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INCE a formal characterization of the nature of inversions has not been made

to date, this paper will hypothesize mathematical models for the occurrence

of inversions of various lengths, obtain the associated probability distributions of

lengths and midpoints of chromosomal inversions, and compare the hypothesized

models with two sets of data. A study of the departures from hypothesized models

should throw light on the mechanisms of the origin of inversions with respect to
their distribution along the chromosome.

The Data

Bauer, DEmEeRrEC, and Kaurmann [1938] obtained 49 inversions on a Dro-
sophila chromosome by treatment with X rays. Utilizing the 20 approximately
equal segments on a cytological map, they classified these inversions according to
their length. For example, the class designated as 0—1 (their class 0) contained
inversions whose endpoints fell within a segment, class 1-2 (their class 1) con-
tained inversions whose endpoints fell in two adjacent segments, class 2-3 (their
class 2) contained inversions whose endpoints fell in two segments separated by
one segment, . . . , class 19-20 contained inversions whose endpoints were sepa-
rated by 18 segments. The frequency distribution of lengths of inversions obtained
is presented in the second column of Table 1.

Dr. B. P. KaurMaNN (private communication) obtained another series of 98
inversions in the X chromosome of D. melanogaster. Again, the chromosome was
divided into 114 units; the following numbers of inversions of specified lengths
were observed:
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Length. Freq. Length. Freq. Length, Freq. Length. Freq. Length Freq. Length Freq.
1 0 21 1 41 1 61 0 81 1 101 0
2 0 22 3 42 3 62 0 82 0 102 0
3 0 23 2 43 3 63 0 83 1 103 0
4 0 24 0 44 2 64 0 84 2 104 0
5 1 25 2 45 3 65 0 85 0 105 0
6 1 26 4 46 0 66 1 86 0 106 0
7 0 27 2 47 0 67 2 87 0 107 0
8 1 28 0 48 1 68 0 88 0 108 0
9 0 29 0 49 4 69 0 89 1 109 0

10 2 30 1 50 1 70 2 90 0 110 0
11 2 31 2 51 2 71 0 91 0 111 1
12 4 32 1 52 1 72 0 92 0 112 0
13 3 33 2 53 1 73 1 93 1 113 0
14 3 34 3 54 1 74 0 94 0 114 0
15 2 35 1 55 0 75 0 95 0
16 2 36 0 56 0 76 0 96 0
17 2 37 1 57 1 77 0 97 0
18 2 38 1 58 1 78 0 98 0
19 1 39 0 59 1 79 \; 99 1
20 3 40 1 60 1 80 1 100 0
TABLE 1

Observed and computed class and cumulative frequencies under Models I to V

for the data on 49 inversions

Class frequency

Cumulative frequency*

Computed from model Observed Computed from model
Class (units) Observed I II o 1 A\ All Omit 0-1 I II 111 v A\
0-1 3 48 .. 57. .. 6.0 3 . 4.8 .. 57 .. 6.0
1-2 5 45 47 53 54 55 8 5 99 47 11.0 54 115
2-3 6 43 45 49 51 50 14 11 136 92 159 105 165
3-4 6 40 42 45 47 46 20 17 17.6 134 205 152 21.0
4-5 4 38 40 41 43 41 24 21 214 173 246 195 252
5-6 7 36 37 38 39 37 31 28 250 21.0 284 234 28.9
6-7 4 33 34 34 36 33 35 32 283 245 318 270 322
7-8 1 31 32 30 32 3.0 36 33 314 277 348 302 352
8-9 4 28 29 27 29 26 40 37 342 306 375 33.1 378
9-10 4 26 27 24 25 23 M 41 368 333 399 356 40.1
10-11 0 23 24 20 22 20 44 M 391 357 41.9 37.9 420
11-12 0 21 22 1.7 19 17 44 41 41.2 379 43.7 398 437
12-13 1 18 19 14 16 14 45 42 43.0 398 451 414 451
13-14 0 16 17 12 13 12 45 42 446 414 463 427 463
14-15 2 1.3 14 09 11 09 47 44 459 428 472 438 472
15-16 0 11 11 07 08 07 47 44 47.0 440 479 447 479
16-17 1 09 09 05 06 05 48 45 47.9 449 484 453 484
17-18 0 06 06 03 04 03 48 45 485 455 487 457 487
18-19 1 04 04 02 02 02 49 46 489 459 489 459 489
19-20 0 01 01 01 01 01 49 46 49.0 460 49.0 46.0 490

