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I N  studies of population genetic theory a number of complications arise when 
consideration shifts from single locus to multilocus situations. In multilocus 

situations, the possibility of interaction between loci (epistasis) is one obvious 
complicating factor, and the amount of recombination between loci (linkage) is 
another such factor. A number of recent investigations of multilocus models 
(KIMURA 1956; KOJIMA 1959a,b; LEWONTIN and KOJIMA 1960; BODMER and 
PARSONS 1962; LEWONTIN 1964a,b, 1965) have shown that interactions between 
linkage and epistasis can in fact have significant effects on the structure of large, 
random-mating populations and that some of the features of such populations 
can be understood only if the interactions between linkage and epistasis are 
taken into account. 

Another factor that is likely to be of real importance in understanding popula- 
tion structure is deviation from panmixia. Although it is not known how wide- 
spread the various types of deviation from panmixia are relative to one another, 
there can be little doubt that inbreeding is an extremely common phenomenon. 
Inbreeding can occur not only as a result of one or another type of control of the 
mating system, such as those that lead to predominant self-fertilization in many 
plant species, but also in regularly outcrossing species owing to regular or sporadic 
restrictions in population size, isolation by distance, and so on. Further, it is 
easily demonstrated that the position and stability of adaptive peaks correspond- 
ing to gene-frequency equilibria vary markedly with the level of inbreeding 
(e.g. ALLARD and WEHRHAHN 1964). This introduces the possibility that devi- 
ations from panmixia may influence interactions between linkage and epistasis 
and hence that they must be taken into account in attempts to understand multi- 
genic systems. 

In view of the importance of inbreeding and the probability of compound 
interactions amongst inbreeding, epistasis and linkage, it seemed worthwhile to 
determine the combined effects of these factors on multilocus systems. The plan 
adopted was to examine a variety of heterotic and optimum models to determine 
in what ways relaxation of the assumption of panmixia affects various aspects of 
population structure. Both two-locus and six-locus models have been investigated. 
Results from two-locus models with large population size will be considered in 
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this paper. Some additional features revealed by six-locus stochastic models will 
be discussed in a later paper. 

Definitions and Procedures 

The basic features of population dynamics for the discrete generation case have 
been treated in detail by LEWONTIN and KOJIMA (1960) and more recently by 
LEWONTIN (1964a,b, 1965). Hence, only main points need be recapitulated in 
extending the models to include inbreeding. Assume two loci with two alleles 
each (A,a and B,b). Let gene frequencies be pl, q1 and pz ,  q2, respectively, and 
let the four gametic types AB, Ab, aB, and ab have frequencies gl, g2, g3 and g4, 
immediately following meiosis in any generation and let c be the recombination 
value between the two loci, There are ten possible genotypes with frequencies 
(fi) and selective values ( w i j )  as follows: 

AA Aa  aa 

BB 

Bb 

bb 

The selective value is the relative probability that a zygote of given genotype 
will contribute a zygote to the next generation. The mean fitness of a population (w) is given by the weighted sum.of the individual wii’s. 

Linkage equilibrium: The concept of linkage equilibrium is essential to a 
discussion of genetic models involving two or more loci. Linkage equilibrium is 
defined as the condition in which the equilibrium gametic frequencies correspond 
to the products of the appropriate gene frequencies, i.e., at linkage equilibrium 

g1 = $l$Z, 
gz = $142, 

g 3  = a,$,, 
g 4  = 4142, 

where Cl, $2 are the equilibrium gene frequencies (A  pi = A p2  = 0).  For non- 
equilibrium situations the gametic frequencies under any mating system are 
given by the relation 

&i = 1;& + D, z= Q l p ^ z  - D, 
gz 1 ; i o z  D, g4 = qi$z - D, (3) 

where D = Elk4 - &g3. D can vary from -.a (all A b  and aB) to .25 (all AB 
and ab) .  D, thus defined, is a measure of linkage disequilibrium. It should be 
noted that the term “linkage disequilibrium” is a misnomer in two respects. 
First, D can take values other than zero even in the absence of linkage. Second, 
a population can be in linkage disequilibrium, i.e., D # 0, even though it is in 
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gene frequency equilibrium. The term gametic phase unbalance might be a more 
appropriate term for the parameter denoted by D. 

One difficulty with D as a measure of gametic phase unbalance is its sensitivity 
to gene frequencies such that changes in D reflect not only real changes in 
gametic phase unbalance but also changes in gene frequency (LEWONTIN 1964a). 
LEWONTIN suggested an adjustment in D based on the ratio D' = D/E,  where E 

is the largest possible value of the product of the appropriate gene frequencies. 
With pl = p2  = 1/2, E is always ?L+. D', therefore, expresses the extent of gametic 
phase unbalance relative to the maximum possible value for the equilibrium 
gene frequencies. When it is appropriate, this relative value, D', will be given 
along with D. 

Selective models: Twenty-four different models of selection have been examined 
as shown in Table 1. I t  should be noted that literal solutions for equilibrium gene 
or genotypic frequencies do not exist in general for the matrix of selective values 
w , ~ ,  even for  two loci under random mating. It has therefore been necessary to 
resort to numerical methods to establish change in the f t ,  g, ,  D and w and to 
determine their values at equilibrium. 

Inbreeding: We have imposed inbreeding on our populations by assuming that 
selfing or random outcrossing occur in the proportion s and t ,  respectively 
(s + t = 1). Thus there is a constant probability t that any individual in the 
population will mate with any other individual and a constant probability 
s == 1 - t that any individual in the population will produce progeny by selfing. 
The recurrence expressions relating genotypic frequencies in generations n and 
n + 1 are. 

.4ABB: f, ( n  + 1) a wZ2 [s{ f, ( n )  +% (f, (n) +f, (n) +c* f, ( 7 1 )  + (1-c) *f5 (n) ) } f t g 1 2 ]  = fl' (n+ l), 

.4ABb: f 2 ( n + l ) a  W Z 1  [s{'/zf~(n)+l/2C(l--C)(f5(~)+f,(~))} + 2tg1g,1 = f,'(n+l), 

.4Abb: f3("+1)a w , ~  [ s { f 3 ( " ) + %  (fz(~)+f7(~)+~2f5(n)+(l-~)2f,(n))} f tg,'] = 

.4aBB: f , ( n + l ) a  w12 [s{'/zf,(n)+'/zc(I-c) ( f 5 ( n ) + f 6 ( n ) ) }  + 2tglg31 = f4'@+l),  

.4B/ab(coupling): f 5 ( n + l ) a  wll [%s{ ( 1 + ) * f , ( " ) + ~ ~ f ~ ( ~ ) }  + 2tglg,] = f5 '(n+1),  

.4b/uBirepulsion): f , ( n + l ) a  wll ['/zs{c'f5(n)+(i,)Lf6(1L)} + 2tg,g,l = f 6 ' ( n + 1 ) ,  

Aabb: f i ( n + l ) a  wlo [s{'/zf7(n)fi/Zc(1-c) ( f5 (n )+f6 (n) ) }  + 2tg,g,] = f7'(n+1), 

(4) 

d B :  f s  (n+ 1)a WO* [s{ fs (n) +% (f, (n) +fg (n) +C'f ( n )  + ( 1-c) 2 f, ( n )  ) } + t g 3 q  = fe' (n+ 1 ) .  

": f , , (n+l)a Wol [s{ l / fs(n)+i /c( l -c)  ( f 5 ( n ) + f c ( n ) ) }  + 2tg3g,] = f 9 ' ( n + l ) ,  
nabb: flO("fl), woo [ s{ f lo (n )+x  ( f 7 ( n ) + f g ( n )  +( l-c)'f, ( n )  +C2f6(n)) } + tg,q = f l o ' ( n + l ) .  

The proportionalities (4) become equations when the frequencies f '$ are normal- 
ized to add to unity by dividing the f '% by their sum W' =Z f '$, so that f$(%+l)  = 
f'z(n+l)/W'. Genotypic frequencies f '% are those obtained soon after selection 
and before the next cycle of matings. 

