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HILE the theory of the genetic changes in a population due to selection is 
quite well understood for single loci, our theory for multiple-gene characters 

is in a rudimentary stage. Most of the formulations for multiple-gene characters 
are simply extensions of single-locus models, extensions which ignore the problem 
of linkage. There are, however, a few papers in which the role of linkage has been 
investigated for more or less special cases of selection (KIMURA 1956; LEWONTIN 
and KOJIMA 1960; BODMER and PARSONS 1962). The results of these investiga- 
tions were sufficient to show that even for relatively simple cases (two loci, simple 
symmetrical selective values) linkage might have profound effects on the course 
of natural selection and, pari passu, natural selection may have major effects on 
the distribution of coupling and repulsion linkage in a population. 

The results of the investigations of LEWONTIN and KOJIMA (1960) of the two- 
locus model can be summarized as follows: (1) If the fitnesses are additive be- 
tween loci (no epistasis), linkage does not effect the final equilibrium state of the 
population. (2) If linkage is tighter than the value demanded by the magnitude 
of the epistasis (the greater the epistasis the greater the value) there may be 
permanent linkage disequilibrium and alteration of equilibrium gene frequencies. 
(3) The rate of genetic change with time is affected by the tightness of the link- 
age. (4) In some cases stable gene frequency equilibria are possible only if  link- 
age is tight enough. 

Although these conclusions were based only on two-locus model and for selec- 
tive values of a fairly restricted sort, they point clearly to the importance of taking 
linkage into account in understanding the changes of gene frequencies in popula- 
tions. In fact, some experimental results (an example of which will be given 
below) can be understood only if the interaction of selection and linkage is taken 
into account, 

The equations describing the interaction between selection and linkage (see 
below) do not usually have general literal solutions. It is for this reason that the 
authors cited above have restricted themselves to relatively simple cases. In view 
of the interesting findings of those previous papers, however, it  is worthwhile to 
explore the subject more intensively. To do so requires the numerical rather than 
general literal solutions to the equations, but such numerical solutions apply, 
obviously, only to the particular parameter values chosen. To  make such a nu- 

1 This investigation was performed under Atomic Energy Commission Contract AT (30-)2620 
The extra cost of setting tables and formulas has been defrayed by this contract. 
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merical approach at all useful, it is necessary to cover a variety of models of 
selection and to vary each model so that an empirical “feel” for general results 
can be obtained. In this sense, numerical calculations are like experiments: the 
generality of the results depends upon the variety of conditions of the experiments. 

In this and the succeeding two papers of this series, three main types of selec- 
tion are discussed. While these are not completely exhaustive of all possibilities, 
they represent the main modes of selection in natural and artificial populations. 
In  this paper I will consider heterotic models, in which heterozygotes at each 
locus are more fit than homozygotes. In the second paper of the series optimum 
selection will be examined; that is, selection operating against individuals whose 
phenotypes deviate from some intermediate optimum. The last paper will deal 
with unidirectional selection in which an extreme phenotype or genotype is select- 
ed against. Since the effect of linkage is rather different in these three cases, 
separate discussions of each are required. 

THE MATHEMATICS O F  SELECTION A N D  LINKAGE 

A general treatment of the equations of gene frequency change with linkage 
for the two locus case is given by KIMURA (1956) for the continuous time model 
and by LEWONTIN and KOJIMA (1960) for the discrete generation case. The re- 
sults of these latter authors will be briefly recapitulated here and extended to 
multiple loci. Let there be two loci with two alleles each denoted by A,a and B,b 
respectively. There are then four gametic types ab, aB, Ab, AB and these will have 
the frequencies just after meiosis in any generation goo, gol, glo and gll, respec- 
tively. In these subscripts a 0 denotes the lower case letter allele ( a  or b )  and a 
1 denotes the upper case allele ( A  or B j . To simplify notation let these four fre- 
quencies be, x,,, xl, x2, and x3. The subscripts of the x’s are the decimal equivalents 
of the binary subscripts of the g’s. That is, 00 is binary 0, 01 is binary 1, 10 is 
binary 2, and 11 is binary 3.  

Further let 
Zij = the frequency of the zygote formed from the gametes whose frequen- 

cies are xi and xj 
Wii = fitness of genotype whose frequency is Z;j 
Wi. = 2 . .  wij xi 

% I  w = wi. xi (the mean fitness) 
i 

R =  
D = X ~ X , ~  - XJ, 

recombination fraction between the loci 
(the linkage disequilibrium determinant) 

Then, LEWONTIN and KOJIMA have shown that the change in genetic frequency 
in one generation, A xi, is given by 

X i ( W i .  - w ) - ( - l j i R D W , ,  (1) A X i  = - 
W 

At gene frequency equilibrium A xi = 0 for all i and this will happen when one 
of two conditions holds. First if D = 0 there is no linkage disequilibrium and for 
A xi to be zero 
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(2a) Wi. - W = 0 
or (2b) xi = 0 

for all i. 
The second possibility is that D # 0, that there is permanent linkage disequilib- 
rium in which case when A xi = 0. 

In this latter case there is a balance between the loss or gain of a gametic type by 
selection and the gain or loss of that type by recombination. 

These relationships can be generalized to more than two loci fairly easily al- 
though the resulting equations are rather cumbersome. Again let xi be the fre- 
quency of the gametic type gi where the subscript of the z’s is the decimal equiv- 
alent of the binary g subscripts. Thus, for five loci, gooooo, gooool, . . . glllll have the 
frequencies xo, x1 . . . . x31. The n- locus generalization of equation (1) has the 
form 

where p (x, r ) ,  the recombination function, has the following complicated and 
unfortunate form: 

(3) X ~ ( W { .  R D W11 = O  

(4) A xi = [~i(wi .  - @)- p ( ~ ,  R ) ] / W  

Y i=l j,k,l,meR 

1 2%’ - 

xi xk 2H-2 w j k l  
j,k:l,meO 

+c 
+ I  

. n(n-1) 
2 

with n = number of loci. 

