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genetic variation of quantitativ; characters in an equilibrium population 
T E p e n d s  on the size of the population, and it is expected to be larger in a 
large population than in a small population. Introducing the concept of gene 
frequency distribution, WRIGHT (1931) was able to obtain a simple formula for 
the relationship between genetic variation and population size when the genes 
controlling quantitative characters are maintained by reversible mutations or a 
special kind of genic selection. Recently, ROBERTSON (1962) studied an important 
case of heterozygote advantage in terms of the frequency of heterozygotes and 
found that the genetic variation in small populations is highly dependent on the 
equilibrium gene frequency in an infinitely large population. Much more study 
is needed, however, in order to clarify further the general relationship between 
genetic variation and population size. 

The mechanism through which the genetic variation of quantitative characters 
is maintained in natural populations is not well understood at present. There are 
four major hypotheses for the mechanism, i.e. (1) reversible mutation, (2) bal- 
ance between mutation and selection, (3) overdominance or heterozygote ad- 
vantage, and (4) optimizing selection. So far none of these hypotheses have been 
subjected to critical experimental test. If, however, these hypotheses lead to differ- 
ent relationships between the amount of genetic variation and the population size, 
then it would be possible experimentally to determine which mechanism is most 
important. We, therefore, examined the relationship theoretically with special 
reference to the first three hypotheses. There are several possible types of opti- 
mizing selection and this generally creates a difficulty in the mathematical 
treatment, especially such a model as proposed by KIMURA (1965). Note, how- 
ever, that if genes are maintained by overdominance and their effects on a 
quantitative character are additive, an optimizing selection results (ROBERTSON 
1956). 

For the experimental test of the hypotheses it would also be helpful to know 
the relationship between the population size and the mean value of the character 
or the changes in mean value and genetic variation due to an increase in muta- 
tion rate. Mutation rate can easily be increased experimentally by the use of 
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radiation or other mutagenic agencies. Further, the relation between the popula- 
tion size and the changes in mean and variance would give useful information 
concerning the genetic effect of radiation on quantitative characters in man or 
other organisms. 

MATHEMATICAL FORMULATION 

Mean and genetic variance: Let us assume that a large number of loci, each 
with two alleles, are responsible for a quantitative character and that they act 
independently of each other both for  the quantitative character and fitness. Thus, 
there are three possible genotypes for a locus, i.e. AA, Aa, and aa, where A and a 
refer to the alleles with positive and negative effects on the quantiative character. 
We denote the relative fitnesses and effects on the quantitative character of the 
three genotypes as follows: 

Genotype 
Frequency 
Fitness 
Quantitative 

character 

A A  Aa aa 

92 9 4 - 9 1  (1-9)2 
1 I-h 1 --s 

a d -a 

Here q represents the gene frequency of A.  The contributions of this locus to the 
mean and additive genetic and dominance variances of the quantitative character 
are given by 

Mean 
Additive variance 
Dominance variance 

Y = (%--l)a + 29(1-9)d 
U, = Q ( l - 9 )  [a + ( 1 - - 2 9 ) 4 2  
ud = 49’( 1-9) ‘d’ 

We now assume that the values of h, s, a and d are the same for  all relevant 
loci. The probability distribution of gene frequency in an equilibrium population 
of finite size is then given by 

(1) 9 ( 4 )  = Ce-4X7~ - 2 N s  (1-q) * q4NU-1 ( 1 -q) 4NV-1 

where N is the effective population size, and U and U are the mutation rates of 
a + A  and A+a, respectively (WRIGHT 1937). Thus, the mean of the quantita- 
tive character is given by 

= G + n [- a + 2 ( a + d ) ~ ~ ’ ~  - 2 d ~ ~ ’ ~ ]  ( 2 )  

where G and n stand for the background effect and the number of loci concerned, 
respectively, and p’l and , J L ’ ~  are the first and second moments of the gene fre- 
quency distribution, namely 

= 1: q‘ + ( 9 )  d q  (3) 

In the same way the additive and dominance variances become 

V ,  = 2n[ (a+d)’,p‘, - (&U!) (a+5d)p’2 + 4d(a+2d)pH - 4$’~’4I (4) 
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Vo = 4nd2( p’2 - 2p’3 + p r q )  ( 5 )  

respectively. 
It is generally difficult to obtain the moments of gene frequency distribution 

analytically. However, in the case of neutral genes, which are maintained by 
reversible mutations, the moments are easily obtained and given by the beta 
functions as follows: 

where U = 4Nu  and V = 4Nv. Thus, for example, the additive variance in the 
case of no dominance (d  = 0) becomes 

8nuva2N 
( U  + U )  (U + v + 1) 

V* = 

which is equivalent to the formula obtained by WRIGHT (1931). In  the case of 
genic selection ( h  = 1/s) the moments are given by 

( 7 )  
r ( U +  V ) r ( U  + r ) lF1(V,  U + V + r, -2Ns) 

r ( U ) r ( U  + V + r ) l F l ( V ,  U + V ,  +2Ns) P’r = 

where lFl denotes the confluent hypergeometric function. 

are obtained in the same way and become 
Skewness and kurtosis: The skewness and kurtosis of a quantitative character 

respectively. 

