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IN studies of population genetic theory a number of complications arise when

consideration shifts from single locus to multilocus situations. In multilocus
situations, the possibility of interaction between loci (epistasis) is one obvious
complicating factor, and the amount of recombination between loci (linkage) is
another such factor. A number of recent investigations of multilocus models
(Kimura 1956; Kosima 1959a,b; LEwonTIN and Kosima 1960; Boomer and
Parsons 1962; LEwonTiN 1964a,b, 1965) have shown that interactions between
linkage and epistasis can in fact have significant effects on the structure of large,
random-mating populations and that some of the features of such populations
can be understood only if the interactions between linkage and epistasis are
taken into account.

Another factor that is likely to be of real importance in understanding popula-
tion structure is deviation from panmixia. Although it is not known how wide-
spread the various types of deviation from panmixia are relative to one another,
there can be little doubt that inbreeding is an extremely common phenomenon.
Inbreeding can occur not only as a result of one or another type of control of the
mating system, such as those that lead to predominant self-fertilization in many
plant species, but also in regularly outcrossing species owing to regular or sporadic
restrictions in population size, isolation by distance, and so on. Further, it is
easily demonstrated that the position and stability of adaptive peaks correspond-
ing to gene-frequency equilibria vary markedly with the level of inbreeding
(e.g. Arrarp and WEHRHAHN 1964). This introduces the possibility that devi-
ations from panmixia may influence interactions between linkage and epistasis
and hence that they must be taken into account in attempts to understand multi-
genic systems.

In view of the importance of inbreeding and the probability of compound
interactions amongst inbreeding, epistasis and linkage, it seemed worthwhile to
determine the combined effects of these factors on multilocus systems. The plan
adopted was to examine a variety of heterotic and optimum models to determine
in what ways relaxation of the assumption of panmixia affects various aspects of
population structure. Both two-locus and six-locus models have been investigated.
Results from two-locus models with large population size will be considered in
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this paper. Some additional features revealed by six-locus stochastic models will
be discussed in a later paper.

Definitions and Procedures

The basic features of population dynamics for the discrete generation case have
been treated in detail by LEwonTiN and Kosima (1960) and more recently by
LewonTIN (1964a,b, 1965). Hence, only main points need be recapitulated in
extending the models to include inbreeding. Assume two loci with two alleles
each (A,a and B,b). Let gene frequencies be p;, ¢, and p., g, respectively, and
let the four gametic types AB, Ab, aB, and ab have frequencies g1, g-, g, and g,
immediately following meiosis in any generation and let ¢ be the recombination
value between the two loci. There are ten possible genotypes with frequen(:les
(f:) and selective values (w;;) as follows:

AA Aa aa
BB f1 fs fs
Wso Wi Woo
Bb f2 fs(AB/ab), fs(Ab/aB)  fs
Wy Wi Wo;
bb fs fr fio
W Wio Wqo

(1)

The selective value is the relative probability that a zygote of given genotype
will contribute a zygote to the next generation. The mean fitness of a population
(W) is given by the weighted sum of the individual w;;’s.

Linkage equilibrium: The concept of linkage equilibrium is essential to a
discussion of genetic models involving two or more loci. Linkage equilibrium is
defined as the condition in which the equilibrium gametic frequencies correspond
to the products of the appropriate gene frequencies, i.e., at linkage equilibrium

8= P12, &= ‘?IPAZ’

8: = p1§-, 8: = G1§2, (2)
where p,, p. are the equilibrium gene frequencies (A p, = A p. = 0). For non-
equilibrium situations the gametic frequencies under any mating system are
given by the relation

&= ﬁlﬁz + D, 8= élﬁz —D,
&= ﬁléz + D, &= 17162 — D, (3)

where D = 3,8, — §:85. D can vary from —i25 (all Ab and &B) to .25 (all AB
and ab). D, thus defined, is a measure of linkage disequilibrium. It should be
noted that the term “linkage disequilibrium” is a misnomer in two respects.
First, D can take values other than zero even in the absence of linkage. Second,
a population can be in linkage disequilibrium, i.e., D # 0, even though it is in
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gene frequency equilibrium. The term gametic phase unbalance might be a more
appropriate term for the parameter denoted by D.

One difficulty with D as a measure of gametic phase unbalance is its sensitivity
to gene frequencies such that changes in D reflect not only real changes in
gametic phase unbalance but also changes in gene frequency (LEwoNTIN 1964a).
LewonTIN suggested an adjustment in D based on the ratio D’ = D/e, where
is the largest possible value of the product of the appropriate gene frequencies.
With p, = p, = ¥, ¢ is always 4. D’, therefore, expresses the extent of gametic
phase unbalance relative to the maximum possible value for the equilibrium
gene frequencies. When it is appropriate, this relative value, D’, will be given
along with D.

Selective models: Twenty-four different models of selection have been examined
as shown in Table 1. It should be noted that literal solutions for equilibrium gene
or genotypic frequencies do not exist in general for the matrix of selective values
wij, even for two loci under random mating. It has therefore been necessary to
resort to numerical methods to establish change in the fi, gi, D and W and to
determine their values at equilibrium.

Inbreeding: We have imposed inbreeding on our populations by assuming that
selfing or random outcrossing occur in the proportion s and ¢, respectively
(s+2=1). Thus there is a constant probability # that any individual in the
population will mate with any other individual and a constant probability
s =1 — ¢ that any individual in the population will produce progeny by selfing.
The recurrence expressions relating genotypic frequencies in generations 7 and
n+ 1 are:

AABB: f, "tV qw,, [s{f, W +V4 (f ) £, (M Fc2f I+ (1—c) 2f; (M) }+1g,2] = f,/ ("),

AABb: f, "t Daw,, [s{lhf, ™ +Yoc(1—c) (f (M +fo ™) } + 2tg,8,] = £,/ "+,

AABD: f 0+ V) aw,y [s{f; M 414 (f, W £, M fc2f (04 (1—e) 2, )} + 1g,2] = f,(n+1),

AaBB: f ("t Vaw,, [s{%f, ™ +Yc(1—c) (f; ™M +f; ™) } + 2g,8,] =f,/*T1),

AB/ab(coupling): fy "+ Vaw,; [Yos{ (1—c)2fs (W) tc2f (™) } + 22g,8,] — f;/ "+,

)

Ab/aB(repulsion): f;("+Va w,, [1/2s{c2f5(”)+(1——c) ZfG(")} + 2tg,8,] = f; (1),

Aabb: f; D w,, [s{¥f, W +Yoc(1—c) (f M+ M) } + 2g,8,] = f/(*FD),

aaBB: f; ("t a w, [s{fe M +14 (f, (M) +-fy (M Fc2f, W+ (1—c)2f (M) } + 1g,%] = f/ (v TV,

aaBb: f, T Vo wy, [s{Yefy ™ +Yoc(1—c) (f3 (W +f; ™)} + 2tg,8,] = f,/ (" +1),

aabb: f1, "tV e wy [s{f10™) 414 (f, W) £ W) (1) 2f (W f-c2f (M) } 4 1g,2] = f,, ().
The proportionalities (4) become equations when the frequencies f; are normal-
ized to add to unity by dividing the f’; by their sum W’ =% f’;, so that f; "+ ==
fi+t8/W’. Genotypic frequencies f’; are those obtained soon after selection
and before the next cycle of matings.