Ri = one of the [ n ( n  - 1 ) ] /2  recombination fractions between two loci among 
n. 

wjk = fitness of a zygote formed from the gametic combination xj, x k ,  ( W j k  = 
W l m )  

H = number of heterozygous loci in the zygote jk 
R is the subset of all possible pairs X i  x k ,  z1 xm with the following characteristics: 
(a) xjxk and xlzm must each be capable by some recombination event (includ- 
ing no recombination) of producing the gamete xi. 
(b) xjxk and z~x, must both be heterozygous for the two loci corresponding to 
the Ri. 
(c) at the two loci in question zjzk must be in the same linkage phase as the 
gamete to be produced, xi, while X Z X ~ ~  must be in the opposite linkage phase. 
Oi = special recombination fractions which are not conventional recombina- 

S = total number of exchanges for a given Oi (see below). 
These special Oi arise in the following way. When n loci are heterozygous, the 

gametic output of a given heterozygote is completely specified by the probabilities 

tion distances between pairs of genes. 
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of exchange in the n - 1 intervals between the genes. If we do not assume inde- 
pendence of the intervals, that is, if we allow interference, there are obviously 
2"-l parameters made up of the noncrossovers, and single, double, triple, etc. ex- 
changes. These parameters (probabilities) add to unity however, so there are only 
2"-l - 1 independent parameters. For five loci, for example there are 15 param- 
eters consisting of the four single exchange probabilities (SI, S2, S,, S4), the six 
double exchange probabilities (DlZ, 013, D,,, OZ3, D,,, D d 4 ) ,  four triple exchanges 
(T,,,, TlZ4, T234)  and one quadruple exchange ( QlZ3,). On the other hand there 
are only n ( n  - 1 )/2 conventional recombination fractions among n genes taken 
two at a time. For five loci there are ten such recombination fractions. Thus, any 
formulation of the results of crossing over cannot be put only in terms of the 
usual recombination fractions for n> 3. The 0, referred to in equation (5) are 
extra orthogonal recombination values necessary to make up the full set of 2"-l-l 
recombination values which are linear combinations of the 2=-l- 1 exchange 
probabilities. Table 1 shows the relationships between the R, and Oi and the vari- 
ous exchange probabilities for the five locus case. Figure 1 shows the definitions of 
the ten conventional recombination fractions, Ri. 

The 15 equations in Table 1 may be solved for the exchange probabilities with 
the result shown in Table 2. The Table shows the sign (+ or -) associated with 
each R, and 0, in the linear combination 

10 5 

i = l  1 = 1  

1 1 (6) Exchange probability = - 
8 
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8 .  
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FIGURE 1.-Definition of the ten recombination fractions RI-E,, among five genes A-E as 

used in the text. 
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TABLE 1 

Relationships between the recombination factions ri and Oi and the probabilities of single, 
double, triple and quadruple exchanges for fiue loci 

TABLE 2 

The linear combinations of the ri and Oi which are equated to the various exchange probabilities. 
See text for explanation. 

Exchange 
probabilities r1 rz r3 r4 r5 re ri r8 ro rlo 0, 0, 0, 0, 0, 

s, + - - -  + - - + - + + - + + +  
s2 - + - - + + -  + + + -  + - - +  
s, - -  + - - + + + + + + - -  + -  
si - - -  + - - + - + + - + + + +  
Dl2 + + - - - + - - + - + + + + -  
D23 - + + - + - + - - -  + + -  + +  
D34 - - + + -  + -  + - - + + + -  + 
O13 + - + - + + + -  + - - - + - +  
D24 - + -  + + + + + - - - - + + -  
D,, + - - + + - + + + - + + - - -  
T123 + + + - - - + + - + A  + + - -  
T124 + + - + - + + - - + + - - -  + 
T234 - + + + + - - - + + + -  + - -  
Q + + + + - - -  + + - - - -  + +  T134 + - + + + + - - - + - + - + -  

The orthogonality of the complete set of 15 Ri and Oi is seen from the table 
since every row and every column contains eight plus and seven minus terms. 

The necessity of introducing extra orthogonal parameters in the study of linkage 
of more than three genes has also been discussed by JONES (1960) and in a very 
illuminating paper of SCHNELL (1961). (It is a curious sidelight on the progress 
of science that within a period of two or three years, three of us have found it 
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necessary to develop independently nearly identical linkage theory for three quite 
different purposes in a field that was first exploited mathematically 20 years ago 
by GEIRINGER [ 19441 .) 

It is from Table 2 that equations (4) and ( 5 )  have been constructed. For ex- 
ample, a contribution to the gamete class g l l o o o  from the zygote gltlll/goooo,, would 
occur when a single exchange in the region 2-3 occurred. The contribution will be 
one half of the probability of the appropriate exchange, S,. The frequency of the 
zygote gllll,/gooooo after selection is 2x02,,Wo,,, so that the net contribution to 
gamete class gllooo is, from Table 2 

xo ( -RI  + R, - R, - R, 4- R j  + R, - R7 4- R, -k R, 4- RIO 
U 

- 0, + 0, - 0, - 0, + 0 5 )  WO,,, 
The last term in equation (5) will be positive or negative depending upon 

whether S is even or odd. To understand the significance of S we must interpret 
the orthogonal recombination values 0, as simultaneous recombinations in non- 
adjacent intervals rather than between pairs of genes (SCHNELL 1961). Looking 
at Table 1, 0, is the recombination fraction for interuals 1 and 3, O2 for 2 and 4, 
etc. Then S is the number of recombinations in these intervals for  a given 0, 
necessary to produce the gamete in question from the zygote X J X k .  For example, 
to produce a gamete goloot from the zygote gooooo/gl,lll we must have an exchange 
in regions 1 ,2  and 4. From Table 1 we see that 0, concerns exchanges in intervals 
1 and 3.  Then for 0,, S = 1. On the other hand 0, concerns regions 1 ,2  and 4 SO 

that for O,, S = 3. 
Using equations (4) and ( 5 )  it is possible to follow the change in gametic fre- 

quencies generation after generation or else to examine equilibrium conditions by 
setting the A xt = 0. Gene frequencies, rather than gametic frequencies are found 
by summing the appropriate gametic frequencies over all other loci. 

The measure of linkage disequilibrium. Another question of interest is the in- 
tensity of linkage disequilibrium among the loci either at gene frequency equi- 
librium or at some intermediate stage of population evolution. For the two-locus 
case, the measure of linkage disequilibrium usually used is the gametic determi- 
nant since this appears explicitly in the equation for  change in gametic frequency 
(equation 1) and because D = 0 when there is complete linkage equilibrium. This 
measure can also be used for multilocus cases by computing separate D values for  
each pair of loci. Thus the linkage disequilibrium for loci 1 and 3 in the five-locus 
case would be D,, = gl go - g, go,  where the dot subscripts mean summa- 
tion over those loci. Formulas for higher order disequilibrium are given by BEN- 
NETT ( 1954). 