Numerical solutions: The system of nonhomogeneous, nonlinear equations (4) 
has been solved only for certain special cases, e.g. when t = 0 (SHIKATA 1963). 
However, for more general models numerical solutions are possible on digital 
computers by the use of standard iteration procedures (e.g. NEWTON-RAPHSON'S) , 
or by repeated substitution into the recursion equations until successive genera- 
tions show no further change in genotypic frequencies. For one cycle of fre- 
quency changes 
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f t ( T - ( R ) - - +  gs(n)L-(M)- Z , ’ ( n + l ) -  (S)- f 1 ’ ( n + 1 ) - ( N ) -  f ,  (n+1), 
genotypic gametic zygotx genotypic 
frequencies frequencies output frequencies 

in next 
generahon 

where R, M ,  S and N are linkage, mating, selection and normalizing operators, 
respectively, and at equilibrium f z ( n + l )  = f l ( n )  (LEWONTIN 1964a). By such a 
procedure, changes were determined in the f l ,  the g, and for D and w; their 
values at equilibrium were also determined. Other quantities of interest were 
levels of heterozygosity at the two loci ( f A a  = RI,  f Bb = R,) and the excess or 
deficiency of double heterozygotes as given by KIMURA’S (1958) parameter 

TABLE 1 

Sets of seleciiue values 
AA Aa aa 

BB w 2 2  w12 W O 2  

Bb w21 w11 WO1 

bb w2Q w10 

Intermediate optimum model 
.6 .8 1.0 .8 .9 1.0 .6 .9 1.0 ,800 ,925 1.000 
.8 1.0 .8 .9 1.0 .9 .9 1.0 .9 ,925 1.000 ,925 

1.0 .8 .6 1.0 .9 .8 1.0 .9 .6 1.000 .925 .WO 
1 (a) 1 (b) 1 (c) 1 (dl 

Heterotic models 
.6 .S .6 .8 .9 .8 .9 1.0 .7 .95 1.0 .55 
.S 1.0 .8 .9 1.0 .9 .8 1.0 .8 .75 1.0 .75 
.6 .8 .6 .8 .9 .8 .7 1.0 .9 .55 1.0 .95 

2(a) 2(b) 3(a) 3(b) 
7-Nonepistatic-7 7-Kimura’s model--? 

.5 .7 .5 .5 .7 .4 .4 .6 .3 .4 .7 .3 

.7 1.0 .7 .7 1.0 .6 .6 1.0 .5 .7 1.0 .6 

.5 .7 .5 .5 .7 .4 .5 .7 .4 .5 .8 .4 
4(a) 4(b) 4(c) 4(d) 
\ ____ Cumulative heterosis 7 

5 .9 .5 .5 .9 .4 .50 .90 .40 .40 .90 .30 
.9 1.0 .9 .9 1.0 .9 .90 1.00 .80 .90 1.00 .80 
.5 .9 .5 .5 .9 .6 .60 .95 .50 .50 .95 .4Q 

5 (a) 5 (b) 5(c) 5 ( 4  
\ Diminutive heterosis 7 

Mixed overdominance, underdominance 
.9 .2 .9 .8 .6 .8 .s .5 
.2 1.0 .2 .6 1.0 .6 .9 1.0 
.9 .2 .9 .8 .6 .8 .8 .5 

6(a) 6(b) 6(c) 

Intermediate optimum model, with heterozygote advantage 
.50 .70 .85 .50 .80 .75 .78 .97 
.70 1.00 .70 .SO 1.00 .80 .97 1.00 
.85 .70 .50 .75 .SO .50 .94 .97 

7(a) 7(b) 7(c) 

.s .8 .5 .S 

.9 .6 1.0 .5 

.8 .7 .6 .6 
6(d) 

.94 .50 .90 3 5  

.97 .90 1.00 .95 

.78 .SO .95 .50 
7 (d) 
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81, = ( f . i u E b  - RlR2)/plpzqlqa.  Several different values of the parameters t and c 
were taken for each selection model. Also, several different initial compositions 
of population were assumed as follows: (I) coupling heterozygotes only (all 
AB/ab, D(O) = .25) ; (11) repulsion heterozygotes only (all Ab/&, D(O) = - .25) ; 
(111) Hardy-Weinberg proportions with plCo) = p2(0) = 0.5 (D‘O) = 0 ) ;  (IV) 
Hardy-Weinberg proportions with p,(O) = p2(0) # 0.5. All numerical results in 
this paper were based on computations on an IBM 7040 that involve round-off 
errors beyond eight decimal points. 

RESULTS 

In our present study of the effects of linkage and inbreeding on changes in 
gene and genotypic frequencies at two loci under selection, two quantities of 
primary interest are the amount of gametic phase unbalance (D) and mean 
population fitness given by w for populations at equilibrium. The results bear- 
ing on these relations are presented below for each type of model. Second, the 
conditions for permanent gametic unbalance and stable equilibria are considered 
in relation to the requirements in terms of linkage intensity, level of inbreeding 
or the type of selection model. Third, changes in level of homozygosis, excess or 
deficiency of double heterozygotes and gene frequencies at equilibria are used in 
comparing several of these models. 

Optimizing selection: Under optimizing selection it is assumed that the fitness 
of any individual declines as its phenotype for some metrical character departs 
increasingly from an intermediate optimum value a. Thus phenotypic fitness 
values, w,!, on a secondary scale are related to genotypic values, y T I ,  on an under- 
lying additive scale such that w,, = 1 - F ( y L 3  - @), where F denotes some 
function of ( y l  i - +) . In the four optimum models given in Table 1 the optimum 

was taken equal to a fixed value on the primary scale (Table 2 ) .  Models l a  
and l b  assume the w,j’s to be linearly proportional to the deviation from a, 
whereas models I C  and Id conform to WRIGHT’S quadratic deviation model in 
that selective values are a function of squared deviations from the optimum, 
-(yL, - +IZ. 

Selection models 1 a, 1 b and IC can be represented by the matrix 

a 6 Y 
P 1 P 
Y 6 o! 7 

and by virtue of the symmetry, literal solutions for D and m- are possible for 
the random mating case. At equilibrium gl = g4, g2 = g? = .5 - gl and D = * 
( 2 5  - gl ) . Values of gl can be obtained by solving the cubic equation 

2g31 ( a  - 2p + y - 26 + 2 )  + g?, (- N + 3 p  - 2 y  + 36 - 3) + 
yz g 1 ( -  p + y - 6 + 1 + 2c) - ?A+ c = 0, 

( 5 )  
and mean population fitness can be obtained by solving the quadratic equation 
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TABLE 2 

First degree statistics for dominance and epistatic deviations 

Primary scale 

domin- epis- 
dominance epistasis ance tasis 

Secondary scale 

~- Optimum 
Model da db e22 e21 e12 e11 (I E~~ value + 

Intermediate optimum model 
1 (a) .IO .IO 0 -.40 --.W 0 0 0  0 2.0 
1 (b) .05 .05 0 -2.0 -.20 0 0 0  0 2.0 
1 (C)  .IO .10 -.20 -.20 -.20 -.20 0 0  0 2.0 
1(d) .IO .IO -.05 -.I5 -.15 --.a .5 .5 0 2.5 

Heterotic models 
2(a) .20 .20 0 0 0 0  
2(b) .IO .IO 0 0 0 0  
3(a) .20 0 .I .I .I .1 
3(b) .25 0 .2 .2 .2 .2 
4(a) .25 .25 .I -.I -.I .I 
4(b) .30 .25 .1 -.I -.l .I 
4(c) .35 .25 .2 -.2 -.2 .2 
4(d) .35 2 5  0 0 0 0  
5 (a) .25 .25 -.3 .3 .3 -.3 
5 (b) .25 .25 -.3 .3 .4 -2 
5(c) ,288 ,211 -.30 25 .30 -.25 
5 (4 ,338 ,262 -.W .35 .40 -.35 

Mixed underdominance, overdominance 
6(a) .05 .05 1.5 -1.5 -1.5 1.5 
6(b) . I O  .IO .6 -.6 -.6 .6 
6(c) -.IO .30 .4 -.4 -.4 .4 
6(d) .I38 .I38 .7 -.5 -,8 .5 

7(a) .I62 .I62 .IO -.45 -.a .I0 
Intermediate optimum, with overdominance on fitness scale 

7 (b) .I88 .I88 -.IO -.I5 -.I5 -.lo 
7(c) .070 .070 -.I6 0 0 -.I6 
7(d) ,169 ,169 -.30 .05 0 -.W 

d ,=(w , , -w , .  +w, , . ) /&  d , = ( w , , - w , , + w , , ) / %  e,,=w,,+ W ~ ~ - W , ~ - W ~ ~ ,  e, ,=w,,+w,,-w,,-w,, ,  
el ,=w,,fwol - woz - wI1. and e , , ~ w , , + w , ,  - wl0 - wol. (cf. COCKERHAM 1954). 

- 
W=2g21(a-2 ,8+y-2S+2)  + 2 g l ( p + y + S - l ) + %  ( l + y ) .  (6) 

Specifically for models l a  and lb, (Y = 1 - 2x, p = 6 = 1 - z and y = 1 with 
x = 0.2 and 0.1, respectively. Thus equation ( 5 )  becomes 

4xg31 - 6xg21 + gl (5 + C )  = % c = 0. (7) 

Equation (7) has oiily one solution in the range 0 < gl < %, and this solution 
corresponds to D < 0. Note that taking different from the mean 7, as KOJIMA 
(1959b) has done, introduces asymmetry and may lead to more than one stable 
equilibrium. For model 1 c, LY = 1 - 4x, p = S = 1 - x and y = 1, so that equation 
( 5 )  reduces to the quadratic equation 
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4Xg’1 - gl (X + C) + C = 0. (8) 
Again, equilibrium values of D are negative and gametic balance (D = 0) is not 
obtained. This is a feature of all intermediate optimum models. 

