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NEGATIVE assortative mating, or disassortative mating, may be defined as 
a decrease in the frequency of matings between like zygotic or gametic types 

relative to the frequency expected under the assumption of random mating. 
Mathematical models based on a system of negative assortative mating have been 
described by WRIGHT (1921), HOGBEN (1946), DAHLBERG (1948), LI (1955), 
WATTERSON (1959), and NAYLOR (1962,1963). 

Mixed mating systems which included, in part, a system of disassortative mat- 
ing would provide means for maintaining polymorphic variation in the absence 
of heterozygote advantage. Except for brief discussions by HOGBEN and by LI, the 
theoretical effect of such systems on the maintenance of heterozygosity has not 
previously been considered. There is, however, biological evidence which indi- 
cates that such a study would be of value. A tendency for disassortative mating 
has been observed in the white-throated sparrow, Zonotrichia albicollis ( LOWTHER 
1961 ) , the marine copepod, Tisbe reticulata ( BATTAGLIA 1963), the moths Biston 
betularia (KETTLEWELL 1956) and Amathes glareosa (KETTLEWELL and BERRY 
196l), and the Scarlet Tiger moth, Panaxia dominula (KETTLEWELL 1942; 
SHEPPARD 1952). In particular, in a colony of Panaxia near Oxford there is a 
polymorphism for wing color pattern which has been studied intensively by 
FISHER and FORD (1947), SHEPPARD (1951,1953,1956), and SHEPPARD and COOK 
( 1962). The polymorphism is controlled by a pair of alleles that give rise to three 
recognizable genotypes. An analysis of the selective forces acting on these geno- 
types has led to the suggestion that partial disassortative mating may be respon- 
sible for  the maintenance of the polymorphism ( SHEPPARD 1956; WILLIAMSON 
1960; SHEPPARD and COOK 1962). 

In the present paper, theoretical models will be developed for populations mat- 
ing under (a) exclusive negative assortative mating, (b) mixed self-fertilization 
and negative assortative mating, and (c) mixed random mating and negative 
assortative mating. Particular emphasis will be placed on the equilibrium geno- 
typic distributions and their stability, and on the levels of heterozygosity which 
these systems can maintain. Finally, a model of mixed random mating and nega- 
tive assortative mating is used to consider the maintenance of the wing color 
pattern polymorphism in different artificial and natural colonies of Panaxia 
dominula. 

General considerations: The models to be discussed will apply to zygotic dis- 
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assortative mating in either monoecious or dioecious diploid populations. We shall 
consider only a single locus at which there are two alleles, say A and a. 

The systems of negative assortative mating included in the models are termed 
asymmetric systems (WATTERSON 1959) in that only one sex is assumed to con- 
tribute gametes in proportion to their frequencies in the adult population. That 
is, zygotes are produced by the union of two gametes; the first one is chosen, at 
random from one sex, and then the second gamete is chosen, also at random, from 
those individuals of the opposite sex with whom mating is permitted. Such a 
model would not apply to finite, monoecious populations composed of monog- 
amous individuals, but it may be the most appropriate model for populations in 
which one of the sexes is either in excess, as in plant populations producing 
excess pollen, or is able to mate several times. One example of such a system is 
provided by those insect populations in which the male is mobile and polygamous, 
the female is essentially sessile and monogamous, and mating depends in part 
on female preference. Some of the difficulties involved in constructing models 
which assume equal contributions from both sexes have been discussed by WAT- 
TERSON (1959). It would also be possible to derive models in which the amount 
of disassortative mating in a mixed mating system is not constant, but depends, 
in part, upon the prevailing genotypic proportions. Such models will not be con- 
sidered in the present paper. 

The mathematical analysis of the models is based on the following procedure. 
We shall assume that there are constant probabilities, K ,  K,, and K?, for negative 
assortative mating, self-fertilization, and random mating, where K + K ,  + K ,  = 1. 
Let (u,v,w) and (u’,v’,w’) represent the genotypic proportions of (AA, Aa, aa) 
in generations n and n + 1 respectively ( U  + U + w = 1 ) . Then, depending on 
the system of negative assortative mating considered, general recurrence equa- 
tions relating genotypic proportions in successive generations can be directly ob- 
tained. Since at equilibrium, the genotypic proportions in successive generations 
n and n 4- 1 remain constant, the equilibrium distribution, given, by (ue,ve,we) 
is determined by setting (u’,u’,w’) = (u,u,w) = ( ue,ue,we) and solving the appro- 
priate system of equations. The stability of the equilibrium distribution is then 
tested according to the method described by OWEN (1953). For example the 
recurrence equations which have been derived for three different systems of 
mixed negative assortative mating (to be discussed below), self-fertilization, and 
random mating are given in Table 1. To consider, say, mixed negative assorta- 
tive mating and self-fertilization, set K ,  = 0, K ,  = l-K and derive the pertinent 
equilibrium distributions as outlined above. 

It will be assumed that the probability for negative assortative mating, K ,  i s  
the same for all genotypes (or phenotypes) of the sex controlling the mating 
preference. This assumption greatly simplifies the mathematical analysis and it 
should not affect the general conclusions regarding the maintenance of hetero- 
zygosity. 