(8) and (9) reduce to 
When the genetic variation is maintained by reversible mutations, formulas 

(10) 

( 1 1 )  

( U  + U )  ( U +  U + 1 / ( 4 N ) )  U - - U  4 2nuu U + U + 2 / ( 4 N )  Y1- 

( U  + U )  ( U  + U + 1/(4N)) - ~ U V  

respectively. Formula (1 1 ) shows that in small populations the distribution of a 
quantitative character becomes leptokurtic unless n is very large. Further, if U 

differs extremely from U ,  the distribution shows a considerable skewness in large 
populations. 

The skewness and kurtosis when there is dominance (d  > 0) or when the genes 
are subject to natural selection can be obtained in the same way or numerically, 
and it can be shown that the distribution is again leptokurtic when N is small. 

Genetic load associated with quantitative characters: If the genes controlling 
a quantitative character are maintained by selection, they necessarily create a 
genetic load to the population. The magnitude of this genetic load can be obtained 

y , = 3 +  
2nuv 
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by the same method as that used by KIMURA, MARUYAMA and CROW (1963), who 
studied the genetic load arising from deleterious mutations. For example, the 
segregational genetic load for an overdominant loci is given by 

If Ns is small (2Ns < 5 ) ,  this can be approximated by 

L8 = -h f S(1 - p'a) - 2 ( S  - h)  ( ~ ' 1  - p'z) ( 112) 

(s - h) - h (u /u )  eZN8 
1 + ( u / u )  ezNs 

L, = 
. ,  I 

Effects of an increase in mutation rate: When the mutation rate is increased 
artificially in a generation, the mean, genetic variance, and genetic load in the 
next generation may change through the change of gene frequency. If the muta- 
tion rate from a to A increases by ml and from A to a by m2 in a generation, then 
the gene frequency of A increases as follows: 

Aq = ml - (m, + m z ) q  
If m, = mz = m, as is generally believed with the bristle characters of Drosophila 
melanogaster (cf. TOBARI and NEI 1965), Aq becomes ( 1  - 2q)m. Neglecting 
the effect of the higher orders of Aq, the change of mean is given by 5' dY AY = - Aq+(q)& 

O dq 
(14) 

=2n [ ( a + d ) m , -  {urn,+ ( a + d ) ( m l + m Z ) } p ' 1 + 2 d ( m l ~ m z ) p ' ~ 1  

In  the same way the changes in genetic variance and genetic load can be obtained. 

NUMERICAL COMPUTATIONS 

Methods of computation: As shown in the preceding section, the mean, genetic 
variance or other quantities in a population of finite size can be expressed as a 
function of the moments of the gene frequency distribution. The evaluation of 
the moments, however, usually necessitates a numerical integration, since they 
are not generally expressible in terms of elementary functions. If the right side 
of ( 1  ) with C omitted is denoted by P ( q )  , the moments are obtained by 

In the computation of the values of integrals in the above formula we used Simp- 
son's method. When the population size is small, the value of P ( q )  may become 
+CO both at q = 0 and 1, so that Simpson's method is not directly applicable. In 
this case we used the method devised by KIMURA (1 963). In some cases the inte- 
grals in (15) can be expressed by elementary functions and these serve as checks 
on the numerical integration: (i) When the effective population size is small, the 
first to fourth moments are almost identical and given by 
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approximately. (ii) When the effective population size is extremely large, P'~ is 
given by 4'. (iii) In the case of neutral genes the moments are obtained directly 
from (6) .  (iv) In the special case of U = V = 1 and h = i / z ,  a direct integration 
is possible; in this case the moments are also obtainable from (7). (v) In the case 
of U = V =  1 andh = 0, 

where C is d 2 N s / ~ / e r f  (2v'x),  erf (x)  being ( : l /dze-ta/zdt .  
In the numerical computation we chose the values of s and h so as to give three 

different levels of the equilibrium gene frequency at N = CO,  namely 0.5, 0.7, 
and 0.9 (see Table 1 ) . Note that, when s and h are small, the equilibrium gene 
frequency at N = cc is affected by both the forward and backward mutations. 
In all cases U = loa5 was used, ,while for the reverse mutation U = (3/7) x 
was used in the cases of ( 4 ) ,  (14), and (15), and U = (1/9) x in the cases 
of (9) , ( 1  6) , and ( 1  7) .  In all other cases we assigned 1 0-5 to U .  It may be noted 
that cases ( l ) ,  (4)) and (9) represent neutral genes, and cases (8), (12), and 
(13) genes maintained by a balance between mutation and selection. The other 
cases all relate to genes showing heterozygote advantage or overdominance. The 
selection coefficients in (14)) (15), (16), and (17) are almost equal to those in 
(5 ) ,  (6), ( l o ) ,  and ( 1 1 )  respectively, though the mutation rates are not the 
same. The latter group of cases was set up just to see the effect of spontaneous 
mutation rate in small populations. 