* Additional decimal places were used in computing these values.
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TABLE 2

785

Observed and computed class and cumulative frequencies under Models I to V
for the data on 98 inversions

19 classes First class omitted from 16 classes
Class frequency Cumulative frequency* Class frequency Cumulative frequency*
Computed Computed
Computed from Computed from from 3141
model model model model
Class (units) Observed I 111 V Observed I IIr v Observed II IV Observed II v
0-1 2 10.0 10.7 104 2 10.0 10.7 10.4 e e
1-2 9 95100 98 11 195 207 202 18 123 132 18 123 132
2-3 14 9.0 94 92 25 285 30.1 294 14 114121 32 23.7 253
34 10 84 87 86 35 36.9 388 379 9 106 11.1 41 343 364
4-5 9 79 81 80 44 448 469 459 10 9.7 100 51 441 465
5-6 9 73 75 74 53 521 544 533 11 89 90 62 530555
6-7 7 68 68 68 60 589 61.2 60.0 11 80 80 73 61.0 635
7-8 9 62 62 62 69 652 674 662 5 72 70 78 682 705
89 10 57 56 56 79 709 73.071.9 2 63 61 80 745 76.6
9-10 4 52 50 51 83 760 78.0 76.9 5 55 51 85 800 81.7
10-11 1 46 44 45 84 806 824 81.4 1 46 42 86 84.6 8.0
11-12 4 41 38 39 88 847 862 85.4 5 38 34 91 884893
12-13 1 35 32 34 89 882 894 88.8 2 29 25 93 913919
13-14 5 30 27 29 94 912921 916 1 21 1.8 94 934 936
14-15 1 24 22 23 95 937 943 93.9 0 12 1.0 94 946 94.7
15-16 1 19 17 18 96 956 959 95.7 1 04 03 95 950 950
16-17 1 14 12 13 97 969 97.1 97.0
17-18 ¢ 08 07 08 97 977 978 97.7
18-19 1 03 02 03 98 98.0 98.0 98.0

* Additional decimal places were used in computing these values.

If the above data are divided into 19 equal classes the resulting frequency
distribution is the one in the second column of Table 2.

Models for Distribution of Inversions (Continuous Data)

Model I: We shall restrict ourselves to a treatment of two-break inversions and
shall assume that a break (x) is equally likely along any part of the chromosome,
and that the position of a second break (y) is independent of the first break (z)
and is also equally likely along any part of the chromosome. This means that x
and y follow the uniform distribution and that the joint distribution of the two
breaks, z and ¥, is the product of two independent uniform distributions.

For a chromosome of length ¢ we may write the individual density functions

and the joint density function as follows:

(1/cfor0<z<c¢
f(z) :Jl _
0 otherwise

1/cfor0 <y <ec
f(y) :{

0 otherwise
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1/ctfor0<z<cand0 <y <c¢
f(xy) =

0 otherwise
The joint probability function is
Y x
P{0<z2< 25,0 <y <50} =(1/c?) L° L" dxdy .

Let z=x—y, w= (zty)/2, and then let v = |z—y|. The joint distribution of
the variables w = midpoints of inversions and v = length of inversion becomes:

0<v<w<e
2/c? for

0<v<2c—w,c/2<w<c
h(w,p) =

0 otherwise
Integrating out the variable w, the distribution of lengths of inversions is equal to:
2(c—v)/cttor 0K v<¢
h1 1% =

0 otherwise

This function is illustrated graphically in Figure 1.
The mean = ¢/3 and the variance = ¢?/18 for this distribution. The moment
generating function is equal to:

2€—ct/3
c*t?

