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INCE a formal characterization of the nature of inversions has not been made 
to date, this paper will hypothesize mathematical models for the occurrence 

of inversions of various lengths, obtain the associated probability distributions of 
lengths and midpoints of chromosomal inversions, and compare the hypothesized 
models with two sets of data. A study of the departures from hypothesized models 
should throw light on the mechanisms of the origin of inversions with respect to 
their distribution along the chromosome. 

The Data 

BAUER, DEMEREC, and KAUFMANN [1938] obtained 49 inversions on a Dro- 
sophila chromosome by treatment with X rays. Utilizing the 20 approximately 
equal segments on a cytological map, they classified these inversions according to 
their length. For example, the class designated as 0-1 (their class 0) contained 
inversions whose endpoints fell within a segment, class 1-2 (their class 1 )  con- 
tained inversions whose endpoints fell in two adjacent segments, class 2-3 (their 
class 2)  contained inversions whose endpoints fell in two segments separated by 
one segment, . . . , class 19-20 contained inversions whose endpoints were sepa- 
rated by 18 segments. The frequency distribution of lengths of inversions obtained 
is presented in the second column of Table 1. 

DR. B. P. KAUFMANN (private communication) obtained another series of 98 
inversions in the X chromosome of D. mekanogaster. Again, the chromosome was 
divided into 114 units; the following numbers of inversions of specified lengths 
were observed: 
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Length. Freq. Length. Freq. Length. Freq. Length. Freq. Length Freq. Length Freq. 
~ - _ _ _  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 21 1 41 
0 22 3 42 
0 23 2 43 
0 24 0 44 
1 25 2 45 
1 26 4 46 
0 27 2 47 
1 2 8 0  48 
0 29 0 49 
2 30 1 50 
2 31 2 51 
4 32 1 52 
3 33 2 53 
3 34 3 54 
2 35 1 55 
2 36 0 56 
2 37 1 57 
2 38 1 58 
1 39 0 59 
3 4 0 1  60 

1 61 
3 62 
3 63 
2 64 
3 65 
0 66 
0 67 
1 68 
4 69 
1 70 
2 71 
I 72 
1 73 
1 74 
0 75 
0 76 
1 77 
1 78 
1 79 
1 80 

0 81 
0 82 
0 83 
0 84 
0 85 
1 86 
2 87 
0 88 
0 89 
2 90 
0 91 
0 92 
1 93 
0 94 
0 95 
0 96 
0 97 
0 98 
0 99 
1 100 

1 101 0 
0 102 0 
1 103 0 
2 104 0 
0 105 0 
0 106 0 
0 107 0 
0 108 0 
1 109 0 
0 110 0 
0 111 1 
0 112 0 
1 113 0 
0 114 0 
0 . . .  
0 . . .  
0 . . .  
0 . . .  
1 . . .  
0 . . .  

TABLE 1 

Observed and computed class and cumulative frequencies under Models I to V 
for the data on 49 inversions 

Class frequency Cumulative frequency; 

Computed from model Observed Computed from model 
~ 

Class (units) Observed I I1 I11 IV V All Omit 0-1 I I1 I11 I V  V - 
0- 1 3 
1-2 5 
2-3 6 
3-4 6 
4-5 4 
5-6 7 
6-7 4 
7-8 1 
8-9 4 
9-1 0 4 

10-11 0 
11-12 0 
12-13 1 
13-14 0 
14-15 2 
15-16 0 
16-17 1 
17-18 0 
18-19 1 
19-20 0 

4.8 5.7 6.0 
4.5 4.7 5.3 5.4 5.5 
4.3 4.5 4.9 5.1 5.0 
4.0 4.2 4.5 4.7 4.6 
3.8 4.0 4.1 4.3 4.1 
3.6 3.7 3.8 3.9 3.7 
3.3 3.4 3.4 3.6 3.3 
3.1 3.2 3.0 3.2 3.0 
2.8 2.9 2.7 2.9 2.6 
2.6 2.7 2.4 2.5 2.3 
2.3 2.4 2.0 2.2 2.0 
2.1 2.2 1.7 1.9 1.7 
1.8 1.9 1.4 1.6 1.4 
1.6 1.7 1.2 1.3 1.2 
1.3 1.4 0.9 1.1 0.9 
1.1 1.1 0.7 0.8 0.7 
0.9 0.9 0.5 0.6 0.5 
0.6 0.6 0.3 0.4 0.3 
0.4 0.4 0.2 0.2 0.2 
0.1 0.1 0.1 0.1 0.1 