I I 1 I I 

10 102 103 104 105 
POPULATION SIZE 

-0.li 

FIGURE 1.-Relations between the mean of a quantiative character and population size 
( d  = 0). The broken lines refer to no selection and the solid lines to overdominant selection. 
The lines in dot and dash refer to genic or recessive selection. The numbers given to each curve 
represent.s the case number in Table 1. 
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Mean: If there is no dominance for quantitative characters or d = 0, expression 
(2) reduces to Y = G + na(2p‘, - 1 ) .  Thus, the relation between the mean and 
population size is determined by 2pLll - 1. The values of 2p’, - 1 are given in 
Figure 1.  For cases ( l ) ,  (2), and (3) p’, = 0.5 for all values of N ,  so that the 
mean of a quantitative character is independent of population size. Also, in cases 
(4) and (9) the means are independent of population size, though the values are 
not the same as those of the first three cases. Case (5) shows that the mean value 
first increases logistically with an increase of N ,  reaching the maximum value at 
about N = 200, and then begins to decrease, approaching the value of N = CO. 

The large values of the means in populations of the order of 200 has been brought 
about by the mean gene frequencies drifting away from the equilibrium values. 
That the gene frequencies in small populations are deviated far from the equi- 
librium values when the equilibrium gene frequencies at N = 00 are not 0.5 has 
been noted by ROBERTSON (1962). It is seen from (6) and (7) that a similar 
pattern of change in mean obtains also for the smaller values of s and h though 
the pattern is less conspicuous. Comparison of (5) with (14) or (10) with (16) 
shows that, if U > U, the mean value is further increased in populations of inter- 
mediate size. It is also observed that the mean in small populations is affected 
more strongly by mutation than by selection intensity. 

In the case of complete dominance (cases (8) and (12) ), the mean value in 
populations of intermediate size is also slightly larger than the value at N = CO. 

When there is selection without dominance or genic selection (13) , the relation 
between the mean and population size is of S shape. 

When the effects of genes on quantitative characters show complete dominance 
(d  = a) ,  expression (2) becomes Y = G - na( 1 - 4 ~ ’ ~  + 2 ~ ’ ~ ) .  The values of 
- 1 + 4 ~ ’ ~  - 2p’z are given in Figure 2. The mean value is no longer independent 
of the population size even in the case of neutral genes (1, 4, and 9). The same 

t 
I 

10 
,I_---___------ - - -/ .<-------- 

POPULATION SIZE 

FIGURE 2.-Relations between the mean of a quantitative character and population size 
( d = a ) .  The broken lines refer to no selection and the solid lines to overdominant selection. 
The line in dot and dash refers to genic selection. The number given to each curve represents 
the case number in Table 1. 
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is true for the cases of (2) and (3), i.e. overdominance. Other cases show the 
same type of change in mean as in the case of d = 0, but the difference between 
the maximum value and the value at N = 00 is smaller. 

Theoretically, it is possible to make d equal to -a. In  this case Y = G - na( 1 - 
2 , ~ ‘ ~ ) .  Thus, the relation between Y and N is somewhat different from that of the 
case where d = a. However, we will not consider this any more, since it appears 
important only in limited cases. 

Additive genetic and dominance variances: With d = 0 the additive genetic 
variance becomes 2nd (pLI1 - P’~) .  The values of p’l - pI2 are given in Figure 3. 
The relation between the additive genetic variance and effective size is rather 
simple, and in all cases an S curve obtains. Selection, whether genic, recessive or 
overdominant, generally increases the variance in small populations. Thus, when 
the fitness or heterozygotes is higher than those of both homozygotes by 1 %  
(case 2 ) ,  the genetic variance in a population of the order of 1000 is almost equal 
to that in a population of more than 100,000 in the case of neutral genes. The 
same is true also for  the case of ( 5 ) ,  when compared with case (4). The genetic 
variability maintained in a small population is generally larger when genes are 
subject to strong selection than when subject to weak selection. It was also found 
that the genic selection with small values of s and h (13) has a stronger effect 
on the genetic variance than an overdominant selection with rather large absolute 
values of s and h (11). 