First degree statistics measuring dominance and epistatic deviations (COCKER- 
HAM 1954) are given in Table 2. The primary scale is entirely additive for 
models la, l b  and IC but dominance on the primary scale is a feature of model 
Id. Positive values of d, and d b  and non-zero values of certain of the eij indicate 
dominance and epistasis on the secondary (or fitness) scale for all four inter- 
mediate optimum models. 

LEWONTIN (1964b), using numerical methods, reached the following con- 
clusions regarding optimizing selection under random mating: (1) gene fre- 
quencies and gametic frequencies are sensitive to changes in linkage intensity, 
particularly in the range from very low to intermediate recombination values; 
(2) the effect of linkage is to increase the proportion of repulsion phase gametes; 
(3) the large amount of epistasis which optimum models generate on the fitness 
scale results in gametic phase unbalance even in the absence of linkage and; (4) 
the effect of tightening linkage is an increase in mean fitness (w) . 

To test whether inbreeding makes a substantial difference to these conclusions 
we have examined models l a  to Id numerically under a range of values of t, 
including the case of t = 1 (random mating). The results were similar for all 
four models and hence can be illustrated with only a sample of the data, as given 
in Table 3 and Figures 1 and 2. 

It should be noted that there is only a single gene frequency equilibrium for 
each of the lour intermediate optimum models. This equilibrium in each case 

TABLE 3 

Values of uarious parameiers at gene frequency equilibria under models I(a) and i ( d )  

Model 1 (a) Model 1 (d) 
- 

t c 6,=i4 &,=@, D W 6, 6,=6, 6, D D’ W 
- -- 

. lo .01 ,0016 ,4984 --.2484 ,9988 ,0030 ,4977 ,0016 --.2477 -.9908 . W O  
.IO ,0134 ,4866 -.2366 ,9895 ,0254 ,4808 ,0130 -.2308 --.9233 ,9912 
.25 ,0271 ,4729 -.2229 ,9789 ,0508 .4622 ,0248 --.2124 -.8502 .9827 

.?IO .O1 ,004.3 ,4957 --.2457 ,9966 ,0089 ,4932 ,0047 -.2432 --.9728 ,9971 
.I 0 ,0377 .%W -.e123 ,9710 .0752 .4441 ,0366 -.I946 -.7792 .9764 
.25 ,0761 ,4239 -.1739 .9438 ,1453 .3953 ,0641 -.I469 -.5915 ,9562 
5 0  .I 1 1 1 .3889 -.I389 ,9210 ,2045 .3566 .0823 -.I 103 -.44-79 .9406 

9 0  .Ol ,0113 .4887 --.2387 ,9910 ,0284 .4751 .0214 -.2251 -.go04 ,9919 
.10 . I  031 ,3969 -.I469 .9256 ,1967 .3480 ,1073 -.IO00 -.4Q32 .9512 
.25 .I 889 .3 191 --.0691 .88 15 .28 14 ,2906 ,1374 --.04-58 -. 187 1 ,9332 

1 .O .01 ,0125 ,4875 -.e375 ,9901 ,0325 ,4697 .0281 -.2197 --.8788 ,9908 
. 1 0  ,1141 ,3859 -.I359 ,9192 ,2096 ,3348 ,1208 --.0868 --.3500 .9493 

.50 ,2226 ,2774 -.0274 ,8616 ,3168 .2630 .I573 --.0193 --.0792 ,9277 

.50 ,0406 ,4594 -.2094 ,9702 ,0754 ,4448 ,0350 -.1952 --.7821 .9748 

.50 ,2161 .2839 -.0339 ,8621 ,3178 ,2667 ,1488 -.OW8 --.0980 .9258 

.25 .I917 ,3083 -.0583 ,8760 ,2857 ,2834 ,1475 -.0382 --.1558 .9338 
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corresponds to cl = F j 2  and an excess of repulsion phase gametes, leading to the 
negative values of D. It should be noted that these equilibria are obtained from 
initially equal gene frequencies, i.e., p,(O) = p,(") (Sets I, 11, 111, IVa,b) and are 
maintained only as long as the condition of exact equality of gene frequencies is 
satisfied. This special class of metastable equilibria has been termed isoplethic 
( JAIN and ALLARD, 1965). The general properties of optimum models discussed 
below, however, apply equally to the truly stable equilibria. 

Table 3 gives the pertinent parameters of gene and genotypic frequency 
equilibrium ( A  pl. = 0, A f i  = 0) for one symmetrical model ( 1 a)  and one asym- 
metrical model ( Id) .  The most significant feature of the results given in this 
table is the striking interaction between inbreeding and linkage. Under random 
mating ( t  = 1) the results follow the pattern described by LEWONTIN (1964b), 
i.e., the excess of repulsion phase gametes lwhich occurs under tight linkage 
decreases rapidly as linkage loosens to intermediate values, and virtually dis- 
appears under free recombination. This pattern is only slightly altered under 
mild inbreeding ( t  = .90). But as the level of inbreeding increases, the extent of 
gametic phase unbalance becomes increasingly important, especially with loose 
linkage. For example, there is only a small excess of repulsion gametes under 
random mating ( t  = 1) and free recombination but with t = .lo, and c = .50, 
about 90% of the gametes are in repulsion phase. Complete selfing ( t  = 0) leads 
to D = -.25 under optimum models when initial gene frequencies are p,(O) = 
p,(O) = .5, regardless of the recombination value. 

Table 3 reveals another effect of inbreeding under optimizing selection, 
namely, that increased levels of inbreeding lead to increased mean fitness, r, of 
populations. The extent of this effect is not the same for all recombination values 
but, as in the case of D', the effect is particularly large with tight linkages. 

Figure 1 illustrates some differences among the optimum selection models 

1 = 0 1  

, = a 3  

, = I O  t 8 - r  = IS 
c - c =  YI 

1 I I I I 80 I I I t 
01 I O  ID 30 do YI 2 4 6 8 I O  

RECOUBINATION VALUE E PROPORTION OF OUTCROSSING f 

FIGURE 1.-Effect of recombination ( c )  and FIGURE 2.-Effect of recombination ( c )  and 
partial selfing (1-t) on gametic phase un- partial selfing (1-t) on mean population fit- 
llalance (Models la, IC,  id) .  ness at gene frequency equilibrium (Models 

la, IC, id ) .  
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respecting the extent of gametic phase unbalance (D). Under random mating 
( t  = 1 ) the values of D for  the different models are most nearly alike under loose 
linkage ( c  > .40) and most different with intermediate values of c (c = .10 to 
.20). With inbreeding, however, the values of D are most different with free 
recombination. The asymmetrical selective values of model Id seem to have no 
effect on the general relationship between D and c. 

Figure 2 illustrates the relationship between mean fitness, m, and level of 
inbreeding, for models la, IC and Id. With tight linkage (c = . O l ) ,  w hardly 
changes over the entire range from complete selfing to random mating, irrespec- 
tive of model. With intermediate linkage values (e.g. c = .15) w falls off more 
rapidly for models l a  and IC than for Id as t increases and for loose linkage W 
decreases as t increases to intermediate values; thereafter further increase in t 
leads to increase in W. In general W is higher as D departs further from zero 
but increases in gametic unbalance do not always result in proportional changes 
in w. For example, the usual relationship between D and w is reversed for 
c I= .50 and t in the range .50 to .90 for models I C  and Id. Thus, w is lower for 
these models than for model l a  for tight linkage but higher than for model l a  
if linkage is loose. 

The general pattern that emerges is that tightening of linkage or increasing 
the level of inbreeding have much the same effect under optimizing selection. An 
effect of both is to increase the proportion of repulsion phase gametes, so bringing 
the mean closer to the optimum, which in turn leads to an increase in fitness. 
The relationships amongst the variables t ,  c, D are, however, not simple and their 
interactions with each other and with selection (as expressed in the model) 
influence W in complex ways. 

It should be noted that the tests for stability of equilibria developed by KOJIMA 
(1959a) indicate that stable equilibria do not exist for the four intermediate 
optimum models we have investigated. However, numerical checks based on 
simulation indicate that there is in fact a single isoplethic equilibrium, corre- 
sponding to cl = f i2 = .5 for each of the models, l a  to IC, provided p,(O) = p,(O) = 
0.5. The failure of KOJIMA’S conditions to identify the stability of this equilibrium 
is associated with his assumption that gametic phase unbalance (D) has negligible 
effects. The effects of ignoring D on stability conditions will be discussed in more 
detail in a later section. 