3 
8 5  

14 11 
20 17 
24 21 
31 28 
35 32 
36 33 
40 37 
44 41 
M 41 
44 41 
46 42 
45 42 
47 44 
47 44 
48 45 
48 45 
49 46 
4 9 4 6  

4.8 . . 5.7 . . 6.0 
9.9 4.7 11.0 5.4 11.5 

13.6 9.2 15.9 10.5 16.5 
17.6 13.4 20.5 15.2 21.0 
21.4 17.3 24.6 19.5 25.2 
25.0 21.0 28.4 23.4 28.9 
28.3 24.5 31.8 27.0 32.2 
31.4 27.7 34.8 30.2 35.2 
34.2 30.6 37.5 33.1 37.8 
36.8 33.3 39.9 35.6 40.1 
39.1 35.7 41.9 37.9 42.0 
41.2 37.9 43.7 39.8 43.7 
43.0 39.8 45.1 41.4 46.1 
44.6 41.4 46.3 42.7 46.3 
46.9 42.8 47.2 43.8 47.2 
47.0 44.0 47.9 44.7 47.9 
47.9 44.9 48.4 45.3 48.4 
48.5 45.5 48.7 45.7 48.7 
48.9 45.9 48.9 45.9 48.9 
49.0 46.0 49.0 46.0 49.0 

* Additional decimal places were used in computing these values. 
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TABLE 2 

Observed and computed class and cumulative frequencies under Models I to V 
for the data on 98 inversions 

19 classes First class omitted from 16 classes 

Class frequency Cumulative frequency* Class frequency Cumulative frequency' 

Computed from Computed from from h m  
Computed Computed 

model model model model 

Class (units) Observed I I11 V Observed I 111 V Observed I1 IV Observed I1 IV 

0-1 
1-2 
2-3 
3-4 
e 5  
5-6 
6 7  
7-8 
8-9 
9-1 0 

10-11 
11-12 
12-13 
13-14 
14-15 
15-16 
16-1 T 
17-18 
18-19 

2 10.0 10.7 10.4 2 10.0 10.7 10.4 . . . . . . . . . . . . . . . .  
9 9.5 10.0 9.8 11 19.5 20.7 20.2 18 12.3 13.2 18 12.3 13.2 

14 9.0 9.4 9.2 25 28.5 30.1 29.4 14 11.4 12.1 32 23.7 25.3 
10 8.4 8.7 8.6 35 36.9 38.8 37.9 9 10.6 11.1 41 34.3 36.4 
9 7.9 8.1 8.0 M 44.8 46.9 45.9 10 9.7 10.0 51 M.1 46.5 
9 7.3 7.5 7.4 53 52.1 54.4 53.3 11 8.9 9.0 62 53.0 55.5 
7 6.8 6.8 6.8 60 58.9 61.2 60.0 11 8.0 8.0 73 61.0 63.5 
9 6.2 6.2 6.2 69 65.2 67.4 66.2 5 7.2 7.0 78 68.2 70.5 