Exclusive negative assortatiue mating. (i) No dominance-genotypic disas- 
sortative mating: On the assumption of no dominance, the three genotypes (AA, 
Aa,  aa) will give rise to six different mating types, of which three are between 
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TABLE 1 

General recurrence equations for genotypic frequencies at a single, diallelic locus in populations 
mating under mixed random mating, self-fertilization, and three systems of 

negative assortatiue mating 

No dominance-System I 

No dominance-System I1 

Complete dominance 

(1L.u.w) and (U' U' w') represent genotypic proportions in generations n and n + l  respectively. ( u + u + w u = l ) .  

The three cystems of negative assortative mating are described in the text. 
K . K , . K 2  are the &;portions of negative assortative mating, self-fertilization, and random mating ( K + K , + K , =  1 ) .  

like genotypes (AAXAA,  AaxAa, aaXaa) and three between unlike genotypes 
(AAxAa,  AAxaa,  Aaxaa) .  There are then (relative to the asymmetric system 
already described) five different simple systems of negative assortative mating 
which can be considered depending on whether one, two, or all three of the mat- 
ings between like genotypes are completely prohibited. For completeness, the dif- 
ferent schemes, together with their possible equilibrium distributions are given 
in Table 2 in terms of the matings which are prohibited. Of these five systems, 
it can be shown that only two (I, 11) lead to stable equilibrium states at which 
more than one genotype is present, and only one system (11) leads to an equilib- 
rium at which all three genotypes are present. Systems IIIa,b, Va,b and IV (for 
uo#wo) are similar to systems of random mating with selection favouring one 
or the other of the homozygotes and lead to fixation of one of the homozygous 
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TABLE 2 

Systems of genotypic disassortative mating based on a single diallelic locus with alleles A and a 

Equilibrium states 

Genotypic distribution 
System Matings not permitted A A  Aa aa Character 

% '/z 0 stable (uo > WO) 

I A A X A A ,  AaXAa,  aaXaa 0 ?h '/z stable(u,<w,) 
? 4 ( 5 - 4 T 7 )  % ( - 3 + 4 1 7 )  ? 4 ( 5 -  4 1 7 )  unstable(u,=w,) 

I1 A A X A A ,  aaxaa '/4 ( 5 -  417) ( -3+ 4 1 7 )  % ( 5 -  417)  stable 

IIIa A A X A A ,  AaXAa 0 0 1 stable 
IIIb aaXaa, AaXAa 1 0 0 stable 

IV AaXAa 
1 0 0 stable 
0 0 1 stable 
?4 '/z ?4 unstable 

Va A A X A A  0 0 1 stabls 
Vb aaxaa 1 0 0 stable 

genotypes. Here, and in the treatment of partial negative assortative mating, we 
shall consider only Systems I and I1 which result in the retention of heterozygous 
genotypes for all stable equilibrium distributions. 

Under System I, sometimes termed complete negative assortative mating, the 
only matings permitted are between unlike genotypes ( AAXAu, AAXaa, 
Auxaa) . The recurrence relations describing the change in genotypic frequencies 
under such a system can be obtained from Table 1, setting K = 1, and K ,  = K ,  
= 0 in the top system of equations. For this system, there are three possible geno- 
typic distributions at equilibrium (Table 2); ( i /Z,%,O), (O, i /Z , i /Z) ,  and (x 
[5-dn],i/Z [-3+dv],x [5-v3]), which correspond to uo>wo, uo<wo, and 
uo = wo, respectively, where ( uo,vo,wo) represent any initial genotypic distribu- 
tion. However, it can be shown that the last of the three distributions ( uo = wo) , 
also derived by HOGBEN (1946), is unstable and in any finite population, owing 
to sampling variation making U # w, the genotypic proportions at equilibrium 
will be given by one of the other two distributions, both of which are stable. 

Under System 11, like homozygotes do not mate but the heterozygotes can mate 
at random giving four possible mating types ( A A  x au, A A  x Aa, Aa x aa, 
Aa x Au) .  The appropriate recursions can be taken from the middle system of 
Table 1, for K = 1, K ,  = K ,  = 0. For this system there is only one equilibrium 
state possible, (ue, U,, we) = (g [5-d-], i /Z  [-3+d-], % [5-d3]) or 
approximately (.219, .562, .219), and it can be shown to be stable. I t  is interest- 
ing that these are the same values as given for the unstable equilibrium state of 
System I. However, the distributions coincide only at the equilibrium values as 
can be seen by substituting any initial distribution at which uo = wo into the 
recursion formulas. 

(ii) Complete dominance-phenotypic disussortative muting: With complete 
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dominance at a diallelic locus there are only two phenotypes, say A- and an, and 
three mating types (A-XA-, A-xna, aaxaa) . The only system of interest is one 
in which matings between like phenotypes are prohibited, permitting only the 
mating type A-Xaa. Starting from any initial genotypic .distribution a stable 
equilibrium is attained in only two generations at which (ue, ue, we) = (0 ,  s, 
(HOGBEN 1946; LI 1955). The appropriate recursions can be obtained from the 
bottom system in Table 1 (K = 1, K ,  = K ,  = 0). Systems in which either (A-x 
A-)  or (aaxaa) matings, but not both, are prohibited correspond to those of geno- 
typic disassortative mating, IIIa and Vb, in Table '2 and need not be considered. 
Thus, under all three systems discussed, the proportion of heterozygosity at 
equilibrium is either equal to or greater than the maximum level of heterozy- 
gosity attainable under random mating (i.e. 50 percent). 