Heterotic Models 

We have determined the effects of inbreeding, linkage and selection under five 
types of heterotic models as follows: (1 ) Models which involve overdominance 
at both loci, but no epistasis (all e t j  = 0, a = y, ,8 = 6 > a), such as models 2a 
and 2b; (2) Models which show overdominance at only one locus but involve 
epistasis as indicated by the quantities etj > 0 (Table 2). Models 3a and 3b are 
examples. (3) Models of cumulative heterosis in which the heterotic effect at 
one locus is enhanced by heterozygous phase at the other locus. Examples are 
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Models 4a, 4b, 4c (epistatic) and 4d (nonepistatic); (4) Models of diminutive 
heterosis in which the heterotic effect at each of two loci is proportionately 
decreased in the double heterozygote. Models 5a, 5b, 5c and 5d represent varia- 
tions of this situation respecting symmetry and dominance; (5) Models of mixed 
over- and under-dominance in which it is assumed that all four homozygotes are 
superior to single heterozygotes but inferior to the double heterozygote. Examples 
are models 6a to 6d. 

Heterotic models with no epistasis: One of the major points made by LEWONTIN 
and KOJIMA (1960) and by LEWONTIN (1964a) is that linkage does not affect 
the final equilibrium of random mating populations in the absence of epistasis. 
With t = 1 (random mating) our results with models 2a and 2b gave D = 0 over 
the entire range of linkage values, which is in conformity with expectations 
based on the theory developed by LEWONTIN and KOJIMA. With inbreeding, 
however, there is a range of linkage values under which permanent gametic phase 
unbalance (D # 0) occurs in nonepistatic heterotic models, as shown in Table 4. 
With very heavy inbreeding, such as that produced by t = .01, gametic phase 
unbalance occurs over a wider range of linkage values. As the level of inbreeding 
decreases, increasingly tighter linkage is required to maintain permanent gametic 
phase unbalance at gene frequency equilibrium. For example with t z . 1 0  a 
crossover value of c = .05 is no longer adequate to maintain permanent gametic 

TABLE 4 

Values of various parameters at gene frequency equilibria u&r model 2a 

t > 0 (Initial Sets: I, 11) * t=W 

t C D w ti;-$ Initial set C D &=ri2 

0.01 ,001 
.01 
.05 
.50 

.01 

.05 

.50 

.01 

.05 

.50 
0.90 ,001 

.01 

.05 

.50 

0.10 .001 

0.05 .001 

.50 

+ .2447 
k.1909 

0 
0 

& .2432 
+.I712 

0 
0 

+ ,2332 
0 
0 
0 

ir .132O 
0 
0 
0 

0 

.61M 

.6093 
,6075 
,6066 
.6619 
.6577 
.6528 
.6496 
.7492 
.7436 
.7434 
.7424 
.7912 
.7909 
.7908 
.7908 

.8OOO 

.0426 

.0370 

.0279 
,0230 
2328 
.2093 
.1820 
,1645 
.4918 
.4367 
.4342 
.4241 
,5610 
.5433 
.5430 
.5414 

.5625 

.IO iz.1234 

.25 t.0483 
,443 +.0139 
.50 0 

I11 .01 to .50 0 
IVa .01 .0030 
(pl=p,=.8) .10 .0009 

1 I, I1 .01 f.2310 

.25 --.Om2 
,443 -.OW5 
.50 --.0006 

IVb .01 ,00052 
(p1=p2=.6) .10 .00017 

.25 .OoOOl 

.40 -.00006 

.50 --.00011 

.5000 

. 5 m  
,765  
.755 1 
.7571 
.7592 
,7608 
,5736 
.5785 
,5805 
.5814 
.5820 

' I  " 
t Equilibria had all four homozygotes in various proportions, with %= .60 in all cases. 

nitial sets 1111, IV gave D=O for all values of c. 
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phase unbalance. For inbreeding less intense than that resulting from t = .20, 
extremely tight linkage is required to maintain permanent gametic phase un- 
balance. With extremely tight linkage ( c  = .001) gametic phase unbalance occurs 
even with very little inbreeding, say t = .90. 

Note that LEWONTIN and KOJIMA’S general solution of cubic equation (5) is 
given by gl  = 1/4. { 1 - 4c/( 1 + (Y - p - 6)}%, which implies D = 0 when 
(1 + a: -- ,8 - 6 )  = 0, i.e., no epistasis; this restriction on selective values does 
not hold as soon as any inbreeding is involved. It is therefore clear that epistasis 
is not a requirement for D # 0 for cases involving inbreeding. 

Table 4 reveals another effect of inbreeding on models 2a and 2b. Under 
random mating ( t  = 1) linkage has no effect on equilibrium gene frequencies 
( p l ,  p 2 ) ,  on the extent of heterozygosity (R,, E , ) ,  on the mean population fitness 
( w) nor, as noted above, on gametic phase unbalance (D) . When, however, even 
mild inbreeding is imposed (say t = .go), jjl, j j 2 ,  R and W are influenced by 
linkage. The important effect of tighter linkage for any given level of inbreeding 
( t  < 1 .O) is to increase the proportion of heterozygotes and thus to increase W, 
since in these models heterozygotes have higher fitness. This effect of linkage 
on W can occur even when D = 0, in contrast to the situation under random 
mating, where D # 0 is prerequisite to the effect of linkage on w. Thus, under 
inbreeding the genotypic frequency equilibria can be influenced by linkage 
through genotypic associations of the type discussed by BENNETT and BINET 
(1956) in spite of the completely balanced gametic arrays. These two different 
sources of a correlated gene distribution at linked loci should be distinguished 
under inbreeding. 

Table 4 also gives a sample of results obtained with model &I when the mating 
system is one of complete self-fertilization ( t  = 0). Even though the models are 
symmetrical with respect to selection, equilibrium gene frequencies and D depend 
on  initial gciiotypic frequencies. This result is expected in view of the demonstra- 
tion by BENNETT and BINET (1956) that initial discrepancy between the fre- 
quency of conpling and repulsion linkages persists even without selection under 
complete selfing. These results make it clear that the case of complete selfing 
( i  = 0) is qualitatively different from any mixed mating system, and the case of 
t = 0 cannot be regarded as the limiting case in inbreeding, as has been done by 
BODMER and PARSONS (1960). The distinctive properties of the complete selfing 
system often make it inaccurate to draw inferences about predominantly selfing 
systems from the case of t = 0. 

Models involving heterozygote advantQge at one locus, plus epistasis: In this 
type of model a pair of alleles at one locus (A,a)  is kept in balanced polymorphism 
by virtue of heterozygote advantage in fitness. Another pair of alleles (B,b) at 
a second locus is assumed to interact with the first locus in such a way that A is 
advantageous in combination with B but the situation is reversed with respect to 
allele a, i.e., the homozygotes AABB and aabb are superior to AAbb and aaBB. 
Models of this sort ( 8  = 1, (Y > p > y )  were investigated by KIMURA (1956). 
Our models 3a and 3b are examples. For symmetrical cases, say with a = 1 4- 
z - y, ,c? = 1 - y, y = 1 - x - y, the cubic equation (5) reduces to 
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(9) xg lZf  ( ~ - . 5 ~ ) g , - . 2 5 ~ = 0 ,  
and the only admissible solution is 

giving mean fitness 

As shown by KIMURA (1956) for the random-mating case, a stable nontrivial 
equilibrium is possible only for low values of c, i.e., the second locus will remain 
polymorphic only when linkage is very tight. For models 3a and 3b the upper 
bound on c, under random mating, is given by the inequality, c < ( y z  - x2/4y) 
so that stable equilibrium is possible for model 3a only when the crossover value 
is less than .0375 and for model 3b when c < .0225. For larger values of c, locus 
b goes to fixation cwhen p,(") = p2(0) (e.g. as with initial condition IV). When, 
however, p1Co) = p2(0)  = .5 (initial conditions I, 11, and 111) larger values of c 
result in metastable equilibria for which D # 0 and other population parameters 
are also affected as shown in Table 5. On the computer such metastable equi- 
libria may persist for hundreds of generations but ultimately the round-off 

g1 = % [% - c /x  (% + C 2 / X " ) ! J ] ,  

w = 1 -  1/2 ( x + y )  +2xg,. 