One difficulty about this measure is that it is sensitive to the gene frequencies 
so that changes in D reflect both real changes in the intensity of the linkage cor- 
relation, but also changes in gene frequency. If p ,  and p2  are the gene frequencies 
of A and of B respectively, then at linkage equilibrium the frequency of a gametic 
type is the product of the appropriate gene frequencies. That is 

g11 = p1 pz 
go1 = (1 -PI) p2 

g1o = p l  (1 - pi) 
g o o  = (1 - pi) (1 - pi) 
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for the two-locus case. It follows from these relationships that the gametic de- 
terminant can be written 

D = [pl p z  +el  [ ( I  - pl> (1 - p 2 )  +e l  - [pl(l - p z )  -e l  
C(1 -pl) p 2 - e l  = e  

where e is the deviation of the actual gametic frequency from linkage equilib- 
rium. The largest positive value e can take is pl (1 - p,) or pz (1 - p l )  , which- 
ever is smaller, while the largest negative value e can take is either plpz  or 
(1 - pl) (1 - p,) , whichever is smaller. For example if pl =p, = .50, then e can 
be as great as * .25 while if pl = .10 and p 2  = .70, e must be in the limits - .07 to 
-t .03. A simple measure of the intensity of linkage disequilibrium then is the 
ratio of D to the maximum possible e for given gene frequencies. This relative 
value of disequilibrium, D’, is given in the succeeding sections along with D when 
appropriate. 

Numerical solutions by “Genetic Operators.” It is clear that equations (4) and 
( 5 )  are impossible to work with from a practical standpoint. For five loci, for 
example, equation ( 5 )  alone has 660 terms, so that equation (4) has 693 separate 
terms and there are 32 simultaneous equations like this to be solved. Previous 
work has been somewhat restricted in its generality precisely because of the prac- 
tical mathematical difficulties of handling so many very cumbersome equations. 
General literal solutions to such equations are usually impossible to find except 
in the very simplest cases. A reasonable insight into two-locus models has been 
gained in the works previously cited, but even there the most general two-locus 
models could not be handled. While the theoretical population geneticist would 
prefer to state his results in general and usable symbolic terms, we have reached 
an impasse which can only be broken by a more empirical, numerical approach. 

Even the decision to attack only specific numerical examples has not made the 
problem much easier, practically, because even high speed computers cannot cope 
easily with so many large equations. The method I have used is to bypass equa- 
tions (4) and ( 5 )  completely and go to a more basic method of genetic operators. 
This method is to consider an initial vector of gametic frequencies [ g ]  which is 
transformed to a new vector [g] 1, by a transformation T.  That is 

We wish to do two things. First we would like to apply the transformation n times 
SO that we can get the gametic frequencies after n generations. Second, we would 
like to find the value of the vector components, g*, such that 

That is, [ g * ]  is the equilibrium uector so that T is an identity operator for [ g * ] .  
There will, in general, be more than one such vector, but we are interested in 
those cases in which more than one of the components is non-zero. Thus, the 2” 
trivial solutions of the form [0, 0, 0, . . ., 1, . . ., 01 in which all gene frequencies 
are fixed, are known in advance to be solutions but we want to know if there are 
any others. 

The operation T is really a sequence of operations and the flow from [gl0 to 
Cgll can be described as in Figure 2. M is the mating operator and for the case 

(7) k l 1 =  T ( [ g l o )  

T(Cg*lo) = Cg*lo 
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FIGURE 2.-The genetic transformation, T ,  broken up into its components during a single 
generation. 

of random mating it is the row by column multiplication of the vector [g] by its 
transpose [g] 'o to produce the symmetric zygotic matrix [ Z ]  . 

( 8 )  [zl = M  ([glo) = [glo X [gl'o 
S is the selection operator and consists in multiplying each element Zij of the 

zygotic matrix [ Z ]  by an appropriate fitness value Wij bearing in mind that 
W . .  2 3  = Wji and Zij = Zji. 

The matrix of selected zygote frequencies [Z,] is then used to produce a new 
vector of selected gametes [g,] by the recombination operator, R. This operator 
consists in multiplying a given element of [Z,] by each of the 2"-' exchange 
probabilities (including the probability of no exchange) and adding the result of 
each multiplication to the appropriate element of [g,] . This is then repeated for 
each element in [Z,] . Finally, [gal is converted to [g] by the scalar multiplica- 

4 

tion [gll = [g,] I. This normalizes the selected g,i, bringing their sum back 
Ega i 

to unity. The sum of the unnormalized g,, is E, the mean fitness of the popula- 
tion. 

The operations described above are particularly easy to perform in a binary 
digital computer. 

The procedure described above produces the generation by generation change 
in the vector [g] . To study equilibrium, only a slight modification is necessary. 
The unnormalized vector [g,] can be expressed as 

(9) [ E E a 2 3 k  gi gk ] = [gsl 
3 k  

where the alJk are the elements of the transformation, T ,  introduced by the oper- 
ators S and R. Then, by postulating some initial vector we can solve the vector 
equation 

(10) [ 2 E a i j k  gj gk - gai 
i k  

by the standard iteration method of NEWTON. 

HETEROTIC SELECTION 

There is increasing evidence (WALLACE 1958) that if heterosis at the locus 
level is important in natural populations, the degree of heterosis at each locus is a 
function of the amount of heterozygosity at other loci. That is, there is epistatic 
interaction in the determination of heterozygote superiority. Such epistasis will 
cause an interaction of linkage and selection at gene frequency equilibrium as 
shown by LEWONTIN and KOJIMA (1960). In the rest of this paper we will ex- 
amine the results af this interaction for some two-locus and five-locus models. The 
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dynamics of two-locus models has been discussed by LEWONTIN and KOJIMA, but 
solutions of their equations were possible only in certain restricted cases. The 
present paper will examine some two-locus heterotic models in which symmetry 
of fitness is not assumed, so that numerical solutions are necessary or in which 
the stability of equilibria is not obvious and considerable numerical calculation 
was necessary to test the stability of the equilibria. 

Two-locus models: Model 1, whose fitnesses are given in Table 3 (a), is a simple 
heterotic model with epistatic interaction. Each locus shows heterosis in every 
combination with the other locus, but the heterosis is not additive between loci. 
Thus, the degree of heterosis at locus A is greater when in the presence of Bb than 
in the presence of BB or bb. A similar inequality holds for the B locus, where 
heterosis is also more pronounced when A is heterozygous than when it is homo- 
zygous. This is then a cumulative heterotic model, fitness increasing more rapidly 
the more loci that are made heterozygous. 