Mixed self-fertilization and negative assortative mating: We shall now con- 
sider models of mixed negative assortative mating, in proportion K,  and self- 
fertilization, in proportion I-K, for each of the three systems discussed in the 
previous section. The appropriate recurrence equations for each of the models 
can be obtained by setting K, = 0, K ,  = I-K in the formulas given in Table 1. 
The formulas giving the equilibrium genotypic proportions, the character of the 
equilibrium, and any pertinent restrictions on the formulas are summarized in 
Table 3 for each of the three models. 

The equilibrium distributions under System I reflect an interaction between 
two opposing forces, selfing, which eliminates the heterozygotes, and complete 
negative assortative mating which eliminates one of the homozygotes but retains 
50 percent heterozygotes. Two different sets of formulas are required to specify 
the genotypic proportions at equilibrium, one set applicable when selfing pre- 

TABLE 3 

Equilibrium states under mixed self-fertilization ( i n  proportion I -K) ,  and 
negative assortative mating (in proportion K )  

Genotype proportions at equilibrium Restrictions 
Model AA Aa aQ on u,,w,,K Character 

No dominance- 3+2K--(r -1-2K+a 3+2K-a Q_<K_<K* stable 
System I 4 2 4 

K*<K_< 1, unstable 
uo=wo 

K-3K2-/3 1+K K-3K2+/3 K* I K_< 1 stable 
1 -9K' 1$3K 1-9K' U0 >WO 

K-3K'S-P 1i-K K-3K2-/3 K * < K I 1  stable 
1 -9K2 1 f 3 K  1 -9K2 

No dominance- 3+2K--(u -1-2K+a 3+2K--(u none stable 

Complete dominance 1 -K 2K 1 none stable 

System I1 4 2 4 

2 f 6 K  1+3K 2 
- 

01 = r/4K2+12K+l ; p = V' (3K-1) (6K3-3K--1) ; 6K*3-3K*-l=O, or  K * z . 8 3 6 5  
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dominates, the other when the disassortative mating is more effective. The exact 
value of K at which the opposing forces are LLbalanced” (and the two systems 
produce identical equilibrium distributions), denoted by K*,  can be shown to 
be given by the solution of the equation 6K* -3K* -1 = 0, or approximately, 
K* = .8365. This equation for K* can be obtained either from the stability con- 
ditions of the equilibrium distributions or from the formulas for the equilibrium 
distributions given in Table 3. For Kc.8365, selfing determines the form of the 
equilibrium distribution; homozygous genotypes are maintained at equal pro- 
portions and as K tends to zero, the proportion of heterozygotes also tends to zero. 
When K >  .8365, the negative assortative mating is more effective; the frequency 
of heterozygotes, at equilibrium, lies between .50 and, approximately .55, and as 
K tends to one, one or the other of the homozygotes tends to be eliminated. For 
K = K* = .8365, as already noted, the two sets of formulas yield identical values 
for the equilibrium proportions. 

Under mixed selfing and negative assortative mating by System 11, the two 
systems are not in opposition. Both the disassortative mating and the selfing of 
the heterozygotes produced by the disassortative mating lead to equal proportions 
of homozygotes. Only one set of equations (Table 3 )  is needed to specify the 
equilibrium state which includes homozygotes in equal proportions and heterozy- 
gotes in a proportion determined by the amount of negative assortative mating 
(01 U,< .562). 

If one allele is dominant, for all values of K there will be 50 percent of the 
recessive homozygotes at equilibrium. The proportion of heterozygotes at equi- 
librium reflects only the relative proportion of negative assortative mating and 
varies accordingly between 0 and 1/2. 

There is considerable evidence that predominantly selfed populations possess 
much genetic heterogeneity (e.g. JAIN and ALLARD 1960; ALLARD and JAIN 
1962). Although there is no evidence which suggests that the proportion of out- 
crossing in such populations derives from negative assortative mating rather than 
from random mating, a comparison of the relative effects of these two mixed 
mating systems on the maintenance of heterozygosity may be of interest. Table 4 
shows the equilibrium proportions of heterozygotes expected in populations 
mating by predominant self-fertilization and (a) random mating, (b) negative 
assortative mating with complete dominance, and (c) negative assortative mating 
with no dominance, for different amounts of selfing (1-K).  The equilibrium 
proportion of heterozygotes under mixed selfing and random mating depends both 
on the amount of selfing and on the initial allelic frequencies (ALI and HADLEY 
1955; WORKMAN and ALLARD 1962) and is at a maximum when the initial gene 
frequency, say po, equals .50 (see Table 4 ) .  Two interesting observations can 
be taken from Table 4. First, if the amount of selfing exceeds 50 percent, under 
partial negative assortative mating, the heterozygosity at equilibrium is approxi- 
mately the same whether dominance is complete or absent. Second, when the 
amount of selfing is at least 80 percent, partial negative assortative mating can 
maintain 11/2 to 2 times as much heterozygosity as can be maintained by equiva- 
lent amounts of random mating under maximal conditions ( p o  = . 5 ) ?  and 4 to 5 
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TABLE 4 