10 5.7 5.6 5.6 79 70.9 73.0 71.9 2 6.3 6.1 80 74.5 76.6 

1 4.6 4.4 4.5 84 80.6 82.4 81.4 1 4.6 4.2 86 84.6 86.0 
4 4.1 3.8 3.9 88 84.7 86.2 85.4 5 3.8 3.4 91 88.4 89.3 
1 3.5 3.2 3.4 89 88.2 89.4 88.8 2 2.9 2.5 93 91.3 91.9 
5 3.0 2.7 2.9 94 91.2 92.1 91.6 1 2.1 1.8 94 93.4 93.6 
1 2.4 2.2 2.3 95 93.7 94.3 93.9 0 1.2 1.0 94 94.6 94.7 
1 1.9 1.7 1.8 96 95.6 95.9 95.7 1 0.4 0.3 95 95.0 95.0 
1 1.4 1.2 1.3 97 96.9 97.1 97.0 . . . . . . . . . . .  
0 0.8 0.7 0.8 97 97.7 97.8 97.7 . . .  . . . . . . .  
I 0.3 0.2 0.3 98 98.0 98.0 98.0 . . . . .  . . . .  

4 5.2 5.0 5.1 83 76.0 78.0 76.9 5 5.5 5.1 85 80.0 81.7 

* Additional decimal places were used in computing these values. 

If the above data are divided into 19 equal classes the resulting frequency 
distribution is the one in the second column of Table 2. 

Models for Distribution of Inversions (Continuous Data) 

Model I :  We shall restrict ourselves to a treatment of two-break inversions and 
shall assume that a break (x) is equally likely along any part of the chromosome, 
and that the position of a second break ( y )  is independent of the first break (z) 
and is also equally likely along any part of the chromosome. This means that x 
and y follow the uniform distribution and that the joint distribution of the two 
breaks, x and y,  is the product of two independent uniform distributions. 

For a chromosome of length c we may write the individual density functions 
and the joint density function as follows: 

f(x) = i'" for 0 < 5 < c 

0 otherwise 
l/c for 0 < y < c 

0 otherwise 
f ( Y )  = 
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1/c2for0 < x < candO < y < c 

0 otherwise 

2 1 1  

f (GY) = 

The joint probability function is 

P{O < x < xo, o < y < yo }  = ( ~ / c z >  50. 50. dxdy . 
Let z = x--y, w = ( x S y ) / 2 ,  and then let U = Ix--y/. The joint distribution of 

the variables w = midpoints of inversions and U = length of inversion becomes: 
0 < U < 2w < c 

0 < U < 2c-w, c/2 < w < c 
2/c2 for I {  0 otherwise 

h(w,u) = 

Integrating out the variable w, the distribution of lengths of inversions is equal to: 
for O< U < c 

0 otherwise 
hdu)  = 

This function is illustrated graphically in Figure 1. 

generating function is equal to: 
The mean = c/3 and the variance = c2/18 for this distribution. The moment 

~ ~ c t / 3  

C 2 t 2  
{ect - ct - I} 

In order to compare the observed frequencies for the two sets of data with the 
theoretical frequencies obtained for the density function h,(u) we require the 
areas under the curve for class intervals of one unit in lengths c/20 and c/19 for 
the two examples. Thus, cumulative areas are given by: 

ic/20 20-i 
(2/c2) lo (c-u)du = 1 - (-) ; i = 1,2,. . . , 20. 20 

The expected number in the first class would be N = 49, the sample size, times 
,0975, the value of the integral for i = 1. Likewise, the expected proportion of 
inversions which are longer than one unit and shorter than two units is: 

[l - (20-2/20)2] - [I - (20-1/20)2] = ,1900 - .0975 = .0925. 

FIGURE 1.-Distribution of length of inversion. 
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The expected proportions in the remaining classes are obtained similarly. Also, 
the area between zero and 6i units for c = 114 is: 

In some cases it may be desirable to divide the area for h,(v) into designated 
fractions, say of equal area. This may be performed by solving the following 
integral equations for  uc,, given the value of a: 

Upon integrating we find that 

U20 - 2cvo + c2a = 0 . 
The two roots of the equation are 

uo=c(l  +: (1-.)'/2). 