Numerical solutions: The system of nonhomogeneous, nonlinear equations (4)
has been solved only for certain special cases, e.g. when ¢t =0 (SHikaTA 1963).
However, for more general models numerical solutions are possible on digital
computers by the use of standard iteration procedures (e.g. NEwToN-RAPHSONS),
or by repeated substitution into the recursion equations until successive genera-
tions show no further change in genotypic frequencies. For one cycle of fre-
quency changes
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’ ’
fi(n} (R)y—> gi(n) M)—> z; (n+1) (§)— fi (n+1) (N)y—/> fi’("-*‘-)7
genotypic gametic zygotic genotypic
frequencies frequencies output frequencies
in next
generation

where R, M, S and IV are linkage, mating, selection and normalizing operators,
respectively, and at equilibrium f,®+V = £, (LewonNTIN 1964a). By such a
procedure, changes were determined in the f;, the g; and for D and W; their
values at equilibrium were also determined. Other quantities of interest were
levels of heterozygosity at the two loci (f4e. = R, f..5» = R;) and the excess or
deficiency of double heterozygotes as given by Kimura’s (1958) parameter

TABLE 1

Sets of selective values
AA Aa aa

BB Wyo Wyg Wys
Bb Wy, Wy Woy
bb Wy Wio Woo
Intermediate optimum model
6 8 10 .8 9 1.0 6 9 1.0 800 925 1.000
8 10 8 9 10 9 9 1.0 9 1925 1.000 .925
1.0 .8 6 1.0 9 8 1.0 9 6 1.000 .925 .400
1(a) 1(b) 1(c) 1(d)
Heterotic models
6 8 .6 8 9 8 9 10 7 95 1.0 55
8 10 .8 9 1.0 .9 8 1.0 .8 75 1.0 75
6 8 6 8 .9 .8 7 1.0 9 55 1.0 .95
2(a) 2(b) 3(a) 3(b)
K Nonepistatic A R—LKimura’s model— 7
5 7 5 5 7 4 4 6 3 4 7 3
7 1.0 7 7 10 .6 6 1.0 5 7 1.0 .6
5 7 5 5 7 4 5 7 4 5 8 4
4(a) 4(b) 4(c) 4(d)
R Cumulative heterosis 7
5 9 5 5 9 4 50 90 40 40 90 30
9 1.0 9 9 1.0 9 90 100 .80 90 100 .80
5 9 5 5 9 .6 60 .95 50 50 95 40
5(a) 5(b) 5(c) 5(d)
K Diminutive heterosis d
Mixed overdominance, underdominance
9 2 .9 8 .6 8 8 5 .8 .8 5 .8
2 1.0 2 6 1.0 6 9 10 9 6 1.0 5
9 2 9 .8 6 8 8 5 8 7 6 6
6(a) 6(b) 6(c) 6(d)
Intermediate optimum model, with heterozygote advantage
50 .70 .85 50 80 .75 78 .97 94 50 .90 .85
.70 1.00 .70 .80 1.00 .80 97 1.00 97 90 1.00 .95
85 .70 50 75 80 50 94 97 78 80 .95 .50
7(a) 7(b) 7(c) 7(d)
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010 = (faass — RiRs) /p1p2q1q.. Several different values of the parameters ¢ and ¢
were taken for each selection model. Also, several different initial compositions
of population were assumed as follows: (I) coupling heterozygotes only (all
AB/ab, D = 25); (II) repulsion heterozygotes only (all Ab/aB, D = — 25);
(III) Hardy-Weinberg proportions with p,® = p, =05 (D© =0); (IV)
Hardy-Weinberg proportions with p,® = p,©® % 0.5. All numerical results in
this paper were based on computations on an IBM 7040 that involve round-off
errors beyond eight decimal points.

RESULTS

In our present study of the effects of linkage and inbreeding on changes in
gene and genotypic frequencies at two loci under selection, two quantities of
primary interest are the amount of gametic phase unbalance (D) and mean
population fitness given by W for populations at equilibrium. The results bear-
ing on these relations are presented below for each type of model. Second, the
conditions for permanent gametic unbalance and stable equilibria are considered
in relation to the requirements in terms of linkage intensity, level of inbreeding
or the type of selection model. Third, changes in level of homozygosis, excess or
deficiency of double heterozygotes and gene frequencies at equilibria are used in
comparing several of these models.

Optimizing selection: Under optimizing selection it is assumed that the fitness
of any individual declines as its phenotype for some metrical character departs
increasingly from an intermediate optimum value ®. Thus phenotypic fitness
values, w;;, on a secondary scale are related to genotypic values, y;;, on an under-
lying additive scale such that w;; =1 — F(y;; — ®), where F denotes some
function of (y;; — ®). In the four optimum models given in Table 1 the optimum
® was taken equal to a fixed value on the primary scale (Table 2). Models 1a
and 1b assume the w;;’s to be linearly proportional to the deviation from &,
whereas models 1c and 1d conform to WricHT’s quadratic deviation model in
that selective values are a function of squared deviations from the optimum,
—(yi; — @)%

Selection models 1a, 1b and 1c can be represented by the matrix

a ) v
B 1 B
Y 3 a )

and by virtue of the symmetry, literal solutions for D and W are possible for
the random mating case. At equilibrium g, =g,, g.=g:=.5—g, and D= *
(.25 — g1). Values of g, can be obtained by solving the cubic equation

2g% (a—2B+y—28+2)+ g% (—at+38—2y+35—3) +
g (—B+y—8+1+2)—Yc=0,
(5)

and mean population fitness can be obtained by solving the quadratic equation
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First degree statistics for dominance and epistatic deviations
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TABLE 2

Secondary scale

Primary scale

domin-  epis-
dominance epistasis ance tasis
Optimum
Model d, d, €, €y, e, e, e b Eij value ¢

Intermediate optimum model

1(a) 10 10 0 —40 —40 O 0 0 0 2.0

1(b) 05 05 0 —2 —20 0 0 0 0 2.0

1(c) .10 .10 —20 —20 —20 —20 0 o 0 2.0

1(d) 10 .10 —05 —15 —15 —45 5 5 0 25
Heterotic models

2(a) .20 20 0 0 0 0

2(b) .10 .10 0 0 0 0

3(a) 20 0 1 1 1 A

3(b) 25 0 2 2 2 2

4(a) 25 25 1 —1 —1 1

4(b) .30 25 A4 -1 —t A

4(c) 35 25 2 —2 —2 2

4(d) .35 .25 0 0 0 0

5(a) 25 25 —3 3 3 —3

5(b) .25 .25 -3 3 4 —2

5(c) 288 211 —.30 .25 30 —25

5(d) 338 .262 —.40 .35 40 —35
Mixed underdominance, overdominance

6(a) .05 .05 15 —15 —15 1.5

6(b) 10 .10 6 —6 —.6 .6

6(c) —10 30 4 —4 —4 4

6(d) 138 138 7 —5 —38 5
Intermediate optimum, with overdominance on fitness scale

7(a) 162 162 A0 —45 — 45 .10

7(b) .188  .188 —10 —15 —15 —.10

7(¢) 070  .070 —.16 0 0 —.16

7(d) 169 .169 —.30 05 0 —.40

d,=(w, ~w, +w,)/2, dy=(w,-w,+w,/?, €py =W,y F Wy — Wy - Wy,
ey —wtwy ~ wy, —w,,, and e, =w,, twy, — wyy ~ wy,. (cf. CockErmam 1954).

ey T Wy Fwyy — wyy - Wy,

W=2g (a—28+y—28+2) +2¢ (B+y+8—1)+% (1+y). (6)
Specifically for models 1a and 1b, «a =122, B=8=1—2x and y =1 with
=102 and 0.1, respectively. Thus equation (5) becomes

4xg’ — 6xg* + g (x+¢) = Y4 c=0. (7)

Equation (7) has only one solution in the range 0 < g, < 14, and this solution

corresponds to D < 0. Note that taking & different from the mean y, as Kosima
(1959b) has done, introduces asymmetry and may lead to more than one stable
equilibrium. For model 1c, @« =1 — 42, 8 = 8§ =1 — x and y = 1, so that equation
(5) reduces to the quadratic equation
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4ag®, — g (xte) + Y% ec=0. (8)

Again, equilibrium values of D are negative and gametic balance (D =0) is not
obtained. This is a feature of all intermediate optimum models.