Equilibruim proportions of heterozygotes in populations in which mating is b y  a mixture of self- 
fertilization, in proportion 2-K, and ( a )  random mating, ( b )  negative assortative mating 

with complete dominance, and (c) negative assortative mating with no dominance 

.50 

.60 

.70 

.80 

.90 

.95 

.96 

.97 
.98 
.99 

.I20 
,103 
,083 
.060 
,033 
.017 
,013 
,010 
.007 
.004 

.280 
,261 
,194 
.I40 
,076 
.ow 
.032 
.024 
,017 
,008 

,333 
,286 
.23 1 
.I67 
.091 
.OM 
,038 
,029 
.om 
,010 

,400 
.364 
,316 
,250 
,154 
.087 
,071 
,055 
.038 
.019 

,414 
,369 
,314 
.243 
,148 
,084 
,070 
,054 
.037 
,019 

~ _ _ _ _ _  ~_____ ~~~ _ _ _ _ _ _ ~  

* po is the frequency of A in the initial population. The frequency of heterozygotes at equilibrium, for (a ) ,  is given 

i The equilibrium proportions of heterozygotes for Systems I and I1 coincide for the amounts of selfing (1-K) 
by U, =4paqo(t)/(i + t )  where t is the proportion of random mating (WORKMAN and ALLAFCD 1962). 

considered. 

times as much when one allele has an initial frequency of .IO. For example, 2 
percent of negative assortative mating produces as much heterozygosity ( U e  = 
.038) as 10 percent random mating when po = .IO. If the maintenance of genetic 
heterogeneity at certain loci were advantageous for a predominantly selfed popu- 
lation, the evolution of a system of partial negative assortative mating would be 
the most efficient method for obtaining the desired variability. 

Mixed random mating and negative assortative mating: Under the assumptions 
outlined in the previous sections, we shall now consider three models for a 
population in which there is a constant proportion, K ,  for negative assortative 
mating, and a constant proportion, I-K, for random mating. The appropriate 
recurrence equations are given in Table 1, for  K,  = 0, K, = I-K. 

Since the equilibrium conditions for mixed random mating and complete 
negative assortative mating (System I) are rather complex, they will be con- 
sidered in some detail. By the symmetry of the recurrence equations for U' and 
w' (see Table 1) it is obvious that there will exist one equilibrium state at which 
the proportions of the homozygous genotypes will be equal ( U ,  =we). The geno- 
typic proportions at this equilibrium are given by 

(1) 
-(2K f 1) + d!TTE , and ue = 

U = w  = 5 - $ J T m  
e 4 ( 2 - K )  2 ( 2  - K )  

It can be shown that this equilibrium distribution will be stable only when both 
--6~,~+9~e' - 6ue+l_<0, and -6we3+9we2 - Gu.n,+l 10, or approximately, when 
both ue and we are greater than .23845, and O<K1.327. 

If we assume that ue # we, then the recurrence equations (Table 1 ) yield the 
relations 
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In addition, we find that at equilibrium, 

3 ( 1 - K )  ue3+ ( 3 f 9 K )  ue' - (10+4K) ve+4 = 0. ( 4 )  
Now, we must have both O l u e i l  and O < w , l l ,  and, as can be seen by an 
examination of ( 3 )  and ( 3 ' ) ,  this will happen only when (3ue3+3v,-2) 10, or, 
approximately, when veI .5231.  Substitution of U ,  = .5231 into ( 4 )  shows that 
an equivalent restriction is given, approximately, by K 2 . 3 2 7 .  Then, for K>.327, 
there is an equilibrium at which U ,  # we, ve<.5231, and it can be shown to be 
stable. The genotypic proportions at this equilibrium can be obtained from ( 3 )  , 
( 3 ' ) ,  and (4) .  Although equation (4)  has two real roots between 0 and 1, for 
. 3 2 7 1 K I 1 ,  only one of them will satisfy the above restriction on U , .  

As was observed for the model of mixed selfing and negative assortative mating 
by System I, the form of the equilibrium distribution for this system is also 
determined by the value of K .  For 0<K<.327, random mating is the more effec- 
tive force, and at equilibrium, homozygotes are in equal proportions and the 
proportion of heterozygotes varies between .50 and .5231. When K = .327, the 
two systems are balanced, and the equilibrium proportions given by (1) or by 
( 3 ) ,  (3')  and (4) are equal. For .327<K<1, negative assortative mating is more 
effective; the proportion of heterozygotes varies between .5231 and .50, but as K 
tends to one, one or the other of the homozygous genotypes tends to be elimi- 
nated. 