Since 0 < uo < c, the usable root for uo is uo/c = 1 - (1-a) s. Setting a = .lo. 
.20, .30, etc. we obtain the required division points on the U axis as: 

a% 10 20 30 40 50 60 70 80 90 100 
u/c 0.051 0.106 0.163 0.225 0.293 0.368 0.452 0.553 0.684 1.000 

In  Tables 1 and 2 the observed and computed frequencies per class and the 
observed and computed cumulative frequencies under Model I are presented for 
the two sets of data. In  both sets it may be noted that there is a deficiency of 
inversions observed in the first and perhaps in the second class. A paucity of 
very short inversions may mean that they arise less frequently than the model 
predicts (perhaps the chromosome is unable to bend back on itself sharply enough 
to bring the breakage points near so that an inversion can occur or potential 
inversions are lost to deficiencies if breaks are close together). The possibility 
that short inversions are not detected seems unlikely for  several reasons. 

Model ZZ: For Model I1 we shall assume the same situation as in Model I except 
that there is a deficiency of inversions in the first class. Essentially this means 
that a truncated Model I will be fitted to the remaining classes. Since there are 
46 inversions in the remaining 19 classes for the set of 49 inversions the factor 
46/(area for 19 classes) = 46/( 1 - .0975) = 51 = N *  times the area in each class 
gives the expected frequencies. The sum of the computed frequencies for the last 
19 classes equals 46. Extrapolation to the 0-1 class gives the expected value of 
51 - 46 = 5 instead of 4.8 as under Model I. 

Similarly, if we assume that there is a deficiency of all inversions less than 
10 units in length (i.e. the class midpoint is 10 units and the class intervals are 

9.5 to 10.5 units), the remaining area is 1 - (2/1142) lo (114-v)dv = 1 
- (2/114') (9.5(114) - 9.5'/2) = 1 - 2075.75/12996. Therefore, N' = [(98- 
3 )  (12996)]/10920.25 = 113 = effective sample size for the 98 inversion set of 

9 . 5  
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data. The expected number of inversions in the first 9.5 units would be 113 - 95 
= 18 whereas only three were observed. A single degree of freedom chi-square 
contrast of observed with expected in the first class is significant at the 1 % level. 

Using the computed N* values, the computed class frequencies and cumulative 
frequencies may be compared with the observed class frequencies and cumulative 
frequencies in Tables 1 and 2 under Model 11. Since the 98 inversions could be 
divided into 15 equal classes from 10 to 114, these were the classes used. Whether 
or not the number of runs of sign change for observed minus expected is signifi- 
cant at the .05 level (see EISENHART and SWED [ 19431 ) is a function of the group- 
ing of observations in the right tail of the distribution. However, for both sets of 
data it may be noted that there is an excess of observed over computed class fre- 
quencies in the shorter classes. Hence it must be concluded that Model I1 does 
not adequately fit the data. The assumption of independence of the points of 
breakage must be violated, at least operationally. 

Model I l l :  Utilizing a form for the joint distribution of two variables presented 
by GUMBEL [ 19581 and used by PARZEN [ 1960, page 2921 we may write f (x,y) 
=f(x)f(y) [l 4- p(2F(z)-l) (2F(y)-l)] where IpI 5 1 and where F ( x )  =x/c 
and P ( y )  = y/c  are cumulative distributions of x and y,  respectively, for x and y 
uniformly distributed. Therefore, f ( x , y )  = (l/c2) [l 4- p(2z-C) (2y-c)/c2]. 
Again if we let w = (x+y)/2 = midpoint and U = IzI = Ix-yI = length of inver- 
sion, the joint distribution of wand v becomes: 

(2/c*) { 1 + (p/c2) (4w2--Y*-4cw+c2)} 
o < v < 2 w  < c  

for { 
0 < U < 2c- 2w,c/2 < w < c 

0 otherwise 

(2/c2) {c - U + (p/3c2) (c3-3c2+2v3) } 

0 otherwise 

for 0 < U < c 

i h(w,v) = 

Integrating out w the distribution for length of inversions becomes 

M U )  = { 
When p = zero, h3(u) = h,(v). 