First degree statistics measuring dominance and epistatic deviations (CockER-
HAM 1954) are given in Table 2. The primary scale is entirely additive for
models 1a, 1b and 1c but dominance on the primary scale is a feature of model
1d. Positive values of d, and d; and non-zero values of certain of the e;; indicate
dominance and epistasis on the secondary (or fitness) scale for all four inter-
mediate optimum models.

Lewontin (1964b), using numerical methods, reached the following con-
clusions regarding optimizing selection under random mating: (1) gene fre-
quencies and gametic frequencies are sensitive to changes in linkage intensity,
particularly in the range from very low to intermediate recombination values;
(2) the effect of linkage is to increase the proportion of repulsion phase gametes;
(3) the large amount of epistasis which optimum models generate on the fitness
scale results in gametic phase unbalance even in the absence of linkage and; (4)
the effect of tightening linkage is an increase in mean fitness (W).

To test whether inbreeding makes a substantial difference to these conclusions
we have examined models 1a to 1d numerically under a range of values of ¢,
including the case of =1 (random mating). The results were similar for all
four models and hence can be illustrated with only a sample of the data, as given
in Table 3 and Figures 1 and 2.

It should be noted that there is only a single gene frequency equilibrium for
each of the four intermediate optimum models. This equilibrium in each case

TABLE 3

Values of various parameters at gene frequency equilibria under models 1(a) and 1(d)

Model 1(a) Model 1(d)

z ¢ §,=8, 8=8&, D w 8 &.,=8&, &, D D' w

.10 .01 0016 4984 —2484 9988 .0030 4977 0016 -—2477 —9908 .9990
10 0134 4866 —.2366 .9895 0254 4808 .0130 —2308 —.9233 .9912
25 0271 4729 —2229 9789 0508 4622 .0248 —2124 —8502 .9827
50 .0406 4594 —.2094 9702 0754 4448 0350 —.1952 —.7821 .9748
30 .01 .0043 4957 —2457 9966 .0089 4932 0047 —2432 —9728 .9971
100377 4623 2123 9710 0752 4441 0366 —.1945 7792 .9764
25 0761 4239 —.1739 9438 1453 3953 0641 —.1469 —5915 .9562
50 1111 3889 —.1389 .9210 2045 3566 .0823 —.1103 —4479 .9406
90 .01 0113 4887 —2387 .9910 0284 4751 0214 —.2251 —.9004 .9919
10 1031 3969 —.1469 .9256 1967 3480 .1073 —.1000 —.4032 .9512
25 1809 3191 -—0691 .8815 2814 2006 .1374 —.0458 —.1871 .9332
50 2161 2839 —.0339 .8621 3178 2667 .1488 —.0238 —.0980 .9258
1.0 .01 0125 4875 —2375 .9901 0325 4697 .0281 -—2197 —8788 .9908
10 1141 3859 —.1359 9192 2096 3348 .1208 —.0868 —.3500 .9493
25 1917 3083 —.0583 .8760 2857 2834 .1475 —.0382 —.1558 .9338
500 2226 2774 0274 .8616 3168 2630 .1573 —.0193 0792 .9277
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corresponds to 7; = pj, and an excess of repulsion phase gametes, leading to the
negative values of D. It should be noted that these equilibria are obtained from
initially equal gene frequencies, i.e., p,(® = p,(® (Sets I, II, III, IVa,b) and are
maintained only as long as the condition of exact equality of gene frequencies is
satisfied. This special class of metastable equilibria has been termed isoplethic
(Jamn and Arvrarp, 1965). The general properties of optimum models discussed
below, however, apply equally to the truly stable equilibria.

Table 3 gives the pertinent parameters of gene and genotypic frequency
equilibrium (A p; =0, A f; = 0) for one symmetrical model (1a) and one asym-
metrical model (1d). The most significant feature of the results given in this
table is the striking interaction between inbreeding and linkage. Under random
mating (z = 1) the results follow the pattern described by LewonTin (1964b),
Le., the excess of repulsion phase gametes which occurs under tight linkage
decreases rapidly as linkage loosens to intermediate values, and virtually dis-
appears under free recombination. This pattern is only slightly altered under
mild inbreeding (z = .90). But as the level of inbreeding increases, the extent of
gametic phase unbalance becomes increasingly important, especially with loose
linkage. For example, there is only a small excess of repulsion gametes under
random mating (¢ =1) and free recombination but with ¢ = .10, and ¢ = .50,
about 90% of the gametes are in repulsion phase. Complete selfing (¢ = 0) leads
to D= —.25 under optimum models when initial gene frequencies are p,” =
p'9 = .5, regardless of the recombination value.

Table 3 reveals another effect of inbreeding under optimizing selection,
namely, that increased levels of inbreeding lead to increased mean fitness, W, of
populations. The extent of this effect is not the same for all recombination values
but, as in the case of 1), the effect i1s particularly large with tight linkages.

Figure 1 illustrates some differences among the optimum selection models

-.25

Te, 1d(A)
Ta(A)

' '
3 o
T T
MEAN POPULATION FITNESS, W
g
3
T

T — - 14(B)
—— = 1c(B)

o — )

e e 16(C)

GAMETIC PHASE UNBALANCE, D

!
o
>
T

o 1 1 1 L 1 K
.01 10 .20 30 .40 .50 0 2 A 6 8 10

RECOMBINATION YALUE, ¢ PROPORTION OF QUTCROSSING, t
Ficure 1.—Effect of recombination (¢) and Ficure 2.—Effect of recombination (¢) and
partial selfing (1—¢) on gametic phase un- partial selfing (1—¢) on mean population fit-
balance (Models 1a, 1c, 1d). ness at gene frequency equilibrium (Models

1a, 1c, 1d).
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respecting the extent of gametic phase unbalance (D). Under random mating
(¢t =1) the values of D for the different models are most nearly alike under loose
linkage (¢ > .40) and most different with intermediate values of ¢ (¢ = .10 to
20). With inbreeding, however, the values of D are most different with free
recombination. The asymmetrical selective values of model 1d seem to have no
effect on the general relationship between D and ¢.

Figure 2 illustrates the relationship between mean fitness, W, and level of

inbreeding, for models 1a, 1c and 1d. With tight linkage (¢ = .01), W hardly
changes over the entire range from complete selfing to random mating, irrespec-

tive of model. With intermediate linkage values (e.g. ¢ =.15) W falls off more

rapidly for models 1a and 1c than for 1d as ¢ increases and for loose linkage W
decreases as t increases to intermediate values; thereafter further increase in #

leads to increase in W. In general W is higher as D departs further from zero
but increases in gametic unbalance do not always result in proportional changes

in W. For example, the usual relationship between D and W is reversed for

¢ = .50 and ¢ in the range .50 to .90 for models 1¢ and 1d. Thus, W is lower for
these models than for model 1a for tight linkage but higher than for model 1a
if linkage 1s loose.

The general pattern that emerges is that tightening of linkage or increasing
the level of inbreeding have much the same effect under optimizing selection. An
effect of both is to increase the proportion of repulsion phase gametes, so bringing
the mean closer to the optimum, which in turn leads to an increase in fitness.
The relationships amongst the variables #, ¢, D are, however, not simple and their
interactions with each other and with selection (as expressed in the model)

influence W in complex ways.

It should be noted that the tests for stability of equilibria developed by Kosima
(1959a) indicate that stable equilibria do not exist for the four intermediate
optimum models we have investigated. However, numerical checks based on
simulation indicate that there is in fact a single isoplethic equilibrium, corre-
sponding to p, = p. = .5 for each of the models, 1a to 1c, provided p, (@ = p,(® =
0.5. The failure of Kosima’s conditions to identify the stability of this equilibrium
is associated with his assumption that gametic phase unbalance (D) has negligible
effects. The effects of ignoring D on stability conditions will be discussed in more
detail in a later section.