{e* —ct — 1}

In order to compare the observed frequencies for the two sets of data with the
theoretical frequencies obtained for the density function A, (v) we require the
areas under the curve for class intervals of one unit in lengths ¢/20 and ¢/19 for
the two examples. Thus, cumulative areas are given by:

20—i)?
20 ’
The expected number in the first class would be N = 49, the sample size, times

.0975, the value of the integral for i = 1. Likewise, the expected proportion of
inversions which are longer than one unit and shorter than two units is:

[1— (20—2/20)2] — [1 — (20—1/20)2] = .1900 — .0975 = .0925 .

ic/20
(2/02)J0 (c—v)dv=1—( 1=1,2,...,20.

(0,2/c\

h](V)

{0,0) length - {c,0)

Fieure 1.—Distribution of length of inversion.
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The expected proportions in the remaining classes are obtained similarly. Also,
the area between zero and 6: units for ¢ = 1141s:

" (c—v)ydv=1—[(19—i)/19]%,i=1,2, - - , 19

ic/1
0

/e |

In some cases it may be desirable to divide the area for A;(v) into designated
fractions, say of equal area. This may be performed by solving the following
integral equations for v,, given the value of «:

/) [ (c-v)dv=a.

Upon integrating we find that

V5, — 20, T cta=10.
The two roots of the equation are

vo=c(l = (1—a)®).

Since 0 < v, < ¢, the usable root for v, is vo/c =1 — (1—a)*%. Setting « = .10,
.20, .30, etc. we obtain the required division points on the v axis as:

a% 10 20 30 40 50 60 70 80 90 100
v/c 0.051 0.106 0.163 0225 0293 0368 0452 0553 0.684 1.000

In Tables 1 and 2 the observed and computed frequencies per class and the
observed and computed cumulative frequencies under Model I are presented for
the two sets of data. In both sets it may be noted that there is a deficiency of
inversions observed in the first and perhaps in the second class. A paucity of
very short inversions may mean that they arise less frequently than the model
predicts (perhaps the chromosome is unable to bend back on itself sharply enough
to bring the breakage points near so that an inversion can occur or potential
Inversions are lost to deficiencies if breaks are close together). The possibility
that short inversions are not detected seems unlikely for several reasons.

Model 11: For Model 11 we shall assume the same situation as in Model I except
that there is a deficiency of inversions in the first class. Essentially this means
that a truncated Model I will be fitted to the remaining classes. Since there are
46 inversions in the remaining 19 classes for the set of 49 inversions the factor
46/ (area for 19 classes) = 46/(1 — .0975) = 51 = N* times the area in each class
gives the expected frequencies. The sum of the computed frequencies for the last
19 classes equals 46. Extrapolation to the 0-1 class gives the expected value of
51 — 46 = 5 instead of 4.8 as under Model I.

Similarly, if we assume that there is a deficiency of all inversions less than
10 units in length (i.e. the class midpoint is 10 units and the class intervals are

9.5
9.5 to 10.5 units), the remaining area is 1 — (2/114%) _[0 (114—v)dv =1
— (2/1142) (9.5(114) — 9.5%/2) =1 — 2075.75/12996. Therefore, N* = [ (98—
3)(12996)]/10920.25 = 113 = effective sample size for the 98 inversion set of
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data. The expected number of inversions in the first 9.5 units would be 113 — 95
= 18 whereas only three were observed. A single degree of freedom chi-square
contrast of observed with expected in the first class is significant at the 19, level.

Using the computed V* values, the computed class frequencies and cumulative
frequencies may be compared with the observed class frequencies and cumulative
frequencies in Tables 1 and 2 under Model II. Since the 98 inversions could be
divided into 15 equal classes from 10 to 114, these were the classes used. Whether
or not the number of runs of sign change for observed minus expected is signifi-
cant at the .05 level (see ExseNnuarT and Swebp [1943]) is a function of the group-
ing of observations in the right tail of the distribution. However, for both sets of
data it may be noted that there is an excess of observed over computed class fre-
quencies in the shorter classes. Hence it must be concluded that Model II does
not adequately fit the data. The assumption of independence of the points of
breakage must be violated, at least operationally.

