higher mean fitness. (5) In
multiple-locus models genes quite far apart on the chromosome may be held out
of linkage equilibrium by genes between them along the chromosome. The effect
is then cumuldative along the chromosome. (6) Some experiments with Drosophila
are reviewed and the predictions of the models are upheld in the experiments.
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