TABLE 5 

Values of various parameters at gene frequency equilibria under models 3a, 3b 

Model 3 (a) Model 3 (b) 
- 

t c  D W  Ezl Ez, D W i, fi, 
0.10 .01 

.02 

.04 

.10 

.50 
0.30 .01 

.02 

.04 

.10 

.50 
0.50 .01 

.02 

.04 

.10 

.50 
0.90 .01 

.02 

.04 

.IO 

.50 
1.00 .01 

.02 

.04 

.10 

.50 

,2462 
,2425 
,2357 
,2191 
,1707' 
,2389 
,2286 
.e099 
.1673* 
,0789' 
.2313 
.2143 
,1850 
,1262 
.0413* 
,2116 
,1800 
.1335 
.0691* 
.0154* 
.2050 
.1693 
,1202' 
.0590* 
.0125* 

,9087 
.go76 
,9055 
,9003 
3852 
,921 1 
.9183 
,9131 
,9014 
,8768 
.9295 
.9253 
.9180 
,9034 
,8822 
,9395 
,9329 
,9233 
.go99 
3987 
,9410 
,9338 
.92W 
,9118 
,9025 

.lo90 

.lo93 
,1098 
.1110 
.1149 
,2626 
,2640 
.2664 
.2720 
.2848 
,3679 
.3702 
.3742 
.3826 
,3955 
.5059 
.5097 
.5153 
.5233 
.5302 
,5313 
,5354 
,541 1 
.5484 
,5540 

,1078 
,1069 
.IO53 
,1018 
.0949 
.2585 
,2561 
.2520 
,2444 
,2356 
,3605 
.3565 
.3505 
.3420 
.3370 
.4908 
.4838 
.4765 
,4722 
.4734 
.5140 
.5064 
,4995 
,4966 
,4988 

,2479 
.2460 
,2422 
,2328 
,2018' 
.2441 
.2384 
,2278 
.2012* 
.1242* 
.2401 
.2308 
.e134 
.1718* 
.0748* 
.2298 
,2114 
.1797* 
.1165* 
.0303* 
,2262 
.2050 
.1693* 
.1036* 
,0248 * 

,9536 
,9525 
,9504 
.9450 
,9276 
.9587 
.9558 
.9503 
,9364 
3960 
9621 
9576 
.9@3 
,9292 
3821 
,9654 
,9573 
.9445 
,9184 
3826 
.9655 
.9570 
.9427 
.9164 
.88# 

.0993 
,0995 
.0999 
.lo10 
,1047 
.2%4 
,2476 
,2499 
.2558 
,2747 
.3511 
.3533 
.3575 
,3681 
.3955 
.4916 
,4958 
.503 1 
.5182 
.5W5 
.5 179 
.5225 
.5304 
,5456 
,5650 

,0983 
.0976 
.0963 
,0932 
,0866 
,2435 
.2420 
2.392 
,2330 
,2234 
,3461 
,3438 
.3398 
,3324 
.3270 
.4816 
.4772 
.4071 
.4645 
.4689 
.5062 
.5011 
.496 
.489 1 
.495 1 

' Metastable equilibria. 
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errors cause gene frequencies to deviate from 0.5. Once this occurs the locus 
b inevitably goes to fixation (BB or bb), gametic phase unbalance disappears 
( U +  0) and the value of w is governed by locus a. In real situations it is 
doubtful whether such metastable equilibria would become established or persist 
for a long period should they become established. Thus, under random mating, 
gametic phase unbalance and the associated effects on w are not likely to be of 
any real importance under selection models 3a and 3b except for very tightly 
linked genes. 

The imposition of inbreeding under selection models 3a and 3b has substantial 
effects on several parameters of population structure, as can be seen from Table 
5.  As t becomes smaller, linkage need be less tight to maintain both loci unfixed, 
i.e., stable equilibrium is possible with looser linkage. (Note that when plco) = 
p,(O) = .5, metastable equilibria occur above the critical values of c) .  As under 
random mating these equilibria are characterized by an excess of coupling 
gametes, i.e., D > 0, and this gametic phase unbalance is accompanied by an 
increase in mean fitness (W) . In selection models of this type it is obvious that 
the more tightly the locus b is linked to the heterotic locus a, the more likely that 
locus b will remain unfixed. The data of Table 5 show that for any given linkage 
value, locus b is less likely to become fixed as inbreeding becomes more intense, 
i.e., inbreeding enhances the effect of linkage in allowing a nonheterotic locus to 
avoid fixation. 

Models with cumulative heterosis: Selection models 4a to 4d show cumulative 
heterosis in that heterozygote advantage in fitness at one locus is enhanced in 
association with the heterozygous phase at the other locus. These four models 
differ from one another with respect to symmetry (Table 1 ) , degree of dominance 
and kind and amount of epistasis (Table 2).  LEWONTIN (1964a) has investigated 
model 4c for the random-mating case. 

The main population parameters for models 4a and 4b are given in Table 6. 
Certain features are common to both models: (1) Stable equilibria in which 
D # 0 exist only with tight linkage; ( 2 )  With progressively greater inbreeding 
the tightness of linkage required for  stable equilibrium decreases. The relaxation 
of the requirement for  equilibrium of c < ez2/4 is slightly greater for model 4a (a 
symmetrical model) than 4b, but is not large in either case; (3) When require- 
ments for equilibrium with D # 0 are satisfied there exist two stable conjugate 
equilibria for each value of t and c, one with D positive (excess of coupling gam- 
etes) and one with D negative (excess of repulsion gametes). Which of these 
two equilibrium points will be reached depends on initial genotypic frequencies. 
If the initial population is composed entirely of coupling double heterozygotes 
(Initial Condition I, D = . 25 ) ,  or  if pa(o)  = pb(0) # .5 so that both dominant alleles 
equally frequent (Initial Condition IV) , D will be positive at gene frequency 
equilibrium. Conversely if the initial population is composed entirely of repulsion 
double heterozygotes (Initial Condition 11) or pa = q b  # .5, an excess of repulsion 
phase gametes results ( D  < 0).  If, however, the initial population satisfies the 
Hardy-Weinberg rule with pa = pb = .5 (Initial Condition 111) D = 0 at gene 
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TABLE 6 

Values of various parameters at gene frequency equilibria under models 4a, 46 

4(a) 4(b) 
- 

t c  + D  w A,=;, +D k D  W i1 & f i ,  3, 
.10 .01 .2201 5934 ,3119 .I882 .2314 ,5698 .3171 ,3229 .6822 .6399 

.02 .I856 .5871 ,2909 .1436 ,2056 .5617 ,2756 .2918 .7164 .6152 

.04 .OS29 .5750 .2500 0 0 .5491 .1780 .2324 .SO18 ,5000 

.06 0 .5706 ,2347 0 0 ,5418 .1586 .2209 3275 .5000 

.IO 0 .5674 .2236 0 0 .5386 .1281 .2049 .8580 ,5000 
.30 .01 ,2143 .6519 .MO5 .2009 .2258 ,6278 .4716 ,4770 ,6119 .5732 

.02 .I718 .6442 .4366 .1547 ,1916 ,6193 ,4356 ,4483 ,6607 ,5737 

.04 ,0072 .6303 .3924 0 0 .6050 .3710 .4005 ,6679 .5000 

.06 0 .6292 ,3889 0 0 ,6039 ,3656 ,3962 .6822 ,5000 

.10 0 .6274 ,3830 0 0 ,6017 .3565 .3889 .6876 ,5000 
.50 .01 .2089 ,6866 .5357 .1993 .2188 .6627 .5454 .5502 ,5850 ,5493 

.02 ,1578 .6780 ,5094 .1470 .I 769 .6540 .5103 .5201 .6086 ,5308 

.04 0 .6664 ,4728 0 0 ,6425 ,4638 .4804 ,6336 .5000 

.10 0 .66# .4679 0 0 .6408 .4574 .4743 .6362 ,5000 
.90 .01 ,1970 ,7315 .6206 .I890 .2080 ,7088 .6266 .6299 .5687 .5266 

.02 ,1232 .7218 .5896 .1148 .I347 ,6996 ,5902 .5941 ,5831 ,5112 

.04 0 .7154 .5690 0 0 . 6 M  ,5686 ,5721 ,5902 .5000 

.IO 0 .7152 .5683 0 0 ,6938 .5678 .5713 .5904 .5000 
1.0 .01 ,1936 .7400 .6351 .I853 .2039 ,7177 .6402 ,6429 ,5656 ,523 1 

.02 .1118 ,7300 .6027 .IO18 .I 188 .7083 .6029 .6052 ,5787 .5084 

.04 0 .7%0 .5862 0 0 ,7042 .5868 ,5883 .5834 ,5000 

.to 0 .7250 .5862 0 0 .7042 .5868 .5883 .5834 ,5000 

frequency equilibrium; (4) Values of D (or D’) are consistently higher under 
inbreeding than with random mating and high values of D are accompanied by 
high values of w; ( 5 )  Tighter linkage leads to higher levels of heterozygosity 
for  any given level of t. This effect is more pronounced for model 4b than model 
4a, probably as a result of the higher degree of dominance in model 4b; (6) In 
model 4b, which is asymmetrical, gene frequencies at the two loci tend to be 
similar at equilibrium when linkage is tight but quite different when linkage is 
loose. 