Heterotic Models

We have determined the effects of inbreeding, linkage and selection under five
types of heterotic models as follows: (1) Models which involve overdominance
at both loci, but no epistasis (all e;; =0, «a =, 8 =8 > a), such as models 2a
and 2b; (2) Models which show overdominance at only one locus but involve
epistasis as indicated by the quantities e;; > 0 (Table 2). Models 3a and 3b are
examples. (3) Models of cumulative heterosis in which the heterotic effect at
one locus is enhanced by heterozygous phase at the other locus. Examples are
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Models 4a, 4b, 4c (epistatic) and 4d (nonepistatic); (4) Models of diminutive
heterosis in which the heterotic effect at each of two loci is proportionately
decreased in the double heterozygote. Models 5a, 5b, 5¢ and 5d represent varia-
tions of this situation respecting symmetry and dominance; (5) Models of mixed
over- and under-dominance in which it is assumed that all four homozygotes are
superior to single heterozygotes but inferior to the double heterozygote. Examples
are models 6a to 6d.

Heterotic models with no epistasis: One of the major points made by LEwoNTIN
and Kosiva (1960) and by LEwonTiN (1964a) is that linkage does not affect
the final equilibrium of random mating populations in the absence of epistasis.
With ¢t = 1 (random mating) our results with models 2a and 2b gave ) = 0 over
the entire range of linkage values, which is in conformity with expectations
based on the theory developed by Lewontin and Kosima. With inbreeding,
however, there is a range of linkage values under which permanent gametic phase
unbalance (D # 0) occurs in nonepistatic heterotic models, as shown in Table 4.
With very heavy inbreeding, such as that produced by ¢ = .01, gametic phase
unbalance occurs over a wider range of linkage values. As the level of inbreeding
decreases, increasingly tighter linkage is required to maintain permanent gametic
phase unbalance at gene frequency equilibrium. For example with 1 =.10 a
crossover value of ¢ = .05 is no longer adequate to maintain permanent gametic

TABLE 4

Values of various parameters at gene frequency equilibria under model 2a

t > 0 (Initial Sets: I, IT)* t=0%
t c D W R,=R, Initial set c D p=h,
001 .001 2447 6104 0426 I, 11 01 +.9310
0t +£.1909 6093 .0370 10 +.1234
05 0 6075 .0279 25 +.0483% 5000
50 0 6066 .0230 40 +.0139
010 001 +.2432 6619 2328 50 0
01 £1712 6577 2093 I 011050 0 ~ 5000
05 0 6528 .1820 IVa 01 0030 7465
50 0 6496 1645 (p,=p,=8) .10 0009 .7551
0.05 001 2332 7492 4918 25 —0002 7571
01 0 7436 4367 40 —0005 7592
05 0 7434 4342 50  —.0006 .7608
50 0 7424 424 IVb 01 00052 5736
0.90 001 +.1320 7912 5610 (p,=p,=6) .10 00017 5785
01 0 7909 5433 25 00001 5805
05 0 .7908 5430 40 —.00006 5814
50 0 7908 5414 50 —.00011 .5820
100 .001
to 0  .8000 5625
50

~ * Initial sets IIII, IV gave D=0 for all values of c. _
+ Equilibria had all four homozygotes in various proportions, with W =60 in all cases.
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phase unbalance. For inbreeding less intense than that resulting from z = .20,
extremely tight linkage is required to maintain permanent gametic phase un-
balance. With extremely tight linkage (¢ = .001) gametic phase unbalance occurs
even with very little inbreeding, say = .90.

Note that LEwonTin and Kosima’s general solution of cubic equation (5) is
given by g, =14 + 1 {1 —4c¢/(1 + « — B — 8) }'¢, which implies D =0 when
(1+a—pB~—8) =0, ie., no epistasis; this restriction on selective values does
not hold as soon as any inbreeding is involved. It is therefore clear that epistasis
is not a requirement for D ¥ 0 for cases involving inbreeding.

Table 4 reveals another effect of inbreeding on models 2a and 2b. Under
random mating (¢ = 1) linkage has no effect on equilibrium gene frequencies
(p1, p2), on the extent of heterozygosity (R;, R,), on the mean population fitness
(W) nor, as noted above, on gametic phase unbalance (D). When, however, even
mild inbreeding is imposed (say ¢ =.90), ., p», R and W are influenced by
linkage. The important effect of tighter linkage for any given level of inbreeding
(2 < 1.0) is to increase the proportion of heterozygotes and thus to increase W,
since in these models heterozygotes have higher fitness. This effect of linkage
on W can occur even when D =0, in contrast to the situation under random
mating, where D 7 0 is prerequisite to the effect of linkage on W. Thus, under
inbreeding the genotypic frequency equilibria can be influenced by linkage
through genotypic associations of the type discussed by BeNNeTT and BIiNeT
(1956) in spite of the completely balanced gametic arrays. These two different
sources of a correlated gene distribution at linked loci should be distinguished
under inbreeding.

Table 4 also gives a sample of results obtained with model 2a when the mating
system is one of complete self-fertilization (¢ =0). Even though the models are
symmetrical with respect to selection, equilibrium gene frequencies and D depend
on initial genotypic frequencies. This result is expected in view of the demonstra-
tion by BEnnETT and Biner (1956) that initial discrepancy between the fre-
quency of coupling and repulsion linkages persists even without selection under
complete selfing. These results make it clear that the case of complete selfing
(t = 0) is qualitatively different from any mixed mating system, and the case of
t = 0 cannot be regarded as the limiting case in inbreeding, as has been done by
Boomer and Parsons (1960). The distinctive properties of the complete selfing
system often make it inaccurate to draw inferences about predominantly selfing
systems from the case of t = 0.

Models involving heterozygote advantage at one locus, plus epistasis: In this
type of model a pair of alleles at one locus (A,a) is kept in balanced polymorphism
by virtue of heterozygote advantage in fitness. Another pair of alleles (B,b) at
a second locus is assumed to interact with the first locus in such a way that A4 is
advantageous in combination with B but the situation is reversed with respect to
allele a, i.e., the homozygotes AABB and aabb are superior to AAbb and aaBB.
Models of this sort (8§ =1, « > 8 > y) were investigated by Kimura (1956).
Our models 3a and 3b are examples. For symmetrical cases, say with < =1 +
z—y,B=1—y,y=1—x — y, the cubic equation (5) reduces to
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. x g2+ (c—.52) g — 25¢=0, (9)

and the only admissible solution is
g =1 [% —c/x (Y4 T ¢/x*) "],
giving mean fitness
W=1—1 (x+y)+2zxg.

As shown by Kimura (1956) for the random-mating case, a stable nontrivial
equilibrium is possible only for low values of ¢, i.e., the second locus will remain
polymorphic only when linkage is very tight. For models 3a and 3b the upper
bound on ¢, under random mating, is given by the inequality, ¢ < (y* — x2/4y)
so that stable equilibrium is possible for model 3a only when the crossover value
is less than .0375 and for model 3b when ¢ < .0225. For larger values of ¢, locus
b goes to fixation when p,® = p,'® (e.g. as with initial condition IV). When,
however, p;® = p,® = 5 (initial conditions I, II, and III) larger values of ¢
result in metastable equilibria for which D #* 0 and other population parameters
are also affected as shown in Table 5. On the computer such metastable equi-
libria may persist for hundreds of generations but ultimately the round-off