In order to observe the type of dependence of y on x, say, we note that the first 
moment of the conditional distribution gives the regression function, which is: 

E(y l4  = (l/c> j: rC1 + p ( 4 ~ y - - 2 ~ ( ~ + y ) + ~ z ) / ~ 2 1 ~ ~  

This is the linear regression equation since the mean for the uniform distribution 
is equal to c/2. Since IpJ i 1 the regression coefficient varies between *$$. A 
positive value for p would mean that the breakage points are closer together than 
would be expected on the basis of independence and a negative value for p would 
mean that the points are further apart than expected. If radiation damage were 
to spread for a short distance along the chromosome on either side of the actual 
“hit”, one can imagine that a break would occur anywhere within the damaged 
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segment. For p > 0 the breaks would tend to be on the innermost ends of the 
damaged segments; for p < 0 the breaks would tend to be on the far ends. 

To obtain a specific distribution h,(v) a value for p needs to be obtained. 
Following the procedure used by FEDERER, STEEL, and WALLACE (1961) we note 
that the numbers of inversions, say mi, 'whose lengths fall in the various class 
intervals, have a multinomial distribution as follows: 

k 
L = N !  . rI p:i/mi! 

a = 1  a 

k 

k=1 where k = number of classes, where mi = N ,  and where 

I> i C/k 2 (2;-1) 1 2i-1) 4i3-6i2+4i-1 
k 2k 2k + 6k3 pi = j(i-l)c/k h,(v)dv = - { 1 - ~ + p [x - ~ 

= {ti + p u i }  / 3k' 

where ti = 6k3 - 6ik' + 3k' and ui = 2k3 + 3kZ - 1 - i(6k2-4) .- 6;' f 4i3. 

of the following equation: 
The maximum likelihood estimate is that value of p, say p^, which is the solution 

miui E-- - 0 .  
i = 1  ti+;ui 

Then, the variance of p  ̂ from a sample of size N is obtained as: 

The estimated variance is obtained by substituting i; for p in the above expression. 
For the two sets of data the maximum likelihood estimates of p as found from the 
equation above are $49,111 = 0.61614 and $g8,111 = 0.20128. 

With the above values of p̂  substituted in the equation for the p i ,  the computed 
values for the class frequencies are calculated as N p i .  The class frequencies along 
with the cumulative frequencies for the two sets of data are presented in Table 1 
for the 49 inversions and in Table 2 for the 98 inversions. 

Model ZV: As noted under Model '11, there appears to be a deficiency of inver- 
sions in the first class. Denoting the total number of inversions as N ,  the observed 
number of inversions in the first class as ml, and the proportion of the area in 
the first class as pl, the multinomial distribution after deleting the first class 
becomes: 

k 

1 -p1 

The maximum likelihood estimator ,2 is that value of p satisfying the above 
equation. Now, the estimated variance of p  ̂ is 

k2 

V(F) = 3k'/N ($E, ui'/(ti+@i) - U I * / ( ~ ~ ' - ~ I - ~ U I ) )  I 

For these data = 0.47898 and $gs,Iv = 0.24907. With the value i; substi- 
tuted for p in the p i  we compute the quantities (N-m,)pi/( l-pl) for i  = 2,3,. . . , 
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k to obtain the calculated values for each of the classes excluding the zero class. 
The class and cumulative frequencies in Tables 1 and 2 for Model IV were 
computed using this procedure. If desired, the effective sample size may be cal- 
culated as N*,,  = N / ( l - - p )  = 46/.88774 = 51.8 and N*95 = 95/.87950= 109.3 
for the 49 and 98 inversion sets of data, respectively, when the 0-1 class data are 
not utilized. 