For mixed random mating and negative assortative mating by System I1 it 
can be shown that there is only one equilibrium distribution possible and it is 
stable for all values of K .  The genotypic proportions at equilibrium are given by 

- (2K-I-1) +v%FGE (5  1 
2 ( 2 - K )  and U e =  

Although these are the same formulas as given by ( 1 )  for System I, the two 
systems coincide only at the equilibrium state. 

If A is dominant over a, there is only one equilibrium state and it is stable. 
The equilibrium proportions, also derived by LI (1955) ,  are given by (for K>O) 

5 - g F R E ,  
U, = we = 

4 ( 2 - K )  

- ( K + l ) + V m  ( 6 )  
(1-W we=$$, v e =  

3+K-2-$SZ,  
2 ( l - K )  U ,  = 

The most striking feature of these systems is the maintenance, at equilibrium, 
of significant amounts of heterozygosity, independent of the value of K .  For 
System I, U, lies between .50 and .5231 and maximum heterozygosity is attained 
when K = .327. Under System 11, .50< v , i  ,562, and the maximum occurs when 
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K = 1. When there is dominance, ve varies between .414 and .500 with the maxi- 
mum at K = 1. 

If in the initial population one of the alleles, say A, is at a high frequency, and 
K is small, the rate of approach to equilibrium will be very slow. For example, 
suppose that the initial distribution is given by (AA, Aa, aa) (.go, .05, .05). 
With K = .05, after ten generations the distribution under System I will be (.64, 
.34, .03) and after 50 generations, (.41, .46, .11). The expected equilibrium 
distribution is given by (.246, .508, .246). Under the same initial conditions and 
complete dominance, the distribution after 50 generations will be (.136, .478, 
.386) and at equilibrium (.08, .42, .50). Therefore, the introduction of an allele, 
say a, causing disassortative mating, into a random mating population homozy- 
gous for A will have little immediate effect unless either K is large, or the new 
allele is introduced at a high frequency. 

Nonrandom mating in Panaxia dominula: In a colony of Panaxia dominula, 
near Oxford, the wing-color pattern polymorphism is determined by two alleles 
which produce three recognizable genotypes: the common homozygote, dominula, 
the heterozygote, medionigra, and the rarer homozygote, bimacula. The rarer 
gene, present in medionigra and bimacula, is called the medionigra gene and 
occurs at approximately stable frequencies which vary between .01 and .08 in 
different artificial and natural colonies ( SHEPPARD and COOK 1962; WILLIAMSON 
1960; FORD 1964). 

The analysis of experimental and artificial populations of Panaxia has demon- 
strated three major forces which can have a significant effect on the frequencies 
at this locus: disassortative mating, differential male fertility, and differential 
viability between the egg and adult stages (SHEPPARD 1951, 1952, 1956; SHEP- 
PARD and COOK 1962). The mating behaviour was analyzed by an experimental 
system under which, if matings occurred at random, the numbers of matings 
between like genotypes would be equal to the number of matings between unlike 
genotypes. In a total of 199 observed matings, 73 were between like types and 
126 between unlike types. This difference is highly significant ( x2=14.12, 
P<O.OOl). The tendency for disassortative mating appears to be stronger for the 
homozygotes, but the numbers involved are too small to be conclusive. The 
disassortative mating can be considered asymmetric since preliminary observa- 
tions by SHEPPARD ( 195 1 ) suggested that the “disassortative pairing is controlled 
by the female”. Together, these observations indicate that a model of mixed 
random mating and partial negative assortative mating, by either System I or 11, 
might be appropriate for a description of the mating system. 

In other experiments, the fertility of both medionigra and bimacula males was 
found to be about 75 percent that of the dominula males. The data were highly 
significant for the medionigra males (t“12.9, P<O.OOl). No significant differ- 
ences in female fertility were found although the dominula female appeared to 
have the highest fertility. Observations on artificial colonies of Panaxia indicate 
that both medionigra and bimacula have approximately 50 percent lower via- 
bilities between the egg and adult stage than does dominula ( SHEPPARD and COOK 
1962). 
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Under the assumption of random mating, the observed differences in fertility 
and viability would rapidly eliminate the medionigra gene and the populations 
would contain only dominula homozygotes, barring unknown selective forces 
which might be acting to maintain the polymorphism. Consequently, it has been 
suggested that the polymorphism might be maintained by a balance between the 
negative assortative mating and the different selective forces favouring dominula 
(e.g. WILLIAMSON 1960; SHEPPARD and COOK 1962; FORD 1964). In the follow- 
ing discussion, we shall derive a model based on the three selective forces studied 
by SHEPPARD. By choosing different values for the differential viabilities and by 
varying the amount of negative assortative mating, we can determine which 
combinations of these forces, if any, would be sufficient to maintain a stable 
polymorphism. 