In a study of the effect of overdominance on the frequency of heterozygotes, 
ROBERTSON (1962) reached the conclusion that, while it can conserve a larger 
genetic variability than in the case of neutral genes in a region of 0.1540.85 of 

POPULATION SIZE 

FIGURE 3.-Relations between the additive genetic variance and population size (d  = 0). The 
broken lines refer to no selection and the solid lines to overdominant selection. The lines in dot 
and dash refer to genic or recessive selection. The number given to each curve refers to the case 
number in Table 1. 
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POPULATION SIZE 

FIGURE 4.-Effect of overdominance in  fitness on the additive genetic variance when the 
equilibrium gene frequency is 0.9. The broken line refers to no selection and the solid lines to 
overdominant selection. The number given to each curve represents the case number in Table 1. 
It is seen that curves 16 and 17 cross 9. 

the equilibrium gene frequency at N = CO, it may reduce the genetic variability 
outside the region if N (s - 2h) is smaller than a certain critical value. This con- 
clusion is based on a study of rather small populations with equal mutation rates 
of U and U .  However, if the population size is very large, the genetic variance 
under selection again becomes smaller than that in the case of no selection, as seen 

POPULATION SIZE 

FIGURE 5.-Relations between the additive genetic variance and population size (d  = a). 
The broken lines refer to no selection and the solid lines to overdominant selection. The lines 
in dat and dash refer to genic o r  recessive selection. The number given to each curve represents 
the case number in Table 1. 
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from the comparison of curves (1) and (IO) in Figure 3. If, on the other hand, the 
mutation rates for neutral genes are assigned so as to give the same equilibrium 
gene frequency as that specified by a given type of selection, the genetic variance 
in large populations in larger for non-neutral genes than for neutral genes [ (9) 
us. ( lo)] .  In this case, however, the ROBERTSON effect disappears. In  order for 
this effect to hold, the mutation rates for non-neutral genes should be the same 
as or close to those for neutral genes, as seen from Figure 4. In  the case of (16) 
in Figure 4 the ROBERTSON effect arises for N < IO3 and in the case of (17) for 
N < IO4. No such effects were observed for the cases of (14) and (15). 

When d = a, the relationship between the additive genetic variance and popu- 
lation size is slightly changed, as seen from Figure 5. With the equilibrium gene 
frequency of 0.7 or 0.9 and weak or no selection, the genetic variance in a popu- 
lation of intermediate size, i.e. around lo4, is larger than the value in an infinitely 
large population. This is caused by the fact that, when there is weak or no selec- 
tion, the gene frequencies are affected by random genetic drift more severely 
than when there is strong selection. It is of interest to see that, when the equi- 
librium gene frequency is 0.9 and N is smaller than IO4, genic selection (13) is 
capable of maintaining a larger genetic variance than no selection (9). Over- 
dominant selection (1 0) , however, maintains only a small variance. This is due 
to the fact that under strong selection the moments of gene frequency quickly 
reach the values of N = 00 as N increases. The same is true for the case of (5). 

The numerical values of dominance variance, i.e. Vo/4nd2 = pI2 - 2 ~ ’ ~  + pE4, 

are graphically shown in Figure 6. The relationship between the dominance 

- 
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POPULATION SIZE 

FIGURE 6.-Relations between the dominance variance and population size (d  = a). The 
broken lines refer to no selection and the solid lines to overdominant selection. The lines in dot 
and dash refer to genic or recessive selection. The number given to each curve represents the 
case number in Table 1. 
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variance and population size is almost the same as that between the additive 
genetic variance and population size, except that with some sets of small selection 
coefficients (e.g. 12) the intermediate size of N no longer shows the largest value. 

Genetic load: The genetic loads for representative cases are plotted against the 
population size in Figure 7. The relation between the mutation load and popu- 
lation size has been fully investigated by KIMURA, MARUYAMA, and CROW 
(1963), and our results on this type of load are almost the same as theirs. One 
exception is that the genetic load created by small selection coefficients becomes 
smaller than thc mutation rate when N is large. For example, in the case of (8) 
the genetic load at N = w becomes 0.6 x for a locus. This smaller load than 
the mutation rate is due to the fact that with weak selection the reverse mutation 
a+A is no longer negligible when U = U. As indicated by KIMURA et al. (1963), 
the mutation load increases as N decreases. Thus, in the case of (12) the genetic 
load for N = 100 is almost 40 times the load for N = w (Figure 7). If there are 
100 such loci controlling a quantitative character, the reduction in fitness is 
1 - e100x0.9x10-5 = 0.09% for N = CO and 3.5% for N = 100. 