The stable equilibria for Model 1 are given in Table 4. In all results that follow 
only stable equilibria are given. What is shown are the frequencies of the four 
gametic types, the gene frequencies of the two loci, the linkage disequilibrium 
parameter, D, the relative disequilibrium, D’, and the mean fitness of the equi- 
librium population, m. Several points are worth noting. First, the stable equilib- 
rium of gametic frequencies does not correspond to linkage equilibrium euen with 
free recombination ( R  = .50) although the degree of linkage disequilibrium is 
small. That is, there is a significant excess of coupling or repulsion at equilibrium 
no matter how much recombination goes on. Second, there are pairs of solutions 
for each recombination value, one corresponding to an excess of coupling (D 
positive) and one to an excess of repulsion (D negative). These paired solutions 
which are only shown for the tighter linkage values are not symmetrical as was 
the case in the symmetrical models discussed by LEWONTIN and KOJIMA. Thus 
there are two possible sets of equilibrium gene frequencies for each value of re- 

TABLE 3 

Relative fitnesses of the nine genotypes for two-locus heterotic models 
~~~~~~~~~~~~~ 

(a) Model 1: asymmetric heterotic model with epistasis 
A A  Aa 

BB .40 .60 
Bb .60 1 .oo 
bb .50 .70 

(b) Model 2: asymmetric partially heterotic model with epistasis 
AA An 

BB .5000 .5000 
Bb .5625 1 .om0 
bb .3750 .4375 

(c) Model 3 : mixed overdominance, underdominance model 

BB .90 20 
Bb .eo 1 .oo 
bb .90 .20 

A A  Aa 

aa 
.30 
.50 
.4Q 

.$;50 

.3125 
,3750 

aa 
.90 
.20 
.90 
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TABLE 4 

Results of Model 1.  Symbols are as expluined in the text 

R g a l  gii P r D D' 
- 
IV 

,70000 
,70836 
,69014 
,703 78 
,68044 
.68902 
,67088 
,67950 

____ 
.00 

.O1 

.02 

.03 

.04 

.06 

.08 

.10 

.30 

.50 

.50OOO 

.00000 

.46225 
,02359 
.42023 
,04984 
,37049 
,08051 

.ooooo 
,58333 
.05 195 
.55936 
,10875 
.53246 
,17398 
.50089 

.00000 

.41667 
,01777 
,38914 
.03871 
,35855 
,06621 
,32332 

.50000 

. 0oooo 

.46805 

.02791 

.43231 

.05915 

.38932 

.09528 

,50000 
.58333 
,51420 
,58295 
,52898 
,58230 
,54447 
,58140 

.50000 +.e5000 

.48002 f.21543 

.45894 f.17746 

.43670 f.13272 

.41667 -.e4306 

.41273 -.21700 

,40839 -.18797 

,40383 -.1544!3 

+l.00000 
- 1 .ooOOO 
+.92384 
--.90191 
+.82093 
- ,79042 
f.66717 
-.65799 

.11793 ,58004 ,39941 -.I1374 -.49096 ,67038 .46211 ,28148 .13848 

,20082 ,37418 .I9621 .22879 .57500# ,39703 -.02747 -.12033 .65954 

,39819 --.01054 -.04616 ,65882 ,21773 ,35566 .18039 24.622 ,57339 

,221 72 ,35125 ,17676 25032 ,57297 .39848 -.00659 -.08886 .65878 

,39898 --.@I35 -.00591 ,65862 ,22703 ,34539 ,17195 ,25563 ,57242 

.22766 ,34473 ,17141 ,25620 ,57239 .39907 --.00076 --.00327 ,65862 

combination, one corresponding to a coupling equilibrium and one to a repulsion 
equilibrium. Moreover, gene frequencies change with recombination. 

Third, the mean adaptive value of the population is highest when there is close 
linkage and it is higher for repulsion equilibrium than for coupling equilibria. 
The ratio of fitness at complete linkage to that with free recombination is 1.075, 
not an immense increase due to the linkage. The most profound change in the 
population due to linkage is in the genotypic distribution at equilibrium which is 
in turn a reflection of the very large differences in gametic frequency from one 
value of linkage to another. 

Model 2, whose fitnesses are given in Table 3b and whose results are shown in 
Table 5 is slightly different from Model 1. Again there is cumulative heterosis but 
here the heterosis disappears in one case: when B is homozygous A shows com- 
plete dominance. The results of this model show the same features as Model 1 
with a few exceptions. In  this case it is the coupling rather than the repulsion 
equilibrium which have the highest fitnesses. In  addition, the general effects of 
linkage are a great deal stronger. The value of D is ten times greater when there 
is free recombination than was the case in Model 1, and the ratio of mean fitnesses 
with complete linkage and free recombination is 1.22. In addition, there is a very 
strong effect of linkage on the equilibrium gene frequencies. In  Model 1 the gene 
frequencies at equilibrium were 

R = .OO p^ = ,58333 i = .41667 
R = .50 p^ = ,57239 i = .39907 
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TABLE 5 

Results of Model 2. Symbols are as explained in the text 

59 

g10 P 
- 
W r D D' 

.55556 +.24691 +1.00000 
,50000 -.25000 -1.00000 

R 

.oo 
gciJ 

.55556 

.o0000 

go1 

.00000 

.50000 

g11 

,44444 
.ooooo 

.72223 
,68750 

,55556 
.5OOOO 

.01 
.01664 
,54063 
.03563 
,53282 
.05457 
.51637 
.IO201 

.48928 
,02385 
.47750 
.03652 
.46552 
.06352 
,43688 

.48593 
,01668 
.47063 
,02543 
.45443 
,04396 
,41605 

.00815 

.41884 

.01624 

.40523 

.02548 
,37615 
.04506 

,50592 
,56448 
,51313 

.52QO9 
,57989 
.53889 

.5,6934 

,50257 --.23762 --.96684 
,55731 +.22604 +.93128 

,55825 +.214% +.89423 

.56033 +.I9144 t.81325 

,50626 -.22415 -.go940 

.50900 -.21016 -.89190 

.51806 -.I7717 -.79727 

.6784@ 

.70255 
,66738 
.68779 
,65730 
.67350 
.63669 

.02 

.03 

.05 

.07 
.I 6 9 6  ,39738 ,36821 ,07036 .56683 .53226 -.I3225 -.65273 .61463 

.075 
.19509 
.46805 
.41262 
.38645 
,36977 
.36582 

,38244 
.I4242 
,21957 
,24803 
26391 
.26743 

.34280 
,09854 
.I5828 
,18406 
.19969 
,20328 

.07967 

.29099 

.20953 

.I8146 
,16663 
.16347 

.57753 

.61047 

.63219 

.63448 
,63368 
.63325 

,53789 -.I1556 -59187 
,56659 +.I2216 +.55351 
.57090 +.05170 t.24621 
.57051 +.02447 +.I1734 
,56946 +.00891 t.04271 
,56910 +.00544 t.02606 

.60815 
,62830' 
.59970 
,59356 
.59138 
.59101 

.IO 

.15 

.20 

.35 

.50 

for the repulsion equilibria. This is a very small effect. However, in Model 2 the 
results are 

R = .OO $ = .55556 f = .55556 
R = .50 6 = .63325 i = .56910 

which represents a considerable change for the first locus. 