Model I11: Utilizing a form for the joint distribution of two variables presented
by GumseL [1958] and used by Parzen [1960, page 292] we may write f(z,y)
=f(x)f(y)[1 + p(2F(2)—1) (2F (y)—1)] where |p| < 1 and where F(x) = z/c
and F(y) = y/c are camulative distributions of x and y, respectively, for x and y
uniformly distributed. Therefore, f(z,y) = (1/¢*) [1+ p(2x—c) (2y—c)/c*].
Again if we let w = (z+y) /2 = midpoint and v = |z| = |x—y| = length of inver-
sion, the joint distribution of 2> and v becomes:

(2/¢*) {1+ (p/c?) (4wP—v*—4cwc?)}
0<v<2w <c¢
h(w,p) = for

0<v<2—2w,¢/2<w<¢
0 otherwise

Integrating out w the distribution for length of inversions becomes
{(2/02) {c—v+ (p/3c?) (c*—3c*+21%)} for 0<v<c
hy(v) =

0 otherwise

When p = zero, hs(v) = hy(v).
In order to observe the type of dependence of y on z, say, we note that the first
moment of the conditional distribution gives the regression function, which is:

E(rlz) = (1/2) [ y[1 + p(hay—2e(zty)+e) fe1dy

oy (y-8
=_+Z \x 3
This is the linear regression equation since the mean for the uniform distribution
is equal to ¢/2. Since |p| < 1 the regression coefficient varies between +13. A
positive value for p would mean that the breakage points are closer together than
would be expected on the basis of independence and a negative value for p would
mean that the points are further apart than expected. If radiation damage were
to spread for a short distance along the chromosome on either side of the actual
“hit”, one can imagine that a break would occur anywhere within the damaged
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segment. For p > 0 the breaks would tend to be on the innermost ends of the
damaged segments; for p < 0 the breaks would tend to be on the far ends.

To obtain a specific distribution h;(v) a value for p needs to be obtained.
Following the procedure used by FEDERER, STEEL, and WaLLacE (1961) we note
that the numbers of inversions, say m;, whose lengths fall in the various class
intervals, have a multinomial distribution as follows:

L= N'Hp i/my!

1=1
where & = number of classes, where AE m; = N, and where
=1

= =2 2i—1) 1 2i—1) | 4i°—6i+4i—1
g -j“‘””/" ha(v)dv—z{l T [3_ oF T o I}
= {t; + pu;} / 3k*

where t; = 6k* — 61k* + 3k? and w; = 2k% + 3k — 1 — [ (6k*—4) — 612 + 44°.
The maximum likelihood estimate is that value of p, say g, which is the solution
of the following equation:

s Mg

i=1 ti+ﬁu,~
Then, the variance of § from a sample of size V is obtained as:

V() =1/N, 2 puw?/(titpui)* = 3k4/N. 2 w2/ (tiFpus) .

The estimated variance is obtained by substituting 3 for p in the above expression.
For the two sets of data the maximum likelihood estimates of p as found from the
equation above are o = 0.61614 and s i = 0.20128.

With the above values of g substituted in the equation for the p;, the computed
values for the class frequencies are calculated as Np;. The class frequencies along
with the cumulative frequencies for the two sets of data are presented in Table 1
for the 49 inversions and in Table 2 for the 98 inversions.

Model IV : As noted under Model I, there appears to be a deficiency of inver-
sions in the first class. Denoting the total number of inversions as NV, the observed
number of inversions in the first class as m;, and the proportion of the area in
the first class as p,, the multinomial distribution after deleting the first class
becomes:

M

op i= ztr’rﬁui 3k‘—t1fﬁu1
The maximum likelihood estimator g is that value of p satisfying the above
equation. Now, the estimated variance of 5 is

k2
V() =3k/N (2, u/(ti+pui) — w*/ Bk —ti—pu,)) .