Results for models 4c and 4d are given in Table 7 for the range of linkage 
values c = .01 to c = .IO. Results for looser linkages (c = . I O  to .50) for model 
4(c) are given in Figure 3. Several points are worth noting. First, even though 
model 4d does not involve epistasis, gametic phase unbalance (D # 0) occurs 
under inbreeding. A similar result was noted above for models 2a and 2b. Second, 
when linkage is very tight, there are two possible equilibria for each recombi- 
nation value. These pairs of equilibria have unequal and opposite-signed values 
of D, and different mean fitnesses. The coupling equilibria (D positive) were 
obtained from populations in initial condition I; all other initial conditions (11, 
111, IV) led to a negative D for model 4c. A third point to note with respect to 
these cumulative heterotic models is that like optimum models, they are con- 
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FIGURE 3.-Effect of recombination ( c )  
partial selfing (1--t) on gametic phase 
balance (Model 4c) . 

and 
un- 

I = 1.0 

.20 .25 .a .3S .yI .45 

RECOMBINATION VALUE, c 

ducive of gametic phase unbalance, i.e., they lead to large values of D under tight 
linkage and also produce D # 0 under very loose linkage. An exception to this 
generalization occurs when selection is highly asymmetrical and inbreeding is 
intense. Under this circumstance inbreeding leads to homozygosity and selection 
tends to fix the superior homozygote. It is also significant to note that under 
cumulative heterosis there are no metastable equilibria such as those found with 
models 3a and 3b. 

Models with diminutiue heterosis: In models 5a to 5d the degree of heterosis 
at locus a is less in the presence of Bb than in the presence of BB or bb. A similar 
inequality holds for the locus b. These four models are therefore examples of 
diminutive heterosis in which increase in fitness is proportionately less than 
expected on the basis of increase in number of heterozygous loci. Such models 
are not expected to be particularly favorable to the development of permanent 
gametic phase unbalance and the analysis of the present examples show that this 
is the case. Model 5a, a symmetrical selection model, gave equilibria with D = 0 
for all values of c and t .  However, it is interesting to note that the introduction 
of asymmetry into the models, as in models 5b, 5c, and 5d, changed the situation 
drastically respecting equilibrium such that under model 5b, for example, even 
c = .50 yielded D # 0 over the entire range of values to t .  With model 5b the 
amount of gametic phase unbalance is substantial, particularly for tight linkages 
and rather close inbreeding (Figure 4).  In general, however, the amount of 
gametic phase unbalance and its effects on other population parameters were 
rather small for these models of diminutive heterosis (Figure 5). It should be 
noted that there is a single stable equilibrium for each value of t and c and that 
D > 0 for model 5b and D < 0 for models 5c and 5d. 

Models of mixed ouer- and underdominance: Models 6a, 6b and 6d are similar 
to one another in that single heterozygotes are selectively inferior to homozygotes 
whereas double heterozygotes are favored over all other genotypes. Model 6c 
represents a different pattern in that single heterozygotes have an advantage over 
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FIGURE 4.-Effect of recombination ( c )  and FIGURE 5.-Effect of recombination ( c )  and 
partial selfing (1--t) on gametic phase un- partial selfing (1-t) on gametic phase un- 
balance (Models 5a, 5b). balance (Models 5c, 5d). 

homozygotes at locus a and are selectively inferior to homozygotes at locus b 
(d, = -.lo, db = .30; see Table 2). Other variations in the models involve sym- 
metry of selection, intensity of selection, level of dominance, and the relative 
magnitudes and sign of the quantities eti (Table 2). 

LEWONTIN (1964a) investigated model 6a for the random-mating case only 
and found that for any linkage value c 2 .IO stable equilibrium occurs with 
intense gametic phase unbalance. (LEWONTIN gave c = .10 as the upper critical 
bound but when c is plotted at intervals of .01, it is found that this bound is near 
.15). As in other heterotic symmetrical models these are two conjugate equilib- 
ria, one in coupling ( D  > 0) and one in repulsion ( D  < 0) .  With c in the range of 
0.15 to .375 ( IeZ2/4) there are no stable equilibria with D+O. A point not brought 
out by LEWONTIN is that equilibria with D # 0 do not develop under his model 
irrespective of the value of c, unless the starting population shows gametic array 
unbalance. Thus, initial conditions I and I1 give D > 0 for tight linkage but 
D # 0 fails to develop for  initial conditions I11 and IV, even when c is in the 
critical tight linkage range of c = 0 to .15. 

The effect of inbreeding on model 6a is given in Table 8. It is interesting to 
note that the critical bound on c (i.e., c I .15) for stable equilibria is not changed 
by inbreeding. Inbreeding does, however, tend to raise the upper critical bound 
o n  c below which metastable equilibrium occurs. For example, for t = .lo, all 
values of c above .15, including those in the range .375 to .50, give metastable 
equilibria with D # 0. Under inbreeding, as with random mating, the initial 
composition of the population affects the ultimate equilibrium. If initial gene 
frequencies are pl = p2  = .5, and D = 0 (Initial condition 111) , stable nontrivial 
equilibrium (termed isoplethic) in which there is no gametic phase unbalance 
is possible. If, however, initial gene frequencies differ from pl = p2  = .5, as under 
Initial condition IV, the population always goes to fixation of the homozygote 
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TABLE 8 

Values of various parameters at gene frequency equilibria under model 6a 
~ ~~ 

Initial sets I, I1 Initial sets 111, IV 
- 

t C kD @ D W Region of metastability 

0 .01 
.to 
.25 
.40 
.50 

.IO .01 
.IO 
.25 
.4Q 
.50 

.30# .01 
.to 
.25 
.4Q 
.50 

.90 .01 
.IO 
.25 
.40 
.50 

1 .o .01 
.to 
.25 
.4Q 
.50 

.2486 

.2266 
,1572 
.0625 

0 
.2486 
,2331 
.1965* 
.1469* 

0 
.2479 
.2268 
.1824* 
.1227* 

0 
,2468 
.2154 
.1487* 

0 
0 

.2466 

.2141 

.1443* 
0 
0 

.90 

.90 

.90 

.90 

.90 
9078 
391 6 
.8731 
.8609 
3502 
,9191 
3780 
.8238 
.7847 
.7594 
.9380 
.8528 
.7133 
.5894 
.5888 
,9400 
3500 
.6300 
.5750 
.5750 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

.90 

.90 

.90 none 

.90 

.90 
,8652 
3588 
.8530 
3506 
,8502 
.7963 
,7818 
,7673 
,7606 
.7594 
,603 6 
,5986 
.59% 
,5894 
.5889 
.5750 
.5750 
.5750 
.5750 
.5750 

.I5 < c < .50 

.15 < c < .44 

.15 < c < .375 

.I5 < c < ,375 

* Metastable equilibria. 

nearest to the initial point. In nature, this model should lead to fixation since 
exact equality of intial gene frequency is necessary for nontrivial equilibrium. 
In summary, either tight or rather loose linkage are more favorable than inter- 
mediate linkage for maintenance of genetic variability with model 6a under 
random mating. Under inbreeding, however, populations are not likely to avoid 
fixation unless linkage is tight because stable equilibria with D = 0 are replaced 
by metastable types. Results with models 6b and 6c differ from these with 6a 
only in detail and hence will not be considered specifically. 

Results with the asymmetrical model 6d have a number of interesting features 
as shown in Table 9. Stable equilibria with a relative excess or deficiency of 
coupling gametes are obtained for various combinations of linkage (c) and in- 
breeding (1 - t ) ,  depending on the initial composition of the population. The 
critical range of values of c is relatively narrower for heavy than for mild in- 
breeding and it is interesting to note that, even though the course of genetic 
change toward equilibrium depends on the initial composition in complicated 
ways, there are at most two equilibrium points for any given set of values of t 
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TABLE 9 

Values of various parameters at gene frequency equilibrium under model 6d 

Initial - 
C frequency set* D D' W $1 $2 - t 

.10 

.30 

.50 

.60 

.70 

.90 

1 .o 

.01-.10 

.15-.50 
.01 
.10 

.15-.50 
.01 
.IO 

.15-.50 
.01 

.IO 

.15-.50 
.01 

.10 

.15-.50 
.01 

.10 

.I5 
.25-.50 

.01 

.IO 

.15 

.25 

.50 

I, 11,111, IV, v 

I, 11, v 
111, IV 
I, 11, v 
111, IV 
I, 11,111, IV, v 
I, 11, IV, v 

I, 11, IV, v 
I, 11,111, IV, v 
I, 11, IV, v 
I11 
I, 11, IV, v 
111 
I, 11,111, IV, v 
I, 11, IV, v 
I11 
I, 11, IV, v 
I11 
I, 11,111, IV, v 
I, 11,111, IV 

I11 

I11 

V 

0 0 
0 0 

--.I572 --.2451 
0 0 
0 0 

-2090 -.2439 
-.1195 --.I724 

0 0 
,1740 .2431 

--.2185 -.2435 
.0621 ,1868 

-I442 -.I864 
0 0 
,1899 .2431 

-224.4. -.2433 
,0965 ,1825 

-.I550 -.1800 
0 0 
,2083 ,2431 

-.2310 -.2428 
,1259 ,1759 

--.I605 -.I708 
,0834 .I478 
0 0 
,2139 ,2431 

-2329 -.2426 
.I337 .1736 

-.1602 --.1670 
,0933 ,1378 
0 0 

.0046 ,0158 
0 0 

.80 

.80 
,8182 
.80 
.80 
,8387 
,7944' 
.80 
,8320 
,8467 
,7964 
.7916 
3 0  
3396 
,8537 
,7934 
,7894 
.80 
,8524 
.8654 
,7892 
,7862 
.7 742 
.80 
3578 
,8704 
.7877 
,7850 
.7641 
.80 
,7121 
30  