The fitnesses for third model to be considered are given in Table 3c. This is a 

symmetrical model of the kind considered by LEWONTIN and KOJIMA, but has 
certain peculiarities which require careful investigation. Here there is strong 
heterosis at one locus provided the other locus is heterozygous, but selection 
against the heterozygote when the other locus is homozygous. This model is not 
presented as representing a particular natural situation, but rather to show the 
intricacy of the possible interactions between linkage and natural selection. 

The results for this model are given in Table 6. These values were computed by 
formula (18) of LEWONTIN and KOJIMA 

1 1  4rd 
$ 4  4 $- b4-c-a-d 
x. =- _c - 

for symmetrical fitness models and were checked by the method of genetic op- 
erators. There was perfect agreement between them. The startling feature of the 
results is the existence of three distinct regions of solutions. From complete link- 
age to R = .10 there is a stable equilibrium of gene frequencies with both loci 
held at a frequency of .50, but with very intense linkage disequilibrium. As with 
all such symmetrical models there are two complementary equilibria, one in 
coupling (D positive) and one in repulsion (D negative). Above R = . I O  and be- 
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TABLE 6 

Results of Model 3 

.oo .50000 

.01 .49667 

.02 .49324 

.03 .48979 

.04 ,48629 

.06 .47913 

.08 .47174 

.IO . 4 w 9  
.IO to ,375 
.375 to .50 .25000 

0 
.00333 
.00676 
.01021 
.01371 
.02087 
.02826 
.03591 

.25000 

0 .50000 ,50000 .50000 
.00333 ,49667 .50000 .500OO 
.00676 ,49324 .50000 ,50000 
,01021 .48979 .50000 .50000 
.01371 ,48629 .50000 .50000 
.02087 .47913 .50000 .50000 
,02826 .47174 .50000 .500OO 
.03591 .46409 .50000 .50000 

.25OOO .25000 ,50000 .5oooO 
no stable equilibrium of gene frequencies 

1 .00000 
.98658 
.97297 
,95916 
.94516 
,91651 
.86694 
35636 

0 

,95000 
,94000 
,93000 
.92000 
.91000 
39000 
,87000 
.85000 

,57500 

low R = .375 there is no stable equilibrium of any kind. That is, the gene fre- 
quencies go to fixation under natural selection. Then when R exceeds .375 there 
is a stable equilibrium with gene frequencies at .50 and perfect linkage equilib- 
rium. Thus we have a case where either tight or loose linkage results in the main- 
tenance of genetic variation, but intermediate linkage results in a loss of genetic 
variation. 

Fiue-locus models: For the five-locus models the following simplifying assump- 
tions have been made: (1) The loci are interchangeable in their effects; for ex- 
ample, the genotypes 

01110 11001 00101 __-- 
01010’ 11000’00111’ etc. 

are indistinguishable in their fitnesses since each one is homozygous 0/0 at two 
loci, homozygous 1/1 at two loci and heterozygous 1/0 at one locus. (2) There is 
some heterosis for each locus, irrespective of whether the other four loci are het- 
erozygous or homozygous. This assures that all gene frequencies will come to a 
stable equilibrium of gene frequencies at an intermediate value. (3) In view of 
(2) there is no loss of generality by further specifying that 0/0 and 1/1 homo- 
zygotes have equal fitness so that the gene frequencies at each locus come to equi- 
librium at p = q = .50. 

These assumptions do not restrict the generality of the results, but have been 
made in order to make the problem more manageable. With five loci there are 
35 = 243 different genotypes and each one could be given a unique fitness. As- 
sumption 1 reduces this number to 21, since it would be impossible to explore the 
immense variety of possibilities with 243 different fitnesses. The three restrictions 
together result in there being only six different fitnesses depending upon the num- 
ber of loci heterozygous. Table 7 gives the fitnesses of these genotypes for two 
models of heterotic selection to be discussed. 

Both models show cumulatiue heterosis. That is at each increase in heterozygos- 
ity there is a more than linear increase in fitness, this more than linear increase 
representing the epistatic interaction among the loci. Let W1, W ,  and W ,  repre- 
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TABLE 7 

Fitnesses of genotypes with different numbers of loci heterozygous for the two 
fiue-locus models with heterosis 
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Model 4 
Number of 

loci heterozygous W E 

Model 5 

W E 

.06 . .  

.09 . .  

.I8 .33 

.33 .I8 

.54 .I1 

.81 .07 

.03 . .  

.06 . .  

.12 .25 
2 4  .25 
.48 .25 
.96 .25 

sent the fitnesses of three successively greater degrees of heterozygosity. Then 
w, + w3 - 2wz e =  

w3 

is a measure ofthe relative epistatic effect of increasing heterozygosity. As Table 7 
shows, Model 1 was chosen to have decreasing epistatic interaction with added 
heterozygosity, so that the increase from four to five loci heterozygous is accom- 
panied by an increase in fitness nearly equal to that found in the increase from 
three to four loci heterozygous. Models 2 however, shows a constant epistatic in- 
teraction from level to level of heterozygosity. 

Each model has been examined for the equilibrium conditions of gametic fre- 
quencies. Because of the symmetry of the models, gene frequencies at equilibrium 
always equal .50 at all loci, and reciprocal gametic types always have equal fre- 
quencies. That is: glllll = gooooo, gllllo = g000017 etc. 

The results, then, show only the frequencies of the first 16 gametic types gooooo 
through gollll. In addition the values of the relative linkage disequilibrium pa- 
rameters among all pairs of loci are given, Ofl2  through D‘45. Since the gene fre- 
quencies all equal .50, these D’ values are always four times the equivalent D 
values. Finally w, the mean fitness is also given. 

Tables 8 and 9 show this information for the five-locus models investigated for 
different values of recombination. The model is that the five genes are equally 
spaced along the linkage map with a linkage distance R between adjacent genes. 
Thus, for R = .05 the total linkage distance between Loci 1 and 5 is .20. 