Model V: Another family of functions for the distribution of lengths of inver- 
sions (see FEDERER, STEEL, and WALLACE [ 1961 ] ) is: 

b 
l/c + 2 &(vi-ci/(i+l)), 0 < U < c 

h d v )  = { i = 1  

0 otherwise 
b 

%=l 
subject to the constraint that h5(v=c) = l /c +,X pic<i/(i+l) = 0. For b = 2 ,  
h, ( U )  becomes 

+ p2( U 2  - 5) 
- - 2 ( c - U )  { 1 - (c-3v) c, 1 + ?]} 

C2 

since 
3 3pi p ----- 

2c3 4c . 2 -  

When p = p1 = -2/c2, and therefore pZ = 0, h, ( U )  becomes h, ( U )  . There appears 
to be no direct relation between h, ( U )  for b = 2 and h, ( U )  for Model 111 except 
when p = 0 in h, ( U )  and when p = -2/cz in h, ( U ) .  Both h, (v) and h, ( U )  may be 
written in terms of hl ( U )  as follows: 

h, ( U )  = hl ( U )  { 1 + 6 (c2-2CU-2v2) } 3c 
and 

2 + c y  
h , ( U )  = h , ( u )  {I  + &) ( 3 U - C ) )  * 

For b = 2 ,  the mean and variance associated with & ( U )  are equal to 
C C2 Pzc3 + ( P ~ C ~ + P ~ C ~ ) ~  } - [6 + p1c2 + p2c3] and 12 { 14- - I2 15 12 

respectively. The distribution function for h,(v) is shown in Figure 2 for /3 
negative. 

FIGURE 2.-Distribution of length of inversion. 
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The distribution function h,(u) may not appeal to the geneticist because the 
basis for chromosome breakage is not postulated. This procedure falls in the area 
of curve-fitting at present. In order for this model to be palatable to the biologist 
it would be necessary to determine the type of relationship involved between 
z and y. The model is presented as a statistical alternative to those in the previous 
sections and because it is equal to h, ( v )  when p = -2/c2. 

Dividing the length c into k equal parts the area under the curve between the 
(i-1)st unit and the ith unit, (i = 1,2, . . . , k) is 

where fi = 6k2 - 2 4- 6i - 6i2 and gi = 3i - 3i2 4- k(4i-2) - k2 - 1.  

multinomial distribution as follows: 
To obtain the maximum likelihood estimator of p we note that the mi have a 

k 

1 = 1  
L = N !  ,II pi"'/mi! . 

The value of p, for c known (usually c ~ l ) ,  which maximizes log L is obtained as 
a solution to the following equation: 

k 

i=1  
I: migi/(fi + Cqgi) = 0 . 

The variance of $ is obtained as: 
k 

* = 1  
V ( j )  = 16kG/Nc4 , Z giz/pi . 

The V ( p )  is approximated by substituing f i  for p in pi and setting c=l; denote 
pi as $i in this case. 

From the data for 49 inversions p49 = -4.1663 for c=l and ,& = -2.3135. 
Substituting the p̂  values in the formula for the pi, the various estimated $i are 
obtained. Then, Np^i is the estimated or computed value for the ith class. These 
values are given in Tables I and 2 for the two sets of data. 

Model VI: We may delete the first class, or any other class, from the data and 
proceed as described under Model IV. This would result in obtaining an estimate 
of the parameter p from all classes except the deleted one or ones. The computa- 
tions were not made for this case because of the lack of a biological formulation 
leading to h5(v). 

Models for Distribution of Inversions (Grouped Data) 

Model VIZ: Suppose that the chromosome is divided into k equal (These need 
not be equal, but it simplifies the argument to make them equal.) segments and 
the recorded length is as described under The Data. Observe that the 0-1 class of 
inversions contains inversions occurring within the premarked segment and which 
vary in length from zero to one class interval, that the 1-2 class of inversions 
contains the number of inversions which had endpoints in two adjacent segments 
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or classes and which vary in length from zero to two segments, that those in the 
2-3 class vary from one to three segments in length, etc. Under this scheme and 
for a bivariate uniform distribution as under Model I we note that the two end- 
points ( q y )  of an inversion may be characterized as: 

P { s y y  fall in the same segment} = l/k 
P{s,y fall in adjacent segments} = 2 (k-1 ) /kz 
P { x , y  fall in segments separated by one segment} = 2(k-2)/kZ 

P{s,y fall in segments separated by k-2 segments} = 2/k2 

Since the set of 49 inversions would be most affected by the method (for the 
98 inversions six classes were grouped to form one class in Table 2.) of measur- 
ing lengths of inversions, the following probabilities (P) and expected values 
(E = 49P) have been computed for these data (0) : 