TABLE 5

Values of various parameters at gene frequency equilibria under models 3a, 3b

Model 3(a) Model 3(b)
t ¢ D w R, R, D W R, R,
0.10 .01 2462 9087 .1090 .1078 2479 9536 0993 .0983
.02 2425 9076 1093  .1069 2460 9525 0995 .0976
.04 2357 9055 1098  .1053 2422 9504 .0999 .0963
10 2191 9003 .1110 1018 2328 9450 1010  .0932
50 1707 8852 1149  .0949 2018* 9276 1047  .0866
030 .01 .238¢ 9211 2626  .2585 2441 9587 2464 2435
.02 2286 9183 2640 .2561 2384 9558 2476  .2420
.04 2099 9131 2664 2520 2278 9503 2499  .2392
10 .1673* 9014 2720 2444 2012*% 9364 2558 2330
.50 0789+ 8768 2848 2356 1242% 8960 2747  .2234
050 .01 2313 9295 3679  .3605 2401 9621 3511 3461
.02 2143 9253 3702 .3565 2308 .9576 3533 3438
.04 1850 9180 .3742 3505 2134 9493 3575 3398
10 1262 9034 3826  .3420 A718* 9292 3681  .3324
.50 .0413* 8822 3955 3370 0748+ 8821 3955 .3270
090 .01 2116  .9395 5059 4908 2208 9654 4916 4816
.02 1800 9329 5097 4838 2114 9573 4958 4772
.04 1335 9233 5153 4765 1797 9445 5031 4071
.10 0691* 9099 5233 4722 .1165* 9184 5182 4645
.50 .0154* 8987 5302 4734 .0303* .8826 5405 4689
1.00 .01 2050 9410 5313 5140 2262 9655 5179 5062
.02 1693 9338 5354 5064 2050 9570 5225 5011
.04 1202* 9240 5411 4995 1693* 9427 5304 4945
10 .0590* 9118 5484 4966 .1036* 9164 5456 4891
50 .0125* 9025 5540 4988 0248* 8849 5650 4951

* Metastable equilibria.
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errors cause gene frequencies to deviate from 0.5. Once this occurs the locus
b inevitably goes to fixation (BB or bb), gametic phase unbalance disappears

(D— 0) and the value of W is governed by locus a. In real situations it is
doubtful whether such metastable equilibria would become established or persist
for a long period should they become established. Thus, under random mating,

gametic phase unbalance and the associated effects on W are not likely to be of
any real importance under selection models 3a and 3b except for very tightly
linked genes.

The imposition of inbreeding under selection models 3a and 3b has substantial
effects on several parameters of population structure, as can be seen from Table
5. As t becomes smaller, linkage need be less tight to maintain both loci unfixed,
i.e., stable equilibrium is possible with looser linkage. (Note that when p,'9 =
p='9 = .5, metastable equilibria occur above the critical values of ¢). As under
random mating these equilibria are characterized by an excess of coupling
gametes, i.e., D > 0, and this gametic phase unbalance is accompanied by an
increase in mean fitness (W). In selection models of this type it is obvious that
the more tightly the locus & is linked to the heterotic locus @, the more likely that
locus b will remain unfixed. The data of Table 5 show that for any given linkage
value, locus b is less likely to become fixed as inbreeding becomes more intense,
i.e., inbreeding enhances the effect of linkage in allowing a nonheterotic locus to
avoid fixation.

Models with cumulative heterosis: Selection models 4a to 4d show cumulative
heterosis in that heterozygote advantage in fitness at one locus is enhanced in
association with the heterozygous phase at the other locus. These four models
differ from one another with respect to symmetry (Table 1), degree of dominance
and kind and amount of epistasis (Table 2). LEwonTiN (1964a) has investigated
model 4¢ for the random-mating case.

The main population parameters for models 4a and 4b are given in Table 6.
Certain features are common to both models: (1) Stable equilibria in which
D # 0 exist only with tight linkage; (2) With progressively greater inbreeding
the tightness of linkage required for stable equilibrium decreases. The relaxation
of the requirement for equilibrium of ¢ < e;,/4 is slightly greater for model 4a (a
symmetrical model) than 4b, but is not large in either case; (3) When require-
ments for equilibrium with D # 0 are satisfied there exist two stable conjugate
equilibria for each value of ¢ and ¢, one with D positive (excess of coupling gam-
etes) and one with D negative (excess of repulsion gametes). Which of these
two equilibrium points will be reached depends on initial genotypic frequencies.
If the initial population is composed entirely of coupling double heterozygotes
(Initial Condition I, D = .25), orif p,® = p‘? 7 .5 so that both dominant alleles
equally frequent (Initial Condition IV), D will be positive at gene frequency
equilibrium. Conversely if the initial population is composed entirely of repulsion
double heterozygotes (Initial Condition IT) or p, = g3 ¥ .5, an excess of repulsion
phase gametes results (D < 0). If, however, the initial population satisfies the
Hardy-Weinberg rule with p, = p, = .5 (Initial Condition III) D =0 at gene
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TABLE 6

Values of various parameters at gene frequency equilibria under models 4a, 4b

4(a) 4(b)
t ¢ «D W R=R, =+D =D W R, R, p B
10 .0t 2201 5934 3119 1882 2314 5698 3171 3229 6822 6399
02 1856 5871 2009 1436 2056 5617 2756 2918 7164 6152
04 0829 5750 2500 0 0 5491 1780 2324 8018 5000
06 0 5706 2347 0 0 5418 1586 2209 .8275 5000
10 0 5674 2936 0 0 5386 .1281 .2040 8580 5000
30 01 2143 6519 4605 2000 2258 .6278 4716 4770 6119 5732
02 A718 6442 4366 1547 1016 6193 4356 4483 6607 5737
04 0072 6303 3924 0 O  .6050 .3710 .4005 .6679 5000
.06 0 6202 3889 0 0 6039 3656 3962 .6822 5000
10 0 6274 3830 0 0 6017 3565 3889 .6876 5000
50 01 2089 .6866 5357  .1993 2188 6627 5454 5502 5850 5493
02 1578 6780 5094 1470 1769 .6540 5103 5201 .6086 5308
04 0 6664 4728 0 O 6425 4638 .4804 .6336 5000
10 0 6640 4679 0 O 6408 4574 4743 6362 5000
90 01 1970 7315 6206  .1890 .2080 .7088 .6266 .6299 5687 5266
02 1232 7218 5896 1148 1347 6996 5902 5941 5831 5112
04 0 7154 5690 0 0 6940 5686 5721 5902 5000
10 0 7152 5683 0 0 6938 5678 5713 5904 5000
1.0 .01 1936 7400 6351  .1853 2039 7177 6402 .6429 5656 5231
02 118 7300 6027 1018 1188 7083 .6020 .6052 5787 5084
04 0 7250 5862 0 0  .7042 5868 5883 5834 5000
10 0 7250 5862 0 0 7042 5868 5883 5834 5000

frequency equilibrium; (4) Values of D (or D’) are consistently higher under
inbreeding than with random mating and high values of D are accompanied by

high values of W; (5) Tighter linkage leads to higher levels of heterozygosity
for any given level of 2. This effect is more pronounced for model 4b than model
4a, probably as a result of the higher degree of dominance in model 4b; (6) In
model 4b, which is asymmetrical, gene frequencies at the two loci tend to be
similar at equilibrium when linkage is tight but quite different when linkage is
loose.

Results for models 4c and 4d are given in Table 7 for the range of linkage
values ¢ = .01 to ¢ =.10. Results for looser linkages (¢ =.10 to .50) for model
4(c) are given in Figure 3. Several points are worth noting. First, even though
model 4d does not involve epistasis, gametic phase unbalance (D 7 0) occurs
under inbreeding. A similar result was noted above for models 2a and 2b. Second,
when linkage is very tight, there are two possible equilibria for each recombi-
nation value. These pairs of equilibria have unequal and opposite-signed values
of D, and different mean fitnesses. The coupling equilibria (D positive) were
obtained from populations in initial condition I; all other initial conditions (II,
III, IV) led to a negative D for model 4c. A third point to note with respect to
these cumulative heterotic models is that like optimum models, they are con-
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Ficure 3.—Effect of recombination (¢) and
partial selfing (1—¢) on gametic phase un-
balance (Model 4c).
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ducive of gametic phase unbalance, i.e., they lead to large values of D under tight
linkage and also produce D 7 0 under very loose linkage. An exception to this
generalization occurs when selection is highly asymmetrical and inbreeding is
intense. Under this circumstance inbreeding leads to homozygosity and selection
tends to fix the superior homozygote. It is also significant to note that under
cumulative heterosis there are no metastable equilibria such as those found with
models 3a and 3b.