The relation of the segregation load to the population size is somewhat differ- 
ent from that of the mutation load. First, the difference in the segregation load 
between large and small populations is not generally so great as the difference in 
the mutation load. In  general, the load for segregational loci is quite high even 
when N = w but does not increase so strikingly with a decrease of population 
size as does the load for mutational loci. In the case of (2), for example, the total 
load for 100 loci is 100 x 5 x 10-3 = 0.5 when N = w and 1 when N = 100. The 
relative fitnesses of the two populations are 0.61 and 0.43 respectively. Second, 

10 T5 
\ 2  

I I I I 

1 10 102 103 104 105 
POPULATION SIZE 

FIGURE 7.-Relations between the genetic load and population size. Curve 12 refers to the 
mutation load and the others to the segregation load (cf. Table 1). 
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with some sets of selection coefficients the genetic load shows a two-step change 
as N increases, as in the cases of ( 5 )  and (IO). 

Changes of mean due to an increase in mutation rate: When d = 0 and 
m, = mz = m, the amount of change in mean is given by 2nma( 1 - 2 ~ ’ ~ ) .  The 
dependence of this change on the population size can be seen from Figure 1, 
where the value of 2p’, - 1 is given. The interpretation of this figure has already 
been discussed. In the case of complete dominance (d  = a ) ,  AY = 4nma( 1 - 
3pfl f 2 ~ ’ ~ ) .  Numerical computations have shown that the relation of AY to N 
is roughly the reverse of the relation of Y to N and AY is generally larger in small 
populations than in large populations. 

Changes of genetic variances: The changes of additive variance due to an 
increase in mutation rate when d = 0 are shown in Figure 8. The relation of 
AV,  to N is again roughly the reverse of the relation of V ,  to N .  In small popu- 
lations most loci are fixed, so that almost every mutation creates a new genetic 
variation. A large population, on the other hand, contains both positive and nega- 
tive alleles. so that the frequency of heterozygotes is hardly affected, unless the 
equilibrium gene frequency deviates substantially from 0.5. If the equilibrium 
gene frequency is 0.7, AVA at N = 30 is less than one fifth of the value at N < 100. 

The amounts of changes in additive genetic variance with d = a are shown in 
Figure 9. When the equilibrium gene frequency is 0.5, AV, decreases mono- 
tonically with an increase of N ,  but if it differs from 0.5, this value decreases 
far below the level of N = x. in populations of intermediate size. In an extreme 
case of (IO) the value of AV, is almost zero for N = 102+107. Apparently, these 
decreases are caused by the gene frequency drifting away from the equilibrium 
value. 

The change in dominance variance in a population of N < 100 is negligibly 

k 
i 
3 
0 

2 
POPULATION SIZE 

FIGURE 8.-Amounts of changes in additive genetic variance due to increase in mutation 
rate in  populations of finite size (d = 0). The broken lines refer to no selection and the solid 
lines to overdominant selection. The line in dot and dash refers to recessive selection. The 
number given to each curve represents the case number in Table 1. 
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POPULATION SIZE 
FIGURE 9.-Amounts of changes in additive genetic variance due to increase in mutation rate 

in populations of finite size (d = a ) .  The broken lines refer to no selection and the solid lines 
to overdominant selection. The line in dot and dash refers to genic selection. The number given 
to each curve represents the case number in Table 1. 

small but it gradually increases as N increases (Figure 10). When the equi- 
librium gene frequency is 0.9, AV, monotonically increases to reach the largest 
value of N = 00 .  However, if it is 0.5, AV, again decreases and becomes 0 at 
N = 00 (1, 2, and 3 ) .  This is understandable if we note that the change in domi- 
nance variance can be written as 8Zmq( 1 - q )  (1 - 2q) V, where X indicates 
the summation over all relevant loci. This quantity is 0 if q is any of 0,0.5, and 1. 
In small populations q is mostly 0 or 1, whereas in large populations q is 0.5 at 

POPULATION SIZE 

FIGURE 10.-Amounts of changes in dominance variance due to increase in mutation rate in 
populations of finite size ( d  = a ) .  The broken lines refer to no selection and the solid lines to 
overdominant selection. The line in dot and dash refers to genic selection. The number given to 
each curve represents the case number in Table 1. 
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1 1 I I I 
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FIGURE 1 1  .-Amounts of changes in genetic load due to increase in mutation rate. The solid 
lines refer to segregation load and the lines in dot and dash to mutation load. The number given 
to each curve represents the case number in Table 1 .  

most loci. In both cases, therefore, AV, is nearly 0. In  populations of intermediate 
size, however, q is flatly distributed with the mean value of 0.5, and those loci at 
which 0 < q < 0.5 or 0.5 < q < 1 contribute to the value of AV,. 

Changes of genetic load: When the genetic variation is maintained by mutation 
and selection, the amount of change in genetic load is generally small, as seen 
from Figure 11 (of course, if s and h are large, this change could be large). In an 
infinitely large population the change in genetic load is positive as it should be, 
but in a small population it can be negative if dominance for fitness exists, as in 
the case of (12). In this case such mutations as AA+ A a  show no effect on fitness, 
while the mutations such as aa+ Aa increase fitness. Therefore, the genetic load 
decreases. 