In both models certain features are common. Linkage is only effective for fairly 
small recombination values between adjacent loci. However, there is a cumulative 
effect along the chromosome so that the outside genes are in linkage disequilib- 
rium even though they are quite far apart on the linkage map. Selection holds 
Loci 1 and 2 out of linkage equilibrium and also Loci 2 and 3 with the result that 
1 and 3 are also out of equilibrium, and so on down the chromosome. The closer 
the loci, the greater the linkage disequilibrium, the values of D’ being in the order 

In addition, there is a small effect of absolute position in the linkage maps as far 
Df12 > Df13 > Df14 > D f I 5  
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TABLE 8 

Results of Model 4 .  Symbols are as explained in the text 

R between adjacent loci 

00000 
00001 
00010 
0001 1 
001 00 
00101 
00110 
00111 
01000 
01001 
01010 
01011 
01100 
01 101 
01110 
01111 

.50000 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

D‘12 1.OOOOO 
D’13 1.00000 

D‘15 1.00000 
DfZ3  1.OOOOO 

D14 1.ooOoo 

D2* 1 . o m  
D * 5  1.00000 
DS4 1.OOOoo 
DS5 1.00000 
D‘,5 1.0000.0 
W .43500 
- 

,48860 ,43946 ,36690 
,00339 ,01718 ,03474 
.00002 ,00057 ,00286 
,00226 .01155 ,02363 
.00001 .00038 00199 
,00000 .00002 ,00024 
.00001 .00M .00224 
,00226 ,01155 ,02363 
,00002 ,00057 ,00286 
.00000 .00002 ,00027 
.00000 .00000 .00003 
.00000 ,00009 .00024 
,00001 .00044 .00224 
.00000 ,00002 ,00027 
.00002 ,00061 .00310 
,00039 ,01718 ,03474 

.98624 .92456 
,97716 ,87740 
,96812 ,83232 
,95480 .76984 
,99076 ,94800 
,98164 ,89940 
96812 ,83232 
.99076 ,94800 
,97716 ,87740 
.98624 ,92456 
,42852 ,40251 

,82492 
,72616 
,63808 
,52892 
.87396 
.76796 
,63808 
,87396 
,72616 
,82492 
.36941 

,27027 ,23742 
,05166 ,05534 
.00886 ,01164 
,03585 ,03876 
,00636 ,00846 
,00154 ,00248 
,00707 ,00938 
,03585 ,03876 
,00886 ,01164 
,00173 ,00278 
,00037 ,00072 
.00154 ,00248 
,00707 ,00938 
,00173 .00278 
,00960 ,01264 
,05166 ,05534 

,66980 
,51652 
,39688 
.27384 
.74676 
,57192 
,39688 
,74676 
,51652 
,66980 
,33395 

,60900 
.443 12 
.32116 
,20512 
.69320 
,49948 
,321 16 
,69320 
,44312 
,60900 
,32930 

,21789 ,19440 
,05694 ,05822 
,01346 ,01578 
,04015 ,04144 
,00987 ,01170 
,00322 ,00433 
,01092 ,01293 
,04015 ,04144 
.01346 ,01578 
,00361 ,00485 
.00104 ,00159 
.00322 ,00433 
,01098 ,01293 
,00361 .00485 
,01463 ,01722 
,05694 .05822 

,57032 .52092 
,39904 .34556 
,27804 ,22828 
,16868 ,12928 
.65816 ,61224 
,45496 .41)004 
,27804 .22828 
,65816 ,61224 
,39904 .34556 
57032 ,52092 
,31838 ,31218 

.I3407 
,05762 
,02222 
,04259 
,01718 
,00872 
.01894 
,04259 
,02222 
.00977 
.00441 
.00872 
.018!34 
,00977 
.02462 
,05762 

,37572 
.20048 
,11316 
,05041) 
,46984 
,25184 
.I1316 
.46984 
,20648 
.37572 
,29851 

,03125 
,03125 
,03125 
,03125 
,03125 
,03125 
,03125 
,03125 
.03125 
,03125 
.03125 
,03125 
,03125 
.03125 
,03125 
,03125 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
,28500 

as linkage distance is concerned, Loci 1 and 2 are equivalent to Loci 2 and 3, yet 
in all cases D‘12 is smaller than D’23. In general 

and D f I 3  = DlSS < D‘24 
That is, a pair of loci in the middle of the linkage group is held in greater disequi- 
librium than a pair of loci near the ends of the linkage group. 

A third feature, also seen in the two-locus models, is that the mean fitness, w, 
of the population at equilibrium is greater for linked cases than for unlinked ones. 
This is a result of the simultaneous selection in a single individual of several dele- 
terious homozygotes. When there is linkage disequilibrium, the death of one or- 
ganism removes from the population homozygous genotypes at several loci in a 
greater frequency than when the loci associate at random, with the result that 
fewer individuals need be selected against: the segregation “load” is less and the 
mean fitness is greater. 

D f 1 2  = D’45 < DIz3 = D’34 
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TABLE 9 

Results of Model 5 .  Symbols ere as explained in the text 

63 

R between adjacent loci 

Gametes 000 .01 .02 .03 .04. .05 .06 .063 ,0645 .065 

00000 
OOO(E1 
00010 
0001 1 
00100 
00101 
001 10 
00111 
03 OOO 
01001 
01010 
01011 
01 100 
01101 
01110 
01111 

.5oooo 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 .00000 
1 .o0000 
1 .ooooo 
1 .ooooo 
1 .ooooo 
1 .ooooo 
1 .ooooo 
1 .m 
1 .00000 
1 .00000 
.49500 

,46199 
,01083 
.OOO16 
,00775 
.00010 
. m o  
.00013 
,00775 
.OOO16 
.aoooo 
.00OOO 
.o.oooo 
.00013 
.Ooooo 
.00019 
.01083 

.95476 

.92352 

.89284 
,85140 
.96744 
.93572 
,89284 
.96744 
.92352 
.95476 
.45688 

,42053 
.02193 
.00074 
.01572 
.OW48 
.aooo3 
,00061 
.01572 
.OW74 
.00003 
.ooooo 
.WOO3 
.o0061 
.00003 
.WO88 
,021 93 

.go300 
33888 
.77752 
.698# 
.92W 
36316 
.77752 
,92944 
.83888 
.w300 
.41927 

.37444 .32183 

.03316 ,04418 

.00201 ,00438 

.OB84 .03192 

.00133 .00299 

.00013 ,00044 

.00166 ,00363 
,02384 ,03192 
.00201 .00438 
.OW15 ,00050 
.00001 .WOO6 
,00013 .OOO44 
,00166 .00363 
.00015 ,00050 
.MI234 ,00504 
.03316 ,04418 

.84164 

.74296 

.65208 

.54184 

.88300 

.77876 

.65208 
38300 
.74296 
.84164 
.38203 

.76508 
63072 
,51380 
.38376 
.82260 
,67656 
.51380 
.82260 
.63072 
,76508 
,34491 

.25904 
,0541 1 
.00863 
,03947 
.00611 
,00135 
.00723 
,03947 
.a0863 
.00.155 
.WO29 
,00135 
,00723 
.00155 
.00985 
,0541 1 

,66172 
,49236 
,35836 
,22808 
.73604 
,54488 
.35836 
.73604 
.49236 
.66172 
.30738 

.17488 .I3627 

.05997 ,05874 
,01675 .02119 
,04495 ,04515 
,01254 ,016412 
,00458 .00754 
.01443 .01869 
,04497 . M 1 5  
.01675 .02119 
,00524 .00859 
.00164 ,00341 
.00458 ,00754 
.01443 .01869 
.00524 .00859 
.01905 .02410 
,05997 ,05874 

.49236 ,396601 

.29912 .20836 

.I7452 .I0408 

.08192 .03984 

.58104 .48584 
,34880 ,25104 
.17452 ,10408 
.58104 .48584 
,29912 ,20836 
.49236 .39660 
.26720 2524.0 

.09817 

.05413 

.02567 
,04336 
,02087 
,01213 
.02344 
.04336 
.02567 
.01370 
.00700 
.01213 
,02344 
,01370 
.02912 
.05413 

,28448 
.11928 
.04720 
,01344 
,36680 
,15068 
,04720 
.36680 
.11928 