Models with diminutive heterosis: In models 5a to 5d the degree of heterosis
at locus a is less in the presence of Bb than in the presence of BB or bb. A similar
inequality holds for the locus b. These four models are therefore examples of
diminutive heterosis in which increase in fitness is proportionately less than
expected on the basis of increase in number of heterozygous loci. Such models
are not expected to be particularly favorable to the development of permanent
gametic phase unbalance and the analysis of the present examples show that this
is the case. Model 5a, a symmetrical selection model, gave equilibria with D =0
for all values of ¢ and . However, it is interesting to note that the introduction
of asymmetry into the models, as in models 5b, 5c, and 5d, changed the situation
drastically respecting equilibrium such that under model 5b, for example, even
¢ = 50 yielded D # 0 over the entire range of values to . With model 5b the
amount of gametic phase unbalance is substantial, particularly for tight linkages
and rather close inbreeding (Figure 4). In general, however, the amount of
gametic phase unbalance and its effects on other population parameters were
rather small for these models of diminutive heterosis (Figure 5). It should be
noted that there is a single stable equilibrium for each value of ¢ and ¢ and that
D > 0 for model 5b and D < 0 for models 5¢ and 5d.

Models of mizxed over- and underdominance: Models 6a, 6b and 6d are similar
to one another in that single heterozygotes are selectively inferior to homozygotes
whereas double heterozygotes are favored over all other genotypes. Model 6c
represents a different pattern in that single heterozygotes have an advantage over
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Ficure 4.—Effect of recombination (¢) and Ficure 5.—Effect of recombination (¢) and
partial selfing (1—t) on gametic phase un- partial selfing (1—¢) on gametic phase un-
balance (Models 5a, 5b). balance (Models 5¢c, 5d).

homozygotes at locus a and are selectively inferior to homozygotes at locus &
(d, = —.10, dy = .30; see Table 2). Other variations in the models involve sym-
metry of selection, intensity of selection, level of dominance, and the relative
magnitudes and sign of the quantities e;; (Table 2).

LewonTin (1964a) investigated model 6a for the random-mating case only
and found that for any linkage value ¢ £ .10 stable equilibrium occurs with
intense gametic phase unbalance. (LEwoNTIN gave ¢ = .10 as the upper critical
bound but when c is plotted at intervals of .01, it is found that this bound is near
.15). As in other heterotic symmetrical models these are two conjugate equilib-
ria, one in coupling (D > 0) and one in repulsion (D < 0). With ¢ in the range of
0.15 to .375 (<e.,/4) there are no stable equilibria with D#0. A point not brought
out by LEwoNTIN 1s that equilibria with D 7 0 do not develop under his model
irrespective of the value of ¢, unless the starting population shows gametic array
unbalance. Thus, initial conditions I and II give D > 0 for tight linkage but
D 0 fails to develop for initial conditions III and IV, even when c¢ is in the
critical tight linkage range of ¢ = 0 to .15.

The effect of inbreeding on model 6a is given in Table 8. It is interesting to
note that the critical bound on ¢ (i.e., ¢ < .15) for stable equilibria is not changed
by inbreeding. Inbreeding does, however, tend to raise the upper critical bound
on ¢ below which metastable equilibrium occurs. For example, for 1 = .10, all
values of ¢ above .15, including those in the range .375 to .50, give metastable
equilibria with D # 0. Under inbreeding, as with random mating, the initial
composition of the population affects the ultimate equilibrium. If initial gene
frequencies are p; = p, = .5, and D = 0 (Initial condition III), stable nontrivial
equilibrium (termed isoplethic) in which there is no gametic phase unbalance
is possible. If, however, initial gene frequencies differ from p;, = p. = .5, as under
Initial condition IV, the population always goes to fixation of the homozygote
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TABLE 8

Values of various parameters at gene frequency equilibria under model éa

Initial sets I, II Initial sets III, IV
t c +D w D w Region of metastability
0 .01 .2486 90 0 .90
10 2266 90 0 .90
25 1572 .90 0 .90 none
40 .0625 .90 0 .90
50 0 .90 1] .90
10 .01 2486 .9078 [} .8652
.10 2331 8916 0 .8588
.25 .1965* .8731 0 .8530 15 L e< .50
40 .1469* .8609 0 .8506
50 0 .8502 0 .8502
30 .01 2479 9191 0 7963
.10 2268 8780 0 7818
.25 .1824* .8238 0 7673 15 < e < 44
A0 1227+ 7847 0 .7606
50 0 7594 0 7594
.90 .01 .2468 9380 0 .6036
.10 2154 .8528 0 5986
.25 .1487* 7133 0 5926 15 < e < 375
40 0 5894 0 5894
50 0 5888 0 5889
1.0 .01 2466 .9400 0 5750
10 2141 .8500 0 5750
25 .1443* .6300 0 5750 15 < e < 375
40 0 5750 0 5750
50 0 5750 0 5750

* Metastable equilibria.

nearest to the initial point. In nature, this model should lead to fixation since
exact equality of intial gene frequency is necessary for nontrivial equilibrium.
In summary, either tight or rather loose linkage are more favorable than inter-
mediate linkage for maintenance of genetic variability with model 6a under
random mating. Under inbreeding, however, populations are not likely to avoid
fixation unless linkage is tight because stable equilibria with D = 0 are replaced
by metastable types. Results with models 6b and 6c differ from these with 6a
only in detail and hence will not be considered specifically.

Results with the asymmetrical model 6d have a number of interesting features
as shown in Table 9. Stable equilibria with a relative excess or deficiency of
coupling gametes are obtained for various combinations of linkage (¢) and in-
breeding (1 — ¢), depending on the initial composition of the population. The
critical range of values of ¢ is relatively narrower for heavy than for mild in-
breeding and it is interesting to note that, even though the course of genetic
change toward equilibrium depends on the initial composition in complicated
ways, there are at most two equilibrium points for any given set of values of 2
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TABLE 9

Values of various parameters at gene frequency equilibrium under model 6d

Initial _
t c frequency set* D o W P 2
10 01-10 L ILIIL IV, V 0 0 80 0 1.0
.15-50 0 0 .80 1.0 1.0
30 .01 —.1572 — 2451 .8182 .2026 .7989
10 0 0 .80 0 1.0
15-50 0 0 .80 1.0 1.0
50 .01 —.2090 —.2439 .8387 3127 .6883
.10 — 1195 —.1724 7944 1051 .8063
.15-50 0 0 .80 1.0 1.0
.60 .01 LILV 1740 .2431 .8320 .7659 7644
II1, IV —.2185 —.2435 .8467 3412 .6595
.10 LILV .0621 .1868 .7964 9077 .9007
I, IV —.1442 —.1864 7916 2818 .7308
15-50 LILIILIV,V 0 0 .80 1.0 1.0
70 .01 LILIV,V 1899 2431 .8396 7329 7311
IIT — 2244 — 2433 .8537 .3620 6387
10 LILIV,V 0965 1825 7934 8401 8267
II1 —.1550 —.1800 .7894 3342 .6768
15-50 L 11, IIL, IV, V 0 0 80 1.0 1.0
90 .01 LILIV,V .2083 2431 .8524 .6874 6852
I —.2310 -—2428 .8654 .3902 6100
10 LILIV,V 1269 1759 7892 7529 7297
111 -—.1605 —.1708 .7862 .4002 .6083
15 L II, 111, IV, V 0834 1478 7742 8228  .7958
.25-.50 0 0 .80 1.0 1.0
1.0 .01 LI IV,V 2139 2431 .8578 6711 .6688
111 —.2329 —.2426 .8704 4004 5998
.10 LILIV,V 1337 1736 7877 7234 .6964
111 —.1602 —.1670 .7850 4219 5844
15 LI IIL, 1V, V 0933 1378 7641 7678 7293
25 0 0 .80 1.0 1.0
50 LI, 111, IV 0046 0158 7121 6495 5513
A\ 0 0 .80 1.0 1.0

¢ Initial frequency seets: I—all coupling AB/ab; II—all repulsion Ab/aB; 1II—Hardy-Weinberg proportions with
py=py=.5; IV, p=p,= 2, D=0; V, p,=p,=.8, D=

and c. The mean fitness of the population (W) appears to be independent of the
direction of gametic unbalance and gene frequencies at equilibrium differ
markedly from one equilibrium point to another. An important feature to note
is that different values of ¢ can lead to fixation of different genotypes under
heavy inbreeding, even for identical initial conditions.