Class P E 0 

0-1 .050 2.45 3 

2-3 .090 4.41 6 

e 5  .080 3.92 4 
5-6 .075 3.68 7 
6 7  .070 3.43 4 

1-2 .095 4.66 5 

3-4 ,085 4.16 6 

Class P 

7-8 .065 
8-9 ,060 
9-10 ,055 

10-11 ,050 
11-12 .045 
12-13 ,040 
13-14 .035 

E O  Class P E O  

3.18 1 14-15 ,030 1.47 2 
2.94 4 15-16 .025 1.22 0 
2.70 4 1617 .020 0.98 1 
2.45 0 17-18 ,015 0.74 0 
2.20 0 18-19 ,010 0.49 1 
1.96 1 19-20 .005 0.24 0 
1.72 0 

Model VIIZ: If we truncate the frequency distribution eliminating the first 
class to obtain the counterpart for Model 11, this involves no difficulties as we 
simply divide each of the last k-1 probabilities above by 1 - P{z,y fall in the 
same segment} = (k-l)/k. Then for the 49 inversions, N* = 46/19/20 = 51.1 
and the various P, E, and 0 values are: 

Class P E 0 Class P E 0 Class P E O  

0-1 3 7-8 ,068 3.15 1 14-15 .032 1.45 2 
1-2 .io0 4.60 5 8-9 .063 2.90 4 15-16 ,026 1.21 0 
2-3 ,095 4.36 6 !&lo .058 2.66 4 1617 .021 0.97 1 

4-5 .084 3.87 4 11-12 .047 2.18 0 18-19 .010 0.48 1 
5-6 .079 3.63 7 12-13 ,042 1.94 1 19-20 .005 0.24 0 
6 7  ,074 3.39 4 13-14 .037 1.70 0 

3-4 .090 4.12 6 10-11 .053 2.42 0 17-18 .016 0.73 0 

It should be noted that the first seven expected values (E) for all the data above 
are lower than the observed values (0) and even for the truncated set, the first 
six values of expected (E) are less than the corresponding observed (0) values. 
Hence, the method of this section gave a run of plus signs for 0-E in much the 
same manner as for Model 11. However, it should be noted that relatively low 

values of x z  = (O-IQ2/E would be obtained for all methods. The method of 
k 

% = I  
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this section fits the data for the 49 inversions better in the first class than do 
Models I, 111, and V. For the 98 inversions, the methods of this section give about 
the same results as obtained for Models I to V. Hence the method of measurement 
had little effect on the fit for the five models for the data involving 98 inversions. 

A study of the computed values under Models I to V in comparison with the 
observed values in Tables 1 and 2 reveals that Models I11 and V fit the data 
somewhat better than Model I. The deficiency of small inversions as observed 
in the first class is evidence that a truncated procedure should be utilized. Using 
truncated data and procedures after omitting the data in the first class indicates 
that Model IV yields a better fit than Model 11. For the two sets of data it would 
appear that independence of points of breakage as indicated by the length and 
location of the inversion may be suspect, and that inversions may not be recovered 
at random with respect to such breaks. In order to differentiate between the 
truncated models much larger sets of data would be required. 

Distribution of Midpoints and Proximal and Distal Points of 
Inversions Under Models I and I11 

The distribution of midpoints of inversions under Model I is given by FEDERER, 

4w/c2, 0 < w <c/2 
h,(w) = b ( c - w ) / c 2 ,  c/2 < w < c 

0, otherwise 
The mean is c/2, the variance is c2/24, and the generating function for moments 
about the mean is n ( t )  = E(et(”c/2)) = (8/c2t2)  (-1 -I- cosh ct/2).  The distri- 
bution of w = midpoint of inversions is given in Figure 3.  