In  the case of overdominance the genetic load is almost independent of muta- 
tion rate if N is large. However, if N is small, the genetic load is reduced by 
increase in mutation rate (Figure 11). This reduction in the genetic load or the 
increase of fitness is caused by the increase of heterozygote frequency due to 
mutations. 

DISCUSSION 

From the results given above it is obvious that the magnitudes of genetic 
parameters such as mean, variance and genetic load depend on the population 
size as well as the mechanism through which the genetic variation is maintained. 
These results may be useful in discriminating between different mechanisms of 
maintaining the genetic variation. For example, if the mean value is independent 
of population size and the genetic variance in populations of less than 1000 is 
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very small compared with that of a large population (of course, assuming that 
the mutation rate is of the order of lo-”, it may be conjectured that the genetic 
variation is maintained by reversible mutations or very slight overdominant 
selection. When overdominant seelction operates and the equilibrium gene fre- 
quencies are far removed from 0.5, the ROBERTSON effect takes place, and the 
genetic variance in small populations could be smaller than in the case of rever- 
sible mutations. In this case, however, the mean value changes with change of 
population size and the genetic load is considerably larger even in large popula- 
tions. The genetic load associated with a quantitative character may be measured 
by the method developed by HALDANE (1954) in practice, assuming no inter- 
action between genetic and environmental effects. When the genetic variation 
is maintained by the balance between mutation and selection, the relation be- 
tween the genetic variance and population size may again look like the relation 
for neutral genes. In this case, however, the genetic load in small populations 
would be much larger than that in large populations. For the purpose of discrimi- 
nating between the different mechanisms of maintaining the genetic variation 
information on the changes in genetic parameters may also be useful. 

If there is dominance for quantitative characters, the relations of genetic param- 
eters with population size are somewhat different from those in the case of no 
dominance, but the relations may again be used for discriminating between the 
different mechanisms. The degree of dominance of quantitative characters can 
be studied by the comparison of full sib and parent-offspring correlations or other 
procedures specifically designed for the purpose. 

Quantitative characters are often subject to a centripetal selection. Several 
models of optimizing selection have been put forward to explain this type of 
selection, though most of the models have been proved to be inadequate for main- 
taining the genetic variation permanently (FISHER 1930; WRIGHT 1935; KOJIMA 
1959; LEWONTIN 1964). Recently, KIMURA (1965) proposed a new model based 
on a number of assumptions, of which the adequacy is not necessarily demon- 
strated. 

On the other hand, ROBERTSON (1956) has shown that, if the individual genes 
are maintained by overdominance, a centripetal selection results. This was 
extended to the case of balance between mutation and selection by KIMURA 
(1958). Thus, if any of these kinds of selection leads to the same type of centrip- 
etal selection as observed in nature or in experiments, optimum models may be 
unnecessary. For the overdominance or mutation-selection model to be correct, 
several properties other than those considered here should be satisfied (cf. 
ROBERTSON 1959; KIMURA 1960). 

In general, if the mutation-selection model is correct, the gene frequency in 
large populations is usually far from 0.5, so that the genetic variance per locus 
is very small. Consequently, a much larger number of loci should be concerned, 
compared with the case of overdominance, in order to have a given amount of 
genetic variability. Further, if the average gene frequency differs greatly from 
0.5, the long term responses to the upward and downward artificial selections 
should be drastically different, provided that, as is likely, the effects of genes on 



GENETIC VARIATION A N D  POPULATION SIZE 777 

the quantitative character and fitness are correlated. It is also expected that the 
response to selection is very small in early generations and gradually increases 
as generation proceeds, since it depends on the quantity q (1 - 4). However, the 
selection experiments conducted with Drosophila or mice do not support any of 
these predictions. On the other hand, the overdominant selection usually creates 
a large genetic load in large populations compared with the mutation-selection 
scheme, and this is one of the reasons why some authors object to the overdomi- 
nance hypothesis. If, however, the heterozygote advantage is only of 1 % or less, 
the genetic load created by some 100 such loci would not be so large. In small 
populations the genetic load is quite large both for mutational and segregational 
loci. 