Intermediate Optimum Models with Heterozygote Advantage

This type of model was apparently first proposed by WricaT (1952) who
Studied a case Wlth Woo — 1 - 4‘1, Wsy — Wiz = Wo1 = 1 — + Y., Wao = Wys — 1
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Ficure 6.—Effect of recombination (¢) and Ficure 7.—Effect of recombination (¢) and
partial selfing (1—¢) on gametic phase un- partial selfing (1—¢) on gametic phase un-
balance (Models 7a, 7b, 7c¢). balance (Model 7d).

and w;; =1 + 2y, i.e., an increment y is added to the fitness of heterozygotes on
the secondary scale. Our models 7a, 7b, 7c, and 7d are examples of models in
which heterozygote advantage is superimposed on basically intermediate opti-
mum models. The variations amongst these four examples are reflected in the
measures of dominance and epistatic components, the d;’s and e;;’s (Table 2).

The values of D obtained with our models 7a, 7b, and 7c¢ for varying values of
¢t and ¢ are given in Figure 6. These results are similar to those obtained with
the nonheterotic intermediate optimum models discussed earlier, i.e., there is an
excess of repulsion phase gametes at gene frequency equilibrium (p, =p. = .5)
and this unbalance is greater with high than with low levels of inbreeding. There
is, however, one feature in which the heterotic and nonheterotic intermediate
optimum models differ: under random mating and tight linkage D tends to be
lower for the heterotic models. This result is not surprising since the effectiveness
of linkage in producing gametic phase unbalance tends to decrease as heterozy-
gote advantage increases (e.g. LEwoNTIN and Kosima 1960). The present results
show that this effect of heterozygote advantage is less marked under inbreeding
and they also indicate that there is a wider range of conditions under which
gametic phase unbalance can develop under inbreeding than under random
mating. Thus LEwoNTIN’s (1964a) conclusion that “tight linkage and strong
epistasis are necessary for maintaining permanent linkage disequilibrium” is
less applicable under inbreeding than under random mating for symmetrical
cases such as models 7a, 7b, and 7c.

WricHT, who assumed small selective differences amongst genotypes, con-
cluded that, beside allowing for stability, the addition of the y increment had
little effect on gametic unbalance. Results with model 7d indicate circumstances
under which this conclusion does not hold, namely, asymmetry in fitness values
of the two alleles at a locus. Under heavy inbreeding asymmetry in selective
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Ficure 8. —Effect of recombination (¢) and
partial selfing (1—¢) on mean population fit-
ness at gene frequency equilibrium (Models
7a, 7b, 7¢, 7d).
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values is a strong force leading to fixation of the favored allele so that the critical
range of crossover values (¢) under which permanent gametic unbalance occurs
is narrower than under random mating. Thus, for model 7d, ¢t = .10 gave equi-
libria with D’ = 0 for all values of ¢, ¢ =.2 and .3 yielded non-zero D’ only for
tight linkage, while there was permanent gametic unbalance even for free recom-
bination (¢ = .5) under random mating (Figure 7).

Mean population fitness values at gene frequency equilibrium are shown in
Figure 8 for models 7a to 7d. It is seen that high fitness is in general associated
with tight linkage and random mating. Under model 7a, which has a smaller

heterotic component than model 7b, the relationship between ¢ and W is reversed
for relatively loose linkages. It therefore appears that gametic phase unbalance

does not always result in higher W at equilibria under mixed selection models
involving intermediate optima as well as heterozygote advantage on the fitness
scale.

Multiciplicity of equilibrium points: An important feature of multiple gene
systems involving epistatic interactions and linkage is the multiplicity of possible

peaks on the adaptive surface given by the distribution of W. When there is no
gametic phase unbalance (i.e., D = 0) genotypic frequencies can be computed as
the product of the appropriate gene frequencies and the fitness values of indi-

vidual genotypes (LEwonTiN and WarTE 1960). W can be put in the form of a
topography in which the two horizontal dimensions represent the frequencies of
the two genes and the vertical distance above the base represents mean popula-
tion fitness. Thus an adaptive landscape is formed with peaks, valleys, ridges
and saddles. Peaks and saddles are particularly interesting because they corre-
spond to stable and unstable equilibrium points, respectively. This method of
plotting adaptive surfaces is clearly inaccurate when there is gametic phase
unbalance because D # 0 implies that genotypic frequencies are no longer a
simple function of gene frequencies. Hence, when D departs from zero, this



654 S. K. JAIN AND R. W. ALLARD

]

P2 ¢4

Ficure 9.—Adaptive topographies for Model 4c for ¢ = .50 (a—left) and ¢ = .001 (b—right).
The isoadapts (dotted contour lines) in both figures were computed assuming D = 0. Numbers
along the trajectories give the generation at which the population point reached the position
indicated. Initial gene frequency sets were: I, p, =p, = .6, D = .25 (all coupling gametes);
I, p,=.6, p,= .4, D=—25 (all repulsion gametes); IIl, p, =p, = .5, D=0; IV, p, =
p, =2, D=0V, p,=p,=8,D=0 VL p;=9,p,=1,D=0,and VII, p, = 1, p, = .9,
D =0. With ¢ = 50 (Figure 9a), all initial sets lead to a peak at p, = .572, p, = .399, with
D =—.0008 and W = .659. Note that this peak is near A (p = 575, p = .400, W = .658),
which is the expected position of the peak when it is assumed D = 0. With tight linkage
(c=.001) there are two peaks as shown in Figure 9b. Initial gene frequency sets II, III and
VII reach gene frequency equilibrium at peak ¢ (, = .583, p, = 416, D = —.2406, W = .707),
which is near the peak expected under the assumption D = 0. Initial gene frequency sets I,
IV, V and VII reach gene frequency equilibrium at peak B (5, = .501, p, = 498, D = 2467,

W = .699) which lies at some distance from the peak expected when D is assumed to be zero.

method not only locates peaks and saddles incorrectly but the entire topography
is affected.