Setting s = w - v /2  = distance to proximal point and setting r = w + v/2 = 
distance to distal point of inversion, the respective distributions under Model I 
for r and s were found to be: 

STEEL and WALLACE [I9611 as: 

(2/c2) (c-s), 0 < s < c 

0, otherwise 
(2 /c2)  (c-r), 0 < r < c 

0,  otherwise 

kl(s)  = 

(2/c2, 0 < r, s < c 

0, otherwise 

i k i (r )  = 

ki(r,s) = 

( d 2 , 2 / ‘ )  FIGURE 3.-Distribution of w = (z+y)/2 = midpoint. Lw 
h ,  (w) 

(4) 
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Also, the distribution of midpoints of inversions w of fixed length U is: 

w. T. FEDERER et al. 

{l/(c--v), 4 2  < w < c - v/2 

hl'w'u' = 10, otherwise 
Under Model I11 the distribution of midpoints of inversions is given by: 

(4w/c2) [ 1 + ( p / C Z )  ( (2w-c) 2 - 4w"3) 1, 0 < w < c/2 
(4(c--W)/cZ) [I  +(p/cZ) ((2w-c)Z - 4(c-w)2/3) ] ,  c /2  < w. < c 

(0, otherwise 
Proceeding as for Model I, the additional distributions for midpoints for a fixed 

length, for distal points and for proximal points are readily obtainable. These 
distribution functions under Model V are not obtainable because hs(w,u), the 
joint distribution of midpoints and lengths of inversions, is not given. 

THOMPSON, WALLACE, and FEDERER [ 19651 have presented theoretical distri- 
butions of deficiency lengths, deficiency midpoints, and other related character- 
istics both for a discrete band model and a continuous chromosome model, as 
given by Model I. 

DISCUSSION 

In order to form a point of reference on a chromosome for determining the 
point of breakage it may be necessary to use two known reference points on a 
chromosome and to identify the point of breakage only as falling between these 
two points. This would involve grouping the data. Under Model I assumptions, 
Model VI1 was constructed for grouped data. This model resulted in good agree- 
ment of observed and expected values in the shortest inversion class for one set of 
data, but not for the second set. Model VI11 is simply the truncated counterpart 
of Model VII. In some respects the models for grouped data fit the observed values 
better than the models for continuous data but in other respects one could not 
differentiate between the various models. 

The authors are greatly indebted to DR. B. P. KAUFMANN for sending US the data invo1Gw 
98 inversions. 

S U M M A R Y  

Six mathematical models, Models I to VI, for continuous data and two, Models 
VI1 and VIII, for grouped data were postulated to describe the distribution of 
lengths of inversions for a given chromosome. Model I postulated that the points 
of breakage (and reunion) were independent, and that any point of breakage was 
equally lilrely throughout the chromosome. Model I11 postulated that the points 
of breakage and reunion were related in that the endpoints of inversions tended 
to be closer together, or alternatively further apart, than would be expected on 
the basis of independence; the expected value of one endpoint given the value of 
the second endpoint is of the same form as linear regression. In Model V, a distri- 
bution of lengths of inversions was postulated, but the form of the dependence was 
not determined so that the problem was circumvented; this model may not appeal 
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to the biologist until the form of the dependence is determined.-Since observed 
data on lengths of inversions appeared to indicate a deficiency in the first class, 
this class was omitted and mathematical Models 11, IV, and VI were constructed 
for the remaining classes. These procedures are the truncated counterparts of 
Models I, 111, and V, respectively.-Maximum likelihood estimators and their 
variances for the dependence parameter were developed for Models 111, IV, and 
V, and the procedure for doing this for Model VI was indicated. Utilizing these 
results where appropriate, Models I to V were fitted to the two available sets of 
data on lengths, totalling 147 inversions. All models fitted the data well, even 
though the models involving dependence of points of breakage resulted in a better 
fit. This, however, was to be expected, since another parameter was estimated. 
Biological events which decree that recoverable inversions may not be a random 
sample of chromosomes carrying two truly independent breaks may be respon- 
sible for the deficiency of short inversions.-The distribution of midpoints, distal 
points, and proximal points of inversions was obtained for Model I. The distri- 
bution of midpoints of inversions under Model I11 was also given. 
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