For these data pu.rv = 0.47898 and fys.1v = 0.24907. With the value p substi-
tuted for p in the p; we compute the quantities (N—m,)p;/(1—p,) fori =2,3,.. .,
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k to obtain the calculated values for each of the classes excluding the zero class.
The class and cumulative frequencies in Tables 1 and 2 for Model IV were
computed using this procedure. If desired, the effective sample size may be cal-
culated as N*,s = N/(1—p,) = 46/.88774 = 51.8 and N*,; = 95/.87950 = 109.3
for the 49 and 98 inversion sets of data, respectively, when the 0-1 class data are
not utilized.

Model V: Another family of functions for the distribution of lengths of inver-
sions (see FEDERER, STEEL, and WaLLAcE [1961]) is:

{1/5‘ + é Bi(vi—ct/(i+1)),0<v<¢c
hﬁ(v) - i=1
0 otherwise

b
subject to the constraint that A;(v=c) =1/c +,§1,3ic*'i/(i+1) =(. For b=2,
ks (v) becomes -

ho() =2+ g (0= ) + (2~ 5)

=20 {y (s [?:? c—gl]}

02

since
_ 3 3B
B = 2¢¢ 4c
When 8 = 8, = —2/c?, and therefore g8, == 0, /;(v) becomes h, (v). There appears
to be no direct relation between #;(v) for b =2 and %;(v) for Model III except
when p = 0in 4;(v) and when 8 = —2/c?in ks (v). Both 4. (v) and A (v) may be
written in terms of #; (v) as follows:

by (0) = () {1 +5 (c2—2cv—2v2>}

and

he0) = (o) {1+ (Z22E) oo} .

For b =2, the mean and variance associated with /;(v) are equal to

Bac® | (Buc*tBac®)?
+ 5 + 12 }
respectively. The distribution function for #;(v) is shown in Figure 2 for g
negative.

c . c?
) [6 + B.c® + B.c?] and 13 {1

1
nsif (o ~5= 5%)
Ficure 2.—Distribution of length of inversion.

(<0
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The distribution function 4;(v) may not appeal to the geneticist because the
basis for chromosome breakage is not postulated. This procedure falls in the area
of curve-fitting at present. In order for this model to be palatable to the biologist
it would be necessary to determine the type of relationship involved between
z and y. The model is presented as a statistical alternative to those in the previous

sections and because it is equal to 4, (v) when 8 = —2/¢2.
Dividing the length ¢ into £ equal parts the area under the curve between the
(i—1)stunit and theith unit, ({ =1,2,...,k) is

ic/k
=l ho@)dy = (i + B} /R

where f, =6k* — 2 + 6/ — 62 and g; = 3i — 32 + k(4—2) — k* — 1.
To obtain the maximum likelihood estimator of 8 we note that the m; have a
multinomial distribution as follows:

k
L:N' ,1;[1 p,-’”a/mi! .

The value of 8, for ¢ known (usually ¢=1), which maximizes log L is obtained as.
a solution to the following equation:

k A
I, muge/ (s P =0 .

The variance of ,é is obtained as:
. k
V() = 16K/Nc* 3 g/pi .

The V(B) is approximated by substituing £ for 8 in p; and setting c=1; denote
pi as p; in this case.

From the data for 49 inversions 8y, = —4.1663 for c=1 and B.s = —2.3135.
Substituting the 8 values in the formula for the p;, the various estimated p; are
obtained. Then, Np; is the estimated or computed value for the ith class. These
values are given in Tables 1 and 2 for the two sets of data.

Model VI: We may delete the first class, or any other class, from the data and
proceed as described under Model IV. This would result in obtaining an estimate
of the parameter g from all classes except the deleted one or ones. The computa-
tions were not made for this case because of the lack of a biological formulation
leading to As(v).