.28448 
.2#21 

.03125 

.03125 

.03125 
,03125 
,03125 
,03125 
.03125 
.03125 
.03125 
,03125 
.03125 
.03 125 
.03 125 
,03125 
,03125 
.03125 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
.,22781 

A final feature of these models, also seen in two-locus models, is the existence 
of multiple equilibrium conditions. Tables 8 and 9 only show a single equilib- 
rium array of gametes for each value of R. Actually there are 15 additional arrays 
for each case which are complementary to the one shown. This is because the 
model is symmetrical with a 0/0 homozygote equivalent in fitness to a 1J1 homo- 
zygote and all loci identical in effect. Thus by interchanging 0 and 1 at any locus 
a new array can be produced. The sign of the D values will depend upon the ar- 
ray but the absolute values will be the same, as will the mean fitness, w. When 
0/0 and 1/1 homozygotes have identical fitness there is no meaning to “coupling” 
or “repulsion” gametes and the signs can be ignored. 

The difference between the two models is in the direction expected. The first 
model in which there is decreasing epistasis with increasing heterozygosity shows 
no effect of linkage above R = .04. The critical value of R above which there is no 
effect of linkage was not determined exactly but it lies between .038 and 0.04. In 
Model 5 where the epistasis is constant, the critical value is approximately .065. 
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In Model 4 the ratio of fitness with complete linkage to fitness with free recombi- 
nation is .435,/.285 = 1.53, while in Model 5 this ratio is 2.1 7. 

Correspondence to Experiments 

The models discussed above make specific predictions about the course of se- 
lection in a population segregating for several genes in the same linkage group. If 
there is heterosis and epistasis it is predicted that there will be permanent linkage 
disequilibrium when recombination is within certain limits, and that genes at op- 
posite ends of the linkage group map be held out of linkage equilibrium by their 
association with genes between them in the sequence. Any exact comparison of 
prediction to experiment is virtually impossible with five loci, since the fitnesses 
of all the genotype would be virtually impossible to measure. However, the quali- 
tative aspects of these predictions can be tested in experimental populations in 
which five loci are segregating, and Table 10 shows such experimental results. 
This table comes from the experiments of DR. GRACE B. CANNON of the Zoology 
Department of Washington University, St. Louis, to whom I am deeply grateful 
for allowing me to make use of her experimental data and analysis. These data 
have since been published (CANNON 1963). 

The experiment involves five mutant markers on the third chromosome of 
Drosophila melanogaster. These markers have the following linkage relations 

The original populations were made up by introducing into a wild-type popula- 
tion a few chromosomes with the constitutions: se + + + +, + ss k e + and 
4- 4- + f ro. The initial gene frequencies are shown in Table 10 for three repli- 

se-32.5-ss-5.5-k-6.7-e-20.4-ro 

TABLE 10 

Results of fiue-locus experiments in Drosophila melanogaster with genes 
se, ss, k, e and ro. Data of DR. GRACE .B. CANNON 

Population and week 

Population 20 Population 21 Population 22 

0 28 50 0 28 50 0 28 50 

(a) Gene frequencies 
se ,007 .IO2 .058 ,007 ,044 .073 ,005 ,026 ,037 
ss ,012 .052 .216 .012 ,078 ,203 .009 ,106 .I86 
k .012 ,026 .200 ,012 ,100 .I77 .009 . O N  .175 
e .@I2 ,013 ,174 .012 .I33 ,219 .009 .I06 .I81 
ro .007 .064 ,084 ,007 ,066 ,094 .005 .(E26 .048 

( b )  D and D values 
ss-k D + ,0247 f.1408 +.OS10 f.1166 +.Of593 f.1328 

D +l.OOOO +.8980 +.6616 f.8265 +.8426 +.9323 
k-e D - ,0003 +.I182 f.0781 +.I231 +.OS23 +.I173 

D -1.0000 +.8401 +.go08 +.8905 +l.OOOO f.8184 
ss-e D + ,0123 +.I154 +.(I588 +.0907 +.OS10 +.I039 

D +l.OOOO +.8459 1.8695 f.5721 +.8547 f.7052 
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cate populations. Two subsequent samples were taken from the populations, one 
after 29 weeks and one after 50 weeks, or approximately 15 and 25 generations 
after introduction of the mutant genes. The gene frequencies at these times are 
shown in Table loa. DR. CANNON’S samples were taken in such a way that ga- 
metic frequencies could be estimated, and the results for the three sample periods 
are given in Table 10, in terms of D’ij, the relative linkage disequilibrium pa- 
rameters between gene pairs. 

Table 10b shows only the D’ values for the three middle genes, ss, IC and e for 
the following reason. The frequency of the two outside genes se and ro is quite low 
so that gametes carrying them are rare. As a result estimates of linkage disequi- 
librium involving these genes are variable and unreliable. The significance of D 
values can be tested by a two-by-two chi-square, testing the association between 
two loci. Such tests performed on the results of the last generation (Week 50) 
give probabilities between .1 and .8 for all associations involving the outside genes 
se and ro. That is, there is no significant linkage disequilibrium involving these 
genes. The three D values among the central three genes, however, are highly 
significant with probabilities much less than .01 for all three D values in all three 
populations. It is only the significant D values that are shown in Table lob. 

As a whole, the results are clear-cut and in excellent agreement with the theo- 
retical prediction. All mutant genes increased in frequency during the time of 
the experiment. Whether or  not they have reached equilibrium it is impossible 
to say, but the fact that they have increased is remarkable in the face of our usual 
assumption that visible mutants are deleterious. Either these mutations are het- 
erotic, or there is gene-frequency-dependent selection keeping them in the popu- 
lation, or else they are tightly linked to other genes affecting fitness. Whatever 
the explanation, the mutants are maintained at high frequency. 

When we look at Table 10 we see that accompanying the maintenance of these 