Some effects on adaptive topographies of ignoring D are illustrated for model
4c in Figures 9a and 9b, and for model 6d in Figures 10a to 10d. In all of these
figures the isoadapts were computed on the incorrect assumption that D = 0.
With ¢ = .50 both models give a rather small value of D and it is therefore not
surprising that the singular stable equilibrium point, in both cases (Figures 9a
and 10a), lies close to the peaks given by the respective W-surfaces. With tight
linkage (¢ =.001) D takes much larger values with both models. Actual trajec-
tories of gene frequency changes indicate that there are in fact two distinct peaks
in the topography (at A and B) and that initial gene frequencies determine
which of these peaks (stable equilibrium points) the population will ultimately
reach. Note that several of the trajectories approach the peak at B from the
neighborhood of C. This shows that C has a rather steep slope facing B. Correct
contour lines might perhaps be drawn by taking a large number of initial sets
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Ficure 10—Adaptive topographies for Model 6d for ¢=.50 (a—upper left), c¢==.25
(b-—upper right), ¢ = .10 (c—lower left) and ¢ = .001 (d—lower right). The isoadapts (dotted
contour lines) shown in all four topographies were computed on the assumption that D =0.
This topography indicates a peak at A and saddles at S. Numbers by trajectories give the genera-
tion at which the population point reached the positions indicated. Inmitial gene frequency sets
are the same as for Figure 9. For ¢ = .50 (Figure 10a) initial sets I, IL, III, IV, and VI approached
gene frequency equilibrium at the peak near A (p, = .650, p, = 551, D =.0046, W = .712)
whereas initial sets V and VII go to fixation at AABB and aaBB, respectively. With ¢ = .25 the
peak near A disappears and all intial gene frequency sets lead to fixation (Figure 10b). With
tighter linkage (¢ ==.10), there are peaks at C and D (Figure 10c) corresponding to stable
equilibria at p, =.723, p, = .696, with D —.1337 and W =.788, and p, = 422, p, = 584

with D = —.1602 and W — .785, respectively, With still tighter linkage (¢=.001) there are
peaks at E and F (Figure 10d) corresponding to stable equilibria at p, = p, = .667, D = .2214,
W = 866 and p, = .400, p, = .600, D =—2393, W = 879, respectively. It is clear that

ignoring D when it takes values other than zero leads to incorrect adaptive topographies.
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of gene frequencies over the entire range 0 < p;, p, < 1. The work involved
might not be worthwhile, however, because points of stable equilibrium are of
primary interest and they can be determined with relatively few sets of initial
gene frequencies.

Rates of change are indicated in Figures 9 and 10 by generation numbers along
the trajectories. In general gene frequencies shift from Hardy-Weinberg propor-
tions toward equilibrium frequencies rapidly until equilibrium is approached.
However, it then usually takes many generations to attain ultimate equilibrium
values of D, especially under tight linkage.

Figures 10b to 10d illustrate the effect of varying ¢, and hence also of varying
D, on the position of peaks under model 6d. It is interesting to note that with
¢ = .25, there are peaks in the corners only whereas with tighter linkages there
are two distinct peaks which seem to replace the peak A and saddle S of the
topography obtained assuming D = 0. The trajectories do not seem to follow the
shortest or steepest paths, as was also found by LEwonTiN and Kosima (1960).
It is clearly inaccurate to draw adaptive topographies assuming D = 0 in such
cases. With inbreeding the situation becomes even more complex because the

values taken by W are influenced by interactions of inbreeding with the other
factors.

Conditions for stability of equilibria: Using a model of two-locus epistasis,
Kogima (1959a) derived the following conditions for stability of gene frequency
equilibria:

2

8W<’BW 2_(82{)[/ 82W)<0

0 p5 d p* P10 P2 2 ph
These inequalities require: (1) overdomlnance on the marginal means of the
three genotypes at each locus; and (2) that the additive X additive component of
genotypic variance for fitness (o%,) be smaller than geometric mean of the domi-
nance components. In his derivation, Kosima assumed gametic phase unbalance
(D) to be negligible in populations in approximate equilibrium. For the case
D # 0 a generalized verification of Kojima’s second condition appears to be
difficult until methods become available for partitioning the epistatic components.

A start has been made in determining stability conditions using numerical
methods. From numerical analysis of a model similar to our model 4a LEwoNTIN
and Koosima (1960) suggested that marginal overdominance was necessary for
stability of equilibrium. Although explicit general conditions have not been
worked out, a similar numerical check can be made for our various models under
both random mating and inbreeding. In this connection models 1a, 3a and 6a are
of particular interest because they involve both stable and metastable equilibria
with different values of ¢. Table 10 gives estimates of dominance effects (dq, d3)
at equilibrium for various combinations of values of ¢ and ¢. Note that while
d,, dy > 0 for all stable equilibria, marginal overdominance does not ensure sta-
bility (e.g. isoplethic equilibria occur with model 1a, and also with model 6a
when t =1, ¢ = .35). Thus Kosma’s condition (1) seems to be a necessary but
not a sufficient condition for stability.
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TABLE 10

Estimates of marginal dominance (d,, d,)) at gene frequency equilibrium

Model 1(a) Model 3(a) Model 6(a)

te D ﬁa:(fb te D d:l a?,, te D d,=4d,
.10,.01 —.2484* —.0028 .10,.01 2461 1013 .0949 .10,.01 2486 .0900
10,01 —.2366* —.0225 10,10 2191 1107 0620 10,10 2331 .0067
10,.50 —.2094* —.0481 10,50 1707+ 1378 .0230 10,15 2223+ —.0346
10,40 1469+ —.1990

.90,.01 —.2387* 0 .60,.01 2116 1153 0613 .90,.01 .2468 .0978
90,10 —.1469*  .0154 .90,.10  .0691+ .1721 —.0052 90,15 1957 .0668
90,50 -—0339* 0710 90,50 0154+ 1935 —.0011 90,35 0779+ .0231
.90,.40 0 .0148

1.0,01 —.2375* .0002 1.0,01 2050 .1180 .0524 1.0,01 2466  .0987
1.0,10 —1259*  .0208 10,10 .0590+ 1764 —.0125 1.0,15 .1936 0800
1.0,50 —.0274* 0793 10,50  .0125%+ 1950 —.0045 1.0,35 0646+ 0533

1.0,40 0 0500

* Isoplethic equilibria (stable as long as , = p,).
+ Metastable equilibria (stable as long as p, = p, = .5).

DISCUSSION

Major emphasis in this study of multilocus genetic systems was on the evolu-
tionary implications of the complexities which result from interactions amongst
linkage, epistasis and inbreeding. The choice of optimum, heterotic and mixed
optimum-heterotic models on which to base the study was influenced by the
general experience that the modes of selection implied by these models are wide-
spread in occurrence.

Results from the study of two-locus models show that the patterns of interaction
amongst dominance, linkage, mode of selection, inbreeding and other parameters
which were varied are complex. Variations in the amount of crossing over, for
example, can affect the extent of gametic phase unbalance and the nature and
number of gene frequency equilibria, especially in mixed selection models. The
nitial composition of a population can also influence the final equilibrium which
is attained. The intricacies which can develop are well illustrated in Figures
10b to 10d from which it can be seen that trajectories of population change cross
one another. This shows that the evolutionary futures of populations which have
identical gene frequencies can be very different as a result of differing evolu-
tionary histories.

Many of the controversies that have developed in population genetics appear
to have their basis in the fact that various factors have been considered singly.
The present results give numerical substance to the often expressed idea that
multigenic systems cannot be dealt with by analyzing the isolated effect of any
single variable but only through characterization of the interplay of various
factors acting simultaneously.
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SUMMARY

The joint effects of linkage, level of dominance, epistasis and inbreeding on
the genotypic constitution of large populations were investigated for a variety of
selection models by simulation on a digital computer. Results were expressed
primarily in terms of the extent of gametic phase unbalance (linkage disequi-
librium), mean population fitness and the number and nature of gene frequency
equilibria. Conditions for stability of equilibria were determined by varying the
initial genotypic frequency set or by disturbing equilibrium frequencies. Some
of the findings are: (1) permanent gametic phase unbalance can occur under a
wide range of conditions respecting dominance (or overdominance), linkage and
epistasis; (2) the amount of unbalance in gametic arrays tends to increase with
inbreeding, particularly under symmetrical selection; (3) for intense inbreeding
there are many recombination values under which permanent gametic phase
unbalance is possible, even without epistasis; (4) optimum models and certain
mixed selection models are more favorable than heterotic models for the develop-
ment and maintenance at equilibrium of gametic phase unbalance; (5) over-
dominance on marginal means appears to be a necessary condition for the sta-
bility of equilibria; however, lesser levels of marginal overdominance appear to
be necessary for stability of equilibria under inbreeding than with random
mating.—The results indicate that complex interactions occur amongst the
various factors that were varied, including inbreeding, and hence that it is the
totality of all variables that determines the genetic structure of populations.
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