Models for Distribution of Inversions (Grouped Data)

Model VI1I: Suppose that the chromosome is divided into & equal (These need
not be equal, but it simplifies the argument to make them equal.) segments and
the recorded length is as described under The Data. Observe that the 0-1 class of
inversions contains inversions occurring within the premarked segment and which
vary in length from zero to one class interval, that the 1-2 class of inversions
contains the number of inversions which had endpoints in two adjacent segments
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or classes and which vary in length from zero to two segments, that those in the
2-3 class vary from one to three segments in length, etc. Under this scheme and
for a bivariate uniform distribution as under Model I we note that the two end-
points (z,y) of an inversion may be characterized as:

P{z,y fall in the same segment} = 1/k
P{z,y fall in adjacent segments} = 2(k—1) /A2
P{z,y fall in segments separated by one segment} = 2 (k—2) /4?

P{z,y fall in segments separated by k—2 segments} = 2/k?

Since the set of 49 inversions would be most affected by the method (for the
98 inversions six classes were grouped to form one class in Table 2.) of measur-
ing lengths of inversions, the following probabilities (P) and expected values
(E = 49P) have been computed for these data (O):

Class P E

0-t 050 245
12 .095 4.66
2-3 090 44
34 .08 4.16
45 080 3.92
5-6 075 3.68
6-7 070 343

Class P E

7-8 065 3.8
8-9 .060 2.94
9-10 .055 270
10-11 .050 245
11-12 .045 2.20
12-13 040 1.96
13-14 035 1.72

Class P E

14-15 .030 147
15-16 .025 1.22
16-17 .020 0.98
17-18 015 074
18-19 010 049
19-20 .005 024

PN W O
o~ oo b= O
O~ o, oW O

Model VIII: If we truncate the frequency distribution eliminating the first
class to obtain the counterpart for Model II, this involves no difficulties as we
simply divide each of the last £-1 probabilities above by 1 — P{x,y fall in the
same segment} = (k—1)/k. Then for the 49 inversions, N* = 46/19/20 = 51.1
and the various P, E, and O values are:

Class P E

0-1 L S
1-2 100 4.60
2-3 095 4.36
3-4 090 4.12
45 084 387
56 .079 3.63
6-7 074 3.39

Class P E

7-8 068 3.5
8- .063 290
9-10 .058 2.66
10-11 053 242
11-12 .047 2.18
12-13 042 1.94
13-14 .037 1.70

Class P E

14-15 032 145
15-16 .026 1.21
16-17 .021  0.97
17-18 016 073
18-19 .010 048
1920 .005 024

ANBAOODOUWL O
oOCRr OO R Hrm O
Sm O, OoON O

It should be noted that the first seven expected values (E) for all the data above
are lower than the observed values (O) and even for the truncated set, the first
six values of expected (E) are less than the corresponding observed (O) values.
Hence, the method of this section gave a run of plus signs for O—E in much the
same manner as for Model II. However, it should be noted that relatively low

%
values of x? = 2 (0—E)2/E would be obtained for all methods. The method of
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this section fits the data for the 49 inversions better in the first class than do
Models I, ITI, and V. For the 98 inversions, the methods of this section give about
the same results as obtained for Models I to V. Hence the method of measurement
had little effect on the fit for the five models for the data involving 98 inversions.

A study of the computed values under Models I to V in comparison with the
observed values in Tables 1 and 2 reveals that Models III and V fit the data
somewhat better than Model I. The deficiency of small inversions as observed
in the first class is evidence that a truncated procedure should be utilized. Using
truncated data and procedures after omitting the data in the first class indicates
that Model IV yields a better fit than Model II. For the two sets of data it would
appear that independence of points of breakage as indicated by the length and
location of the inversion may be suspect, and that inversions may not be recovered
at random with respect to such breaks. In order to differentiate between the
truncated models much larger sets of data would be required.

Distribution of Midpoints and Proximal and Distal Points of
Inversions Under Models I and 111

The distribution of midpoints of inversions under Model I is given by FEDERER,

SteEL and WaLLacke [1961] as:
{4w/02, 0<w<c/2
h(w) =34(c—w) /et c/2<w< ¢
0, otherwise

The mean is ¢/2, the variance is ¢?/24, and the generating function for moments
about the mean is m(t) = E(e*-¢/2) = (8/c*?) (—1 -+ cosh ct/2). The distri-
bution of w = midpoint of inversions is given in Figure 3.