Natural populations are not necessarily a single random mating unit but 
usually subdivided into many subpopulations in which random mating takes 
place. In  such populations the gene frequency distribution for neutral genes is 
given by 

where 
,- 4Nv [m(l  - r )  + U + V ]  U -  

V‘ 

u + u  

4Nv [m( 1 - r )  4- U + V] 
u + v  

and m and r stand for the migration rate and correlation of gene frequency 
between neighboring subpopulations (cf. KIMURA and WEISS 1964), and N for 

0 . 0 0 y  10 

POPULATION SIZE 

FIGURE 12.-Effect of migration on the additive genetic variance ( d  = 0) in ‘island‘ and 
‘stepping stone’ models. m and r represent the migration rate and correlation of gene frequency 
between neighboring subpopulations. The forward and backward mutation rates are each 1 @5.  
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the effective size of subpopulations. In WRIGHT’S “island model” (WRIGHT 1943), 
r is always 0, while in the “stepping stone model” by KIMURA and WEISS (1964) 
r is a function of m. In the case of two dimensional distribution r is 0.70 for 
m = 0.1,0.68 for m = 0.05, and 0.48 form = 0.001. Using the above distribution, 
we can obtain the mean, genetic variance, etc. of quantitative characters as before. 
The result for the additive genetic variance with d = 0 is shown in Figure 12. In 
this computation U = U = 

It is clear that in the case of island model with m = 0.1 the additive genetic 
variance in subpopulations of N = 100 is almost the same as that in an infinitely 
large population. It is also noted that the genetic variance for N = 100 and 
m = 0.1 is of the same order of magnitude as that for N = lo6 and m = 0. The 
genetic variance for stepping stone model is slightly smaller than that for island 
model when the migration rate is the same. It is, however, remarkable that the 
migration of only 0.1 % can increase the genetic variance considerably compared 
with the case of complete isolation. NEI and IMAIZUMI (1966) have estimated the 
effective size and migration rate of the so-called isolated populations in Japan. 
The estimates obtained are 1993 and 0.06 respectively. It may, therefore, be 
inferred that the genetic variance of quantitative characters in these populations 
is hardly different from that in the general Japanese population. 

Information on the changes of genetic parameters due to increases in mutation 
rate may be useful in the evaluation of genetic effect of radiation in man or other 
organisms. For example, if there is no dominance ( d  = 0) and no selection and 
the forward and backward mutations occur with equal frequency, the means of 
quantitative characters are hardly affected in any population. The results ob- 
tained with Drosophila melanogaster may reflect this circumstance ( TOBARI 
and NEI 1965). On the other hand, if there is dominance or selection or the 
forward mutation rate far exceeds the backward mutation rate, the means could 
be lowered by radiation. One such case is known with the maze learning ability 
of rats (NEWCOMBE and MCGREGOR 1964), though the underlying genetic 
mechanism is not clear. It is of interest to see that under the assumptions made 
in this paper the change in mean is larger in small populations than in large 
populations. 

The effect of radiation on the variance may be evaluated from Figures 8 and 9, 
assuming the constancy of environmental variance. It is clear that the amount 
of increase of genetic variance is larger in small populations than in large popu- 
lations. In such a case as (1) in Figure 8, the increase of genetic variance in 
populations of less than 1000 is considerable, while in populations of larger than 
lo5 the genetic variance hardly changes. The degree of dominance and the 
selection scheme affect the relation between N and AV, or AVa -t AVD but the 
general pattern remains the same. This indicates that the genetic hazard of radia- 
tion to man may not be the same for small-sized isolated populations and large 
general populations. 

TOBARI and NEI (1965) examined the effect of X rays on the genetic variance 
of abdominal bristles of D. melanogaster, using an approximately equilibrium 
population of about 8,000 individuals, and obtained almost the same amount of 

was used. 
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variance increase as observed with an isogenic population. Assuming the effective 
population size to be 4,000, this result suggests that the genetic variation is 
maintained largely by reversible mutations or very slight selection. Note that this 
character is known to show little dominance and mutations occur in both positive 
and negative directions with an almost equal frequency. Further, the upward and 
downward selections so far conducted suggest that the average gene frequency 
is not far from 0.5. 

Finally, it should be noted that the present analysis is based on the assumptions 
of no epistasis and no multiple alleles. If these assumptions are not fulfilled, the 
relationship between the genetic variation and population size may be somewhat 
different, but the general pattern appears to be the same, unless epistatic effects 
are large. 

W e  are indebted to DR. M. KIMURA for helpful discussions during preparation of the manu- 
script. Our thanks are also due to DR. H. B. NEWCOMBE for correcting the English. 