In order to construct a mathematically manageable model, we shall restrict the 
model to a consideration of the distribution of genotypic proportions around the 
equilibrium point and neglect the contribution from bimacula. Since the pro- 
portion of bimacula at equilibrium will be very small, this should not lead to any 
serious errors. The model will be based on the following considerations. We let 
( D , M )  and (D',M') represent the proportions of dominula and medionigra in 
generations n and n+l, such that D S M  = 1. For dominula and medionigra 
respectively, the relative fertilities of males are assumed to be in the ratio l :%;  
for the relative viabilities from egg to adult, we shall consider the ratios 1 :4, 1 :5, 
and 1 :6, which span the range of relative viabilities observed by SHEPPARD. The 
relative probabilities for disassortative and random mating are in the ratio K:1-K 
for dominula and K':l-K' for medionigra. This will allow the different genotypes 
to have different tendencies for disassortative mating. In particular, if K' = K, the 
partial disassortative mating is by System I and if K' = 0, it is by System 11. The 
disassortative mating system will be asymmetric and depend upon female prefer- 
ence. Then, if the relative viabilities of dominula and medionigra are in the ratio 
1 :z, it can be shown that the equilibrium proportion of medionigra ( M e )  will be 
given by 

M -  

and for particular values of z we find that 

x[Me2(-8+6Kf2K') +Me( 14-2K)f6K] 
e7[M,?(-8f6Kf2K')fMe( 14-2K)+6K']fMe~(5-10K+5K')+Me(20K-18)+16-10K 

x .4: -Me3(9-38K+29K')+M,2(46-64K+4K')fMe(14K-52)f12K = 0 (8) 
x = .5: -Me3(1-7Kf6K')+Me'(7-11K+K')+M,(K-9)~3K = 0 (9) 
x = .6: -Me3(1-32K+31K')fMe2(24-46K+6K')-M,(38f4K)+18K = 0 (10) 

Now, the frequency of the medionigra gene, say 4, is given by q = % M  (D+M 
= 1 ) .  Since the value of Q at equilibrium varies in different populations between 
.01 and .08, we need only consider values of M ,  such that .021Me1.16. If we 
set K = K' = 0 in equations 8 to 10, we find that M e  = 0 is the only possible 
solution for M e  in the range 0 5  Me< 1. If, however, we let K K' = 1, then 
Me = 2/7, 1/3, and 3J8 for (8), (9), and ( l o ) ,  respectively, and these are the 
levels of heterozygosity which would be maintained by a system of complete 
negative assortative mating and the selective forces in the values as given. This 
guarantees that there will be values of K, between 0 and 1 which are sufficient 
to maintain M e  in the range .02<Mei.16. 
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First, we can compare the estimates of K required to maintain M e  for partial 
disassortative mating by System I (K’=K) and System I1 (K’=O) . By substitu- 
tion of these values for K’ into (8 to 10)  we find that the estimates of K coincide 
when M ,  = 0 and when M e  = .14, .167, and .193 for (8), ( 9 ) ,  and ( lo) ,  respec- 
tively. Between these values the estimates of K differ by at most .002, and, for 
any given value of K ,  system I is found to produce slightly higher values of Me 
than does System 11. Above these values, for any K ,  System I1 yields somewhat 
higher values of M ,  than does System I. Thus, for the range of values with which 
we are concerned, that is .02<Me<.16, the two systems produce almost identical 
results. This means that, under the model as derived, the medionigra female may 
mate either completely at random (System 11) or exhibit a strong tendency for 
nonrandom mating (System I) without affecting the level of heterozygosity in 
the population. If the mating system in nature is determined by female prefer- 
ence, then we need only an estimate of the tendency for nonrandom mating by 
the dominula female in order to determine the effect of disassortative mating 
upon the maintenance of the polymorphism. 

This result could have been predicted on theoretical grounds. As shown in 
section 4. the two systems, in the absence of selection, coincide at equilibrium for 
0 I K 1 . 3 2 7  and diverge only when, under System I, the nonrandom mating 
dominates the form of the equilibrium distribution. For K<.327 System I1 always 
produced slightly higher amounts of heterozygosity. The effect of selection is to 
raise the value of K below which the systems coincide and, as can be shown, as 
the selection pressure against medionigra is increased, the systems agree over a 
wider range of values. 

From equations 8 to 10 we can estimate, for given M e  and z, the amount of 
partial disassortative mating, K ,  required to maintain the polymorphism. Table 5 
contains the estimates of K for System I (K’=K) for the three different relative 
viabilities, 1 :z (z = .4, .5, .6 ) .  Since the values for System I1 are almost identical, 
they need not be presented. From Table 5 it is clear that the amount of nonran- 
dom mating required to maintain the polymorphism at a given frequency depends 
to a great extent on the relative viabilities of dominula and medionigra. At a ratio 
of 1:.4 almost twice as much nonrandom mating is required as would be at a 
ratio of 1:.6. 