Setting s = w — v/2 = distance to proximal point and setting r = w + v/2 =
distance to distal point of inversion, the respective distributions under Model I
for r and s were found to be:

(2/¢?) (c—s), 0<s<¢
S =
' 0, otherwise
(2/¢)(c—r), 0<r<e¢
r =
' 0, otherwise

(2/c?, 0K r,s<¢
ki(r,s) =

0, otherwise

hyw )

(e/2,2/¢) Ficure 3.—Distribution of w = (z-}y) /2 = midpoint.

(¢,0)
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Also, the distribution of midpoints of inversions w of fixed length v is:

[1/(c—v), v/2<w<c—v/2

10, otherwise

Under Model III the distribution of midpoints of inversions is given by:
(4w/c?)[1 +(p/c*) ((Lw—c)2 —4uw?/3)], 0 <w < ¢/2

ha(w) =4 (4(c—w) /e [1 +(p/c*) ((Qw—c)* — 4(c~w)?*/3)],¢/2<w <c¢
(0, otherwise

h(wlv) =

Proceeding as for Model I, the additional distributions for midpoints for a fixed
length, for distal points and for proximal points are readily obtainable. These
distribution functions under Model V are not obtainable because A;(w,v), the
joint distribution of midpoints and lengths of inversions, is not given.

TraoMmpsoN, WALLACE, and Feperer [1965] have presented theoretical distri-
butions of deficiency lengths, deficiency midpoints, and other related character-
istics both for a discrete band model and a continuous chromosome model, as
given by Model L.

DISCUSSION

In order to form a point of reference on a chromosome for determining the
point of breakage it may be necessary to use two known reference points on a
chromosome and to identify the point of breakage only as falling between these
two points. This would involve grouping the data. Under Model I assumptions,
Model VII was constructed for grouped data. This model resulted in good agree-
ment of observed and expected values in the shortest inversion class for one set of
data, but not for the second set. Model VIII is simply the truncated counterpart
of Model VIL. In some respects the models for grouped data fit the observed values
better than the models for continuous data but in other respects one could not
differentiate between the various models.

The authors are greatly indebted to Dr. B. P. KaurMann for sending us the data involving
98 inversions.

SUMMARY

Six mathematical models, Models I to VI, for continuous data and two, Models
VII and VIII, for grouped data were postulated to describe the distribution of
lengths of inversions for a given chromosome. Model I postulated that the points
of breakage (and reunion) were independent, and that any point of breakage was
equally likely throughout the chromosome. Model III postulated that the points
of breakage and reunion were related in that the endpoints of inversions tended
to be closer together, or alternatively further apart, than would be expected on
the basis of independence; the expected value of one endpoint given the value of
the second endpoint is of the same form as linear regression. In Model V, a distri-
bution of lengths of inversions was postulated, but the form of the dependence was
not determined so that the problem was circumvented; this model may not appeal
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to the biologist until the form of the dependence is determined.—Since observed
data on lengths of inversions appeared to indicate a deficiency in the first class,
this class was omitted and mathematical Models I1, IV, and VI were constructed
for the remaining classes. These procedures are the truncated counterparts of
Models I, III, and V, respectively.—Maximum likelihood estimators and their
variances for the dependence parameter were developed for Models III, IV, and
V, and the procedure for doing this for Model VI was indicated. Utilizing these
results where appropriate, Models I to V were fitted to the two available sets of
data on lengths, totalling 147 inversions. All models fitted the data well, even
though the models involving dependence of points of breakage resulted in a better
fit. This, however, was to be expected, since another parameter was estimated.
Biological events which decree that recoverable inversions may not be a random
sample of chromosomes carrying two truly independent breaks may be respon-
sible for the deficiency of short inversions.—The distribution of midpoints, distal
points, and proximal points of inversions was obtained for Model 1. The distri-
bution of midpoints of inversions under Model III was also given.
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