SUMMARY 

The effects of population size and increase in mutation rate on the mean and 
genetic variance of quantitative characters and the genetic load associated with 
these characters have been theoretically examined in relation to the mechanisms 
through which the genetic variation is maintained in the population. For this 
purpose three different mechanisms, i.e. reversible mutation, balance between 
mutation and selection, and overdominant selection (heterozygote advantage) 
are considered.-If a quantitative character is controlled by neutral genes with 
reversible mutation and their effects on the quantitative character are additive 
without dominance, the mean of the character is independent of the population 
size ( N )  . If, however, there is dominance (more fit alleles are dominant), the 
mean is no longer independent of N .  Under overdominant selection the mean 
first increases logistically with an increase of N ,  reaching the maximum value 
in populations of intermediate size, and then begins to decrease to approach the 
value of N = to, except the case where the homozygotes for the alleles with 
positive and negative effects are equally fit. Mutation-selection scheme shows a 
similar but less conspicuous relation between the mean and population size.- 
The genetic variance of quantitative characters increases logistically with an 
increase of N .  When there is selection, the genetic variance in small populations 
is generally larger than that of the case of no selection. If, however, the equilib- 
rium gene frequency at N =  cc is outside of 0.15-0.85, overdominant selection 
may reduce the genetic variance in small populations more than the level of 
the case of no selection.-The genetic load associated with a quantitative char- 
acter is greater in small populations than in large populations both for muta- 
tional and segregational loci. In large populations the genetic load is generally 
much larger for segregational loci than for mutational ones, but in small popula- 
tions both the segregation and mutation loads become of the same order of magni- 
tude if selection intensity is nearly equal. The amounts of changes in mean and 
genetic variance due to an increase in mutation rate are generally greater in 
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small populations than in large populations, though they depend on various fac- 
tors such as the forward and backward mutation rates and the mechanism of 
maintaining the genetic variation.-The bearings of the results obtained on the 
experimental discrimination between the different mechanisms of maintaining 
the genetic variation and the evaluation of genetic hazard of radiation to man 
have been discussed. The effect of migration on the genetic variation has also 
been examined by using the “island” and “stepping stone” models. 
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APPENDIX: CHANGE O F  LINKAGE DISEQUILIBRIUM, OWING TO MUTATION 

The departure from a random combination of gene frequencies may be measured by the 
so-called linkage disequilibrium. For two loci each with two alleles A, a and B,  b this linkage 
disequilibrium is defined as 

D = P S - Q R  



GENETIC VARIATION A N D  POPULATION SIZE 781 

where P ,  Q, R, and S stands for the frequencies of gametes AB, Ab, aB and ab respectively. If 
the mutation rates of a -+ A and b + B are each m, and those of A + a and B + b are rn2, the 
transition matrix of gamete frequencies due to mutation become as given in Table 2. Thus, 
neglecting the second order terms of mutation rate, we have 

AP = -2m,P + m, (Q+R) 
AQ = m2 P-4) - m, ( Q 4 t  
AS = m2(Q+R) - 2m,S 
AR z m2 (P-R) - m, (R-S) 

where AP, AQ, AR, and A S  are the amounts of changes of P, Q, R, and S, respectively, due to 
mutation. The amount of change of D i s  then obtained as follows: 

aD aD aD ao 
ap aQ aR as AD = - AP+ - AQ i- - AR -f- - AS 

= --2(m, + m2)D 

This indicates that the change of linkage  ise equilibrium is always such as to reduce the pre- 
existing disequilibrium, 

As seen from the above, mutation has an effect analogous to that of recombination. When 
there is no selection, therefore, we have 

D, = (l--r-9rn-2m2)~Do 
where D, is the linkage disequilibrium in the tth generation and r stands for the recombination 
value between the two loci. Hence, a continuous exposure to radiation would speed up the 
breakdown of linkage disequilibrium. 

TABLE 1 

Selectinn coeficients employed for numrical c ~ m ~ u ~ a t ~ o ~  

0' 
Case number Type of selection S h N = 0  N z f f i  

(1 1 Neutral 0 0 0.5 0.5 
( 2 )  Overdominant 0 -0.01 0.5 0.5 
( 3 )  Overdominant 0 -0.001 0.5 0.5 

(4.) Neutral 0 -  0 0.7 0.7 
(5) Overdominant 0.013397 -0.01 0.5 0.7 
( 6 )  Overdominant 0.001397 -0.001 0.5 0.7 
( 7 )  Overdominant 0.000197 -0.oo01 0.5 0.7 
(8)  Recessive 0.000063 0 0.5 0.7 

.___ 

(9) Neutral 0 0 0.9 0.9 
(10) Overdominant 0.08089 -0.01 0.5 0.9 

-0.001 0.5 0.9 
112) Recessive 0 . 0 ~ 8 9  0 0.5 0.9 
(13) Genic 0.0001 78 0.000089 0.5 0.9 

(14) Overdominant 0.013333 -0.01 0.7 0.7 
(15) Overdominant 0.001333 -0.001 0.7 0.7 

(11) Overdominant 0.00889 

(16) Overdominant 0.08032 -0.01 0.9 0.9 
(171 Overdominant 0.00832 -0.001 0.9 0.9 

Equilibrium gene frequencies at two extremes. 
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TABLE 2 

Transition matrix of gamete frequencies due to mutation 

AB Ab aB ab 
P Q R s 