With the use of the Table 5 it is possible to estimate amounts of negative assor- 
tative mating which would be required to maintain the polymorphism for differ- 
ent estimates of the viabilities. Two estimates of the viability ratio ( 1  :x) have 

TABLE 5 

T h e  proportions of disussortatiue mating ( K ) ,  by Sys tem I ,  required to maintain 
different equilibrium proportions of uar. medionigra ( M , )  

~ ~~ 

Me 

X .02 .04 .06 .OS .10 . le  .14 .16 

.4 ,083 .161 ,234 .304 ,370 .436 ,500 .563 

.3 ,055 .I 15 ,170 ,222 ,276 .333 ,382 ,435 

.6 ,042 ,083 ,124 .166 ,209 ,249 292 ,335 
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been obtained by SHEPPARD from studies of artificial colonies of Panaxia: 1:.43, 
in 1952, from a colony at Hinksey; and, 1:.58, in 1961, from a colony at Ness. 
Owing to the small sample sizes upon which these estimates were based, the 
standard errors are quite large. The approximate 95 percent confidence limits 
are: .19<z1.65 for the estimate from Hinksey, and .331x<.84 for the estimate 
from Ness. The frequency of the medionigra gene at Hinksey is now .065 and 
appears to be relatively stable: .065 in 1959, .062 in 1960, and .073 in 1961 
(SHEPPARD and COOK 1962). From Table 5 we see that for the ratios 1:.43 and 
1 :.58 about 45 and 26 percent nonrandom mating, respectively, would be required 
to maintain the polymorphism at Hinksey. The Hinksey colony was originally 
started in 1951 from 4000 fertile eggs of dominula x medionigra matings giving 
an initial gene frequency of .25 for the medionigra gene. A model for which 
(D,,M,,B,,) = (.50, .50, .OO) ,  K = .25, and z = .58, was found to attain a stable 
equilibrium gene frequency of about .06 in seven generations and consequently 
provides a good fit to the observed data. 

It is difficult to relate these estimates of K to the nonrandom mating observed 
in the laboratory, although a crude estimate of K can be derived from the data. 
If U and L denote the proportion of unlike matings and like matings, respectively, 
then K can be estimated by K = U-L = .266, and u2K = 4u2U = .00467. This 
estimate is not corrected for the differences between the frequency of mating 
types in the laboratory and the probability of their occurrence in nature. Since 
each male can mate several times, even such a correction might not be meaning- 
ful. In the experimental studies by SHEPPARD, K varied between 0 and 4M, 
depending on which mating types were permitted, so values of K = 2 M  or 
K = 3M might occur in the natural populations. The apparent agreement be- 
tween the estimate of K derived from the experimental data, K = .266, with that 
used in the model which fit the Hinksey data, K = .25, could be merely coinci- 
dental. 

The applicability of these estimates of K to the natural populations depends 
upon the accuracy of the estimates of the viabilities, which, as already noted, 
have large standard errors. Since, even in large populations, there can be con- 
siderable fluctuations in the estimate of the selective forces over a period of 
several years (ALLARD and WORKMAN 1963; WORKMAN and ALLARD 1964), an 
accurate estimate of the amount of disassortative mating in nature may require 
estimates of the viabilities in several different years. It is also possible that esti- 
mates of the relative viabilities in one environment may be inappropriate for a 
description of a different population. The present gene frequency at Cothill is 
about .02 (FORD 1964) which, for the estimated viabilities (z = .43, .58) ,  would 
require only 15 or 9 percent disassortative mating. The tendency for disassorta- 
tive mating is, presumably, related more to the genotype than to the selective 
forces in the environment and therefore it is more likely to be similar in different 
environments than are the intensities of the selective forces or even the nature 
of the selective forces. The different estimates of K from Cothill and Hinksey 
could therefore be indicative of differences in the relative viabilities of medionigra 
in the two colonies. Alternatively, one could argue that the tendency for disassor- 
tative mating is, in part, a function of the prevailing genotypic frequencies and 
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that it is affected by such factors as population size, population density and the 
vigour of the medionigra male which may vary according to its degree of adapta- 
tion to the different colonies. Although it is impossible to distinguish between 
these alternatives on the basis of the present data, it may be possible to design 
experiments which would consider the effects of differences in the relative fre- 
quencies, population densities, and the environmental conditions on the amount 
of disassortative mating. WILLIAMSON ( 1960) considered several systems which 
might lead to the establishment of the polymorphism at Cothill and concluded 
that the three forces studied by SHEPPARD were of the right t y p  but that the 
estimated values of the forces were not of the right strength. In his model, K was 
taken to be, approximately, the value of Me,  and x was .5. As shown in Table 5 ,  
for x = .5, K must be approximately 2.75Me in order to maintain the polymor- 
phism. The present analysis suggests that the failure of these estimates to fit the 
data at Cothill may be due either to a difference in one o r  more of the selective 
forces, or to a difference in the amount of disassortative mating operating at Cot- 
hill and in the experimental colonies. 

It does not seem possible at present to determine whether a model based on 
partial disassortative mating, differential male fertility, and differential viabiIity 
will be sufficient to explain the wing color pattern polymorphism in Panaxia. It 
is hoped, however, that the present analysis has served both to illustrate the 
relationships between the postulated selective forces and to suggest those areas of 
research which would allow a critical evaluation of the model itself. The model 
has demonstrated that a system of mixed negative assortative mating and random 
mating can maintain heterozygosity even when there are strong selective forces 
favouring one of the homozygotes. 

I wish to thank PROFESSOR P. M. SHEPPARD, PROFESSOR J. M. THODAY, DR. A. R. G. OWEN, 
DR. J. B. GIBSON, and DR. M. H. WILLIAMSON for their helpful comments on this manuscript. 
A portion of the work was done during the tenure of a Staff Fellowship at the National Institutes 
of Health, Bethesda, Maryland. 