genes is the maintenance of pronounced linkage disequilibrium of the three 
closely linked genes ss k and e which are all within a map length of 12 centimor- 
gans. Without taking selection into account we would expect the linkage disequi- 
librium among these genes to have decayed considerably in the 25 generations of 
the experiment. Taking into account the lack of recombination in males, we would 
expect for ss and e that 

whereas D‘25 is actually .846 (Population 20). The same lack of decay is also 
seen for the ss-k and k-e intervals. On the other hand the outside genes se and ro 
are not in intense disequilibrium with each other or with the middle three genes, 
since the chi-square tests on all three populations show that the only linkage dis- 
equilibrium values significantly different from zero are among the three middle 
genes ss, k and e. 

Another way of seeing the selection of linked blocks of genes is shown in Table 
loa. The three middle genes have all increased in frequency together while the 
two loosely linked genes se and ro have much lower frequencies. Thus selection is 
operating on the unrecombined block as a whole. 

D’25 = (.939) 25 D’, = .207 
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General Implications of the Results 

One of the most important and difficult problems in population genetics at the 
present time is the extent to which heterosis accounts for the observed genetic 
variation in populations. A telling argument that has been advanced against wide- 
spread heterosis is that the cost (genetic load) to a population of maintaining 
many heterotic genes is unbearable, especially if we assume that this load acts 
through loss of zygotes. Thus if a single locus has a heterotic loss of say, 5 percent, 
then only .95 of the population survives. Adding a second locus like this leaves 
only .9025 of the population and so on, so that 100 such heterotic loci could be 
maintained only at a cost of killing .995 of the population. What the results of the 
investigation of linkage show is that this load on the population is considerably 
reduced if the genes are linked to each other so that simultaneous elimination of 
homozygotes at different loci can occur. In particular, the fitness in Model 2 of 
the four-locus models can be more than doubled by this linkage effect. 

As I have repeatedly pointed out, epistasis is required in order for linkage to be 
important in natural selection. Can interaction between genes be sufficiently 
strong and widespread to make linkage important? The answer is clearly, yes, 
because epistasis as defined in this context always occurs on the scale of adaptive 
values in nature. By epistasis (or interaction) we mean a deviation from arithme- 
tic additivity of the effects of genes at two different loci. But arithmetic additivity 
is not a usual property of fitnesses. For example if homozygosity for allele A at 
one locus results in a fitness of .5, and homozygosity for allele B at a second locus 
also results in a fitness of .5, then perfect additivity requires the fitness of A A  BB 
to be zero whereas in fact it is likely to be about .25. Fitnesses tend to be multi- 
plicative rather than additiue and this fact, in itself, gives rise to interaction as 
we have defined it. Model 5 of the five-locus models (Table 7) is a perfectly mul- 
tiplicative model, each substitution of a homozygous genotype cutting the fitness 
by one half. In one sense there is no interaction in this model since the genes can 
be thought of as acting independently, yet the effect is to produce considerable 
epistasis on the additive scale and this is sufficient to make linkage important. The 
fact that DR. CANNON’S data on five loci chosen at random shows such pronounced 
effects of linkage is added evidence for the importance of taking linkage into ac- 
count in our formulations. 

Finally, the five-locus models add an important observation not seen in the two- 
locus models. This is the cumulative effect of the linkage along the chromosome. 
Even if two genes are loosely linked, they may be held out of linkage equilibrium 
with each other if loci between them are out of linkage equilibrium because of se- 
lec tion. 

Part of this investigation was made during the tenure of a National Science Foundation Senior 
postdoctoral fellowship and a Fulbright Travel Award, held jointly at the Department of Zoology 
of the University of Sydney and the Division of Animal Genetics of C.S.I.R.O. I am most grateful 
to the Department and the Division for  the facilities they put at my disposal, especially the 
SILLIAC computer. Work on the five-locus models was made posslble by a program written by 
DR. JOHN BUTCHER of the Applied Mathematics Department in Sydney. I have already indicated 
the debt I owe DR. GRACE B. CANNON of Washington University. 
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SUMMARY 

The general problem of the interaction between linkage and selection has been 
examined for a number of multilocus models. General equations and a method of 
genetic operators” are given for the solution of this problem. Specific numerical 

cases for two- and five-locus models exhibiting heterosis have been examined with 
the following results: (1) Loci may be kept in permanent linkage disequilibrium 
despite gene frequency equilibrium, by natural selection. (2) When epistasis be- 
tween loci is strong enough disequilibrium will be maintained for genes that are 
completely unlinked. ( 3 )  The epistasis which results in disequilibrium can be 
generated by simple multiplicative fitnesses, a common situation, if not the most 
common. (4) The linkage disequilibrium results in higher mean fitness. (5) In 
multiple-locus models genes quite far apart on the chromosome may be held out 
of linkage equilibrium by genes between them along the chromosome. The effect 
is then cumulative along the chromosome. (6) Some experiments with Drosophila 
are reviewed and the predictions of the models are upheld in the experiments. 
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