0 
1 .o 
2026 
0 

1 .o 
.3127 
,1051 

,7659 
.3412 
,9077 
.2818 

.7329 

.3620 
3401 
.3342 

,6874 
.3902 
,7529 
.MO2 
3228 

.6711 
,4004 
.7234 
,4219 
.7678 

,6495 

1 .o 

1 .o 

1.0 

1 .o 

1 .o 

1 .o 

1 .o 
1 .o 

1 .o 
1 .o 

,7989 

,6883 
.8063 

.76W 

.6595 
,9007 
,7308 

.7311 

.6387 
,8267 
,6768 

,6852 
.6100 
,7297 
,6083 
,7958 

,6688 
,5998 
.6964* 
,5844' 
,7293 

,5513 

1 .o 

1 .o 

1 .o 

1.0 

1 .o 

1 .o 

Initial frequency sets: I-all coupling AB/ab; II-all repulsion Ab/aB; III-Hardy-Weinberg proportions 
p , = p 2 = . 5 :  I \ ,  p , = p 2 = . L ,  D=O; V, p I = p 2 = . 8 ,  D=O. 

with 

and c. The mean fitness of the population (m) appears to be independent of the 
direction of gametic unbalance and gene frequencies at equilibrium differ 
markedly from one equilibrium point to another. An important feature to note 
is that different values of c can lead to fixation of different genotypes under 
heavy inbreeding, even for identical initial conditions. 

Intermediate Optimum Models with Heterozygolte Advantage 

This type of model was apparently first proposed by WRSGHT (1952) who 
studied a case with wz2 = 1 - 42, wzl = wlZ = wol = 1 - x f y, wZo = wo2 = 1 
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FIGURE 6.-Effect of recombination (c) and FIGURE 7.-Effect of recombination (c) and 
partial selfing (1- t )  on gametic phase un- partial selfing (1-t)  on gametic phase un- 
balance (Models 7a, 7b, 7c). balance (Model 7d). 

and wI1 = 1 f 2y, i.e., an increment y is added to the fitness of heterozygotes on 
the secondary scale. Our models 7a, 7b, 7c, and 7d are examples of models in 
which heterozygote advantage is superimposed on basically intermediate opti- 
mum models. The variations amongst these four examples are reflected in the 
measures of dominance and epistatic components, the dp’s and eij’s (Table 2). 

The values of D obtained with our models 7a, 7b, and 7c for varying values of 
t and c are given in Figure 6. These results are similar to those obtained with 
the nonheterotic intermediate optimum models discussed earlier, i.e., there is an 
excess of repulsion phase gametes at gene frequency equilibrium (pl = p 2  = .5) 
and this unbalance is greater with high than with low levels of inbreeding. There 
is, however, one feature in which the heterotic and nonheterotic intermediate 
optimum models differ: under random mating and tight linkage D tends to be 
lower for the heterotic models. This result is not surprising since the effectiveness 
of linkage in producing gametic phase unbalance tends to decrease as heterozy- 
gote advantage increases (e.g. LEWONTIN and KOJIMA 1960). The present results 
show that this effect of heterozygote advantage is less marked under inbreeding 
and they also indicate that there is a wider range of conditions under which 
gametic phase unbalance can develop under inbreeding than under random 
mating. Thus LEWONTIN’S (1 964a) conclusion that “tight linkage and strong 
epistasis are necessary for maintaining permanent linkage disequilibrium” is 
less applicable under inbreeding than under random mating for  symmetrical 
cases such as models 7a, 7b, and 7c. 

WRIGHT, who assumed small selective differences amongst genotypes, con- 
cluded that, beside allowing for stability, the addition of the y increment had 
little effect on gametic unbalance. Results with model 7d indicate circumstances 
under which this conclusion does not hold, namely, asymmetry in fitness values 
of the two alleles at a locus. Under heavy inbreeding asymmetry in selective 
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FIGURE 8.-Effect of recombination ( c )  and 
partial selfing (1-t) on mean population fit- 
ness at gene frequency equilibrium (Models 
7a, 7b, 7c, 7d). 

I I I I I I 
0 0 2  0 4  0 6  O S  1 0  

PROPORTION OF OUTCROSSING. f 

values is a strong force leading to fixation of the favored allele so that the critical 
range of crossover values (c) under which permanent gametic unbalance occurs 
is narrower than under random mating. Thus, for model 7d, t = .10 gave equi- 
libria with D’ = 0 for all values of c, t = .2 and .3 yielded non-zero D’ only for 
tight linkage, while there was permanent gametic unbalance even for free recom- 
bination (c = .5) under random mating (Figure 7). 

Mean population fitness values at gene frequency equilibrium are shown in 
Figure 8 for models 7a to 7d. It is seen that high fitness is in general associated 
with tight linkage and random mating. Under model 7a, which has a smaller 
heterotic component than model 7b, the relationship between t and w is reversed 
for relatively loose linkages. It therefore appears that gametic phase unbalance 
does not always result in higher w at equilibria under mixed selection models 
involving intermediate optima as well as heterozygote advantage on the fitness 
scale. 

Multiciplicity of equilibrium points: An important feature of multiple gene 
systems involving epistatic interactions and linkage is the multiplicity of possible 
peaks on the adaptive surface given by the distribution of w. When there is no 
gametic phase unbalance (i.e., D = 0) genotypic frequencies can be computed as 
the product of the appropriate gene frequencies and the fitness values of indi- 
vidual genotypes (LEWONTIN and WHITE 1960). w can be put in the form of a 
topography in which the two horizontal dimensions represent the frequencies of 
the two genes and the vertical distance above the base represents mean popula- 
tion fitness. Thus an adaptive landscape is formed with peaks, valleys, ridges 
and saddles. Peaks and saddles are particularly interesting because they corre- 
spond to stable and unstable equilibrium points, respectively. This method of 
plotting adaptive surfaces is clearly inaccurate when there is gametic phase 
unbalance because D # 0 implies that genotypic frequencies are no longer a 
simple function of gene frequencies. Hence, when D departs from zero, this 
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(I b 

p 2  p 2  

FIGURE 9.-Adaptive topographies for Model 4c for c = .50 (a-left) and c = .001 ( b r i g h t ) .  
The isoadapts (dotted contour lines) in both figures were computed assuming D = 0. Numbers 
along the trajectories give the generation at which the population point reached the position 
indicated. Initial gene frequency sets were: I, p1 = p ,  = .6, D = .25 (all coupling gametes) ; 
11, p 1  = .6, p z  = .4, D = -.25 (all repulsion gametes) ; 111, p 1  = p ,  = .5, D = 0; IV, p1 = 
p z  = .2, D = 0; V, p 1  = p z  = .8, D = 0; VI, pl= .9, p z  = .I, D = 0, and VII, p 1  = 1, p z  = .9, 
D z 0. With c = .50 (Figure 9a), all initial sets lead to a peak at fil = ,572, f iz =_1399, with 
D = -.0008 and @ = 6.59. Note that this peak is near A ( f i  = .575, f i  = .m, W = .658), 
which is the expected position of the peak when it is assumed D=O. With tight linkage 
(c  = .001) there are two peaks as shown in Figure 9b. Initial gene frequency sets 11, I11 and 
VI1 reach gene frequency equilibrium at peak c ( f i ,  = .583, f i2  = .416, D = --.24Q6, W = .707), 
which is near the peak expected under the assumption D=O. Initial gene frequency sets I, 
IV, V and VI1 reach gene frequency equilibrium at peak B ( f i ,  = .501, f i ,  = .498, D = .2467, 
9 = .699) which lies at some distance from the peak expected when D is assumed to be zero. 

- 

method not only locates peaks and saddles incorrectly but the entire topography 
is affected. 