SUMMARY 

Theoretical models have been developed for populations mating under (a) 
exclusive negative assortative mating (b) mixed self-fertilization and negative 
assortative mating, and (c) mixed rafidom mating and negative assortative 
mating. Particular emphasis was placed on the derivation of the genotypic distri- 
butions at equilibrium and the amount of heterozygosity which these mating 
systems can maintain. A model of mixed random mating and negative assortative 
mating was used to consider the maintenance of a polymorphism for wing color 
pattern which is found in certain colonies of the Scarlet Tiger moth, Panaxia 
dominula. The analysis showed that partial negative assortative mating can 
maintain a polymorphism even when one of the homozygotes possesses a large 
selective advantage. 

LITERATURE CITED 

ALL~RD,  R. W., and S. K. JAIN. 1962 Population studies in predominantly self-pollinated species. 
11. Analysis of quantitative genetic changes in a bulk-hybrid population of barley. Evolution 
16: 90-101. 



1382 P. L. WORKMAN 

ALLARD, R. W., and P. L. WORKMAN, 1963 Population studies in predominantly self-pollinated 
species. IV. Seasonal fluctuations in Ystimated values of genetic parameters in lima bean 
populations. Evolution 18: 470-480. 

Theoretical proportion of heterozygosity in populations with 
various proportions of self- and cross-fertilization. Agron. J. 47 : 589-590. 

Deviations from panmixia as a consequence of sex-determination in the 

Mathmatical Methods for Population Genetics. Interscience, New York. 
The spread of a gene in natural conditions in a colony of 

ALI, M., and H. H. HADLEY, 1955 

BATTAGLIA, B., 1963 

DAHLBERG, G., 1948 
FISHER, R. A., and E. B. FORD, 1947 

FORD, E. B., 1964 Ecological Genetics. Methuen, London. 
HOGBEN, L., 1946 An Introduction to Mathematical Genetics. Norton, New York. 
JAIN, S. K., and R. W. ALLARD, 1960 Population studies in predominantly self-pollinated species. 

I. Evidence for heterozygote advantage in a closed population of barley. Proc. Natl. Acad. 
Sci. US. 46: 1371-1377. 

A survey of the insect Panaxia (Callimorpha) dominula L. Proc. 
S. London Entomol. Nat. Hist. Soc., 1 4 .  - 1956 A resume of investigations on the 
evolution of melanism in the Lepidoptera. Proc. Roy. Soc. Lond. B. 145: 297-303. 

marine copepod, Tisbe reticulata. (Abstr.) Proc. 11 th Intern. Cong. Genet. 1 : 152. 

the moth Panaxia dominuh L. Heredity 1 : 143-1 74. 

KETTLEWELL, H. B. D., 1942 

KETTLEWELL, H. B. D., and R. J. BERRY, 1961 
LI, C. C., 1955 
LOWTHER, J. K., 1961 

NAYLOR, A. F., 1962 

The study of a cline. Heredity 16: 403-414. 

PopuZation Genetics. University of Chicago Press, Chicago, Illinois. 
Polymorphism in the white-throated sparrow, Zonotrichia albicollis 

(Gmelin). Canad. J. Zool. 39 : 281-292. 
Mating systems which could increase heterozygosity for a pair of alleles. 

Am. Naturalist 96: 51-60. - 1963 A theorem on possible kinds of mating systems 
which tend to increase heterozygosity. Evolution 17 : 369-370. 

A genetical system admitting of two distinct stable equilibria under 
natural selection. Heredity 7: 97-102. 

A quantitative study of two populations of the moth Panaxia dominula 
(L.). Heredity 5: 349-378. - 1952 A note on non-random mating in the moth 
Panaxia dominula (L.). Heredity 6: 239-241. - 1953 Polymorphism and population 
studies. Symp. Soc. Exptl. Biol. 7: 274-289. - 1956 Ecology and its bearing on 
population genetics. Proc. Roy. Soc. Lond. B. 145: 308-315. 

SHEPPARD, P. M., and L. M. COOK, 1962 The manifold effects of the medionigra gene of the 
moth Panazia dominula and the maintenance of a polymorphism. Heredity 17: 415-426. 

WATTERSON, G. A., 1959 Non-random mating, and its effect on the rate of approach to homozy- 
gosity. Ann. Human Genet. 23 : 204-220. 

WILLIAMSON, M. H., 1960 On the polymorphism of the moth Panaxia dominula (L.). Heredity 
15: 139-151. 

WORKMAN, P. L., and R. W. ALLARD, 1962 Population studies in predominantly self-pollinated 
species. 111. A matrix model for mixed selfing and random outcrossing. Proc. Natl. Acad. 
Sci. U.S. 4.8: 1318-1325. - 1964 Population studies in predominantly self-pollinated 
species. V. Analysis of differential and random viabilities in mixtures of competing pure 
lines. Heredity 19: 181-189. 

Systems of mating. 111. Assortative mating based on somatic resemblance. 
Genetics 6: 144-161. 

OWEN, A. R. G., 1953 

SHEPPARD, P. M., 1951 

WRIGHT, S., 1921 