Some effects on adaptive topographies of ignoring D are illustrated for model 
4c in Figures 9a and 9b, and for model 6d in Figures 10a to 10d. In  all of these 
figures the isoadapts were computed on the incorrect assumption that D = 0. 
With c = .50 both models give a rather small value of D and it is therefore not 
surprising that the singular stable equilibrium point, in both cases (Figures 9a 
and loa),  lies close to the peaks given by the respective W-surfaces. With tight 
linkage (c = . O O l )  D takes much larger values with both models. Actual trajec- 
tories of gene frequency changes indicate that there are in fact two distinct peaks 
in the topography (at A and B) and that initial gene frequencies determine 
which of these peaks (stable equilibrium points) the population will ultimately 
reach. Note that several of the trajectories approach the peak at B from the 
neighborhood of C. This shows that C has a rather steep slope facing B. Correct 
contour lines might perhaps be drawn by taking a large number of initial sets 



POPULATION CHANGES UNDER SELECTION 655 
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FIGURE 10.-Adaptive topographies for Model 6d for c = .50 (a-upper left), c = 2 5  
(b-upper right), c = .10 (c-lower left) and c = .001 (d-lower right). The isoadapts (dotted 
contour lines) shown in all four topographies were computed on the assumption that D = 0. 
This topography indicates a peak at A and saddles at S. Numbers by trajectories give the genera- 
tion at which the population point reached the positions indicated. Initlal gene frequency sets 
are the same as for Figure 9. For c = .50 (Figure loa) initial sets I, 11,111, IV, and VI approached 
gene frequency equilibrium at the peak near A (fil = .650, fi2 = .551, D = ,0046, W = .712) 
whereas initial sets V and VI1 go to fixation at AABB and aaBB, respectively. With c = .25 the 
peak near A disappears and all intial gene frequency sets lead to fixation (Figure lob). With 
tighter linkage (c  = .lo), there are peaks at  C and D (Figure 1Oc) corresponding to stable 
equilibria at f i ,  = .723, f i ,  = .696, with D = .1337 and W = .788, and 6, = .422, p , =  584 
with D = -.1602 and = ,785, respectively. With still tighter linkage ( c  = ,001) there are 
peaks at  E and F (Figure 10d) corresponding to stableequilibria a t  f i ,  = f i ,  = .667, D = .2214, w = .866 and ljl = .m, f i2  = .600, D = -.2393, W = ,879, respectively. I t  is clear that 
ignoring D when it takes values other than zero leads to incorrect adaptive topographies. 
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of gene frequencies over the entire range 0 < pl, pz  < 1. The work involved 
might not be worthwhile, however, because points df stable equilibrium are of 
primary interest and they can be determined with relatively few sets of initial 
gene frequencies. 

Rates of change are indicated in Figures 9 and 10 by generation numbers along 
the trajectories. In general gene frequencies shift from Hardy-Weinberg propor- 
tions toward equilibrium frequencies rapidly until equilibrium is approached. 
However, it then usually takes many generations to attain ultimate equilibrium 
values of D, especially under tight linkage. 

Figures 10b to 10d illustrate the effect of varying c, and hence also of varying 
D, on the position of peaks under model 6d. I t  is interesting to note that with 
c = .25, there are peaks in the corners only whereas with tighter linkages there 
are two distinct peaks which seem to replace the peak A and saddle S of the 
topography obtained assuming D = 0. The trajectories do not seem to follow the 
shortest or steepest paths, as was also found by LEWONTIN and KOJIMA (1960). 
It is clearly inaccurate to draw adaptive topographies assuming D = 0 in such 
cases. With inbreeding the situation becomes even more complex because the 
values taken by w are influenced by interactions of inbreeding with the other 
factors. 

Conditions for stability of equilibria: Using a model of two-locus epistasis, 
KOJIMA (1959a) derived the following conditions for stability of gene frequency 
equilibria: 

These inequalities require: (1) overdominance on the marginal mcans of the 
three genotypes at each locus; and (2) that the additive x additive component of 
genotypic variance for fitness (2,) be smaller than geometric mean of the domi- 
nance components. In his derivation, KOJIMA assumed gametic phase unbalance 
(D) to be negligible in populations in approximate equilibrium. For the case 
D # 0 a generalized verification of KOJIMA'S second condition appears to be 
difficult until methods becomc available for partitioning the epistatic components. 

A start has been made in determining stability conditions using numerical 
methods. From numerical analysis of a model similar to our model 4a LEWONTIN 
and KOJIMA (1960) suggested that marginal overdominance was necessary for 
stability of equilibrium. Although explicit general conditions have not been 
worked out, a similar numerical check can be made for our various models under 
both random mating and inbreeding. In this connection models la,  3a and 6a are 
of particular interest because they involve both stable and metastable equilibria 
with different values of c. Table 10 gives estimates of dominance effects (d,, db) 
at equilibrium for various combinations of values of t and c. Note that while 
d,, db > 0 for all stable equilibria, marginal overdominance does not ensure sta- 
bility (e.g. isoplethic equilibria occur with model la,  and also with model 6a 
when t = 1, c = 35) .  Thus KOJIMA'S condition (1 ) seems to be a necessary but 
not a sufficient condition for stability. 
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TABLE 10 

Estimates of marginal dominance (da, db) at gene frequency equilibrium 

Model 1 (a)  Model 3(a) Model 6(a) 
A . .  

t,c D d,=d, 
~~ 

.10,.01 -.2484* -.0028 

.10,.01 -.2366* -.0225 

.10,.50 -.2094* -.0481 

.90,.01 -.2387* 0 

.90,.10 - - . l a g *  ,0154 

.90,.50 --.0339* .0710 

1.0,.01 --.2375* ,0002 
1.0,.10 --.1259* ,0208 
1.0,.50 --.0274* ,0793 

f.C 

.10..01 

.10,.10 

.10..50 

.SO..Ol 

.90..10 

.90..50 

1.0..01 
1.0,.10 
1.0:.50 

,2461 ,1013 ,0949 
,2191 ,1107 ,0620 
.1707+ ,1378 ,0230 

,2116 ,1153 ,0613 
,069lt ,1721 --.0052 
.0154+ ,1935 -.OOll 

.2050 ,1180 ,0524 
,059Ot .I764 --.0125 
.Ole;+ .I950 --.0045 

.10,.01 

.IO.. 10 

.IO,. 15 

.10,.40 

.90,.01 

.90..15 

.90,.35 

.90, .40 
1.0,.01 
1.0,.15 
1.0,.35 
1.0,.40 

,2486 
.2331 
.2223+ 
,1469-t 
,2468 
.I957 
.0779+ 
0 
,2466 
,1936 
,0646: 
0 

,0900 
,0067 

-.0346 
-.I990 

,0978 
.0668 
,0231 
.Ol@ 
,0987 
,0800 
,0533 
,0500 

* Isoplethic equilibria (stable as long as e,  = f i , ) .  
t Metastable equilibria (stable as long as f i l  = jj2 = .5) 

DISCUSSION 

Major emphasis in this study of multilocus genetic systems was on the evolu- 
tionary implications of the complexities which result from interactions amongst 
linkage, epistasis and inbreeding. The choice of optimum, heterotic and mixed 
optimum-heterotic models on which to base the study was influenced by the 
general experience that the modes of selection implied by these models are wide- 
spread in occurrence. 

Results from the study of two-locus models show that the patterns of interaction 
amongst dominance, linkage, mode of selection, inbreeding and other parameters 
which were varied are complex. Variations in the amount of crossing over, for 
example, can affect the extent of gametic phase unbalance and the nature and 
number of gene frequency equilibria, especially in mixed selection models. The 
initial composition of a population can also influence the final equilibrium which 
is attained. The intricacies which can develop are well illustrated in Figures 
lob to 10d from which it can he seen that trajectories of population change cross 
one another. This shows that the evolutionary futures of populations which have 
identical gene frequencies can be very different as a result of differing evolu- 
tionary histones. 

Many of the controversies that have developed in population genetics appear 
to have their basis in the fact that various factors have been considered singly. 
The present results give numerical substance to the often expressed idea that 
multigenic systems cannot he dealt with by analyzing the isolated effect of any 
single variable but only through characterization of the interplay of various 
factors acting simultaneously. 
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SUMMARY 

The joint effects of linkage, level of dominance, epistasis and inbreeding on 
the genotypic constitution of large populations were investigated for a variety of 
selection models by simulation on a digital computer, Results were expressed 
primarily in terms of the extent of gametic phase unbalance (linkage disequi- 
librium), mean population fitness and the number and nature of gene frequency 
equilibria. Conditions for stability of equilibria were determined by varying the 
initial genotypic frequency set or by disturbing equilibrium frequencies. Some 
of the findings are: ( 1  ) permanent gametic phase unbalance can occur under a 
wide range of conditions respecting dominance (or overdominance), linkage and 
epistasis; (2) the amount of unbalance in gametic arrays tends to increase with 
inbreeding, particularly under symmetrical selection; (3) for intense inbreeding 
there are many recombination values under which permanent gametic phase 
unbalance is possible, even without epistasis; (4) optimum models and certain 
mixed selection models are more favorable than heterotic models for the develop- 
ment and maintenance at equilibrium of gametic phase unbalance; ( 5 )  over- 
dominance on marginal means appears to be a necessary condition for the sta- 
bility of equilibria; however, lesser levels of marginal overdominance appear to 
be necessary for stability of equilibria under inbreeding than with random 
mating.-The results indicate that complex interactions occur amongst the 
various factors that were vaned, including inbreeding, and hence that it is the 
totality of all variables that determines the genetic structure of populations. 
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