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large body of literature has accumulated over the past decade concerned A with the interaction between selection and linkage in two locus random 
mating populations. BODMER and PARSONS (1962) discuss the significance of this 
problem, in particular the effects of linkage on the fate of newly arisen gene 
complexes. 

Conditions for the existence of stable polymorphic equilibria in the 2 locus 
infinite population size model were investigated by WRIGHT ( 1952), KIMURA 
( 1956) LEWONTIN and KOJIMA (1960) BODMER and FELSENSTEIN (1 967) and 
others under a variety of restrictions of the selection coefficients. The nonlinear 
equations relating genotypic frequencies of successive generations obtained in 
these problems are unlikely to yield in general to theoretical solution unless 
special assumptions are imade on the selection coefficients e.g., symmetric viabil- 
ities, no epistasis (the additive model), multiplicative effects, etc. 

Recourse to numerical computations and simulation techniques has been made 
where exact analysis has appeared impossible. However interpretations of the 
results of these numerical calculations must be made cautiously since the initial 
conditions and the length of trial run affect the numerical results decisively (see 
e.g., EWENS 1966, 1967). Numerical calculations for the two locus case occur also 
in KOJIMA (1965), LEWONTIN (1964a,b,c), PARSONS (1963a,b), KIMURA (1965), 
JAIN and ALLARD (1965) and SINGH and LEWONTIN (1966) and elsewhere. All 
of these works concentrate exclusively on infinite population deterministic models. 

Monte Carlo studies of aspects of the two locus model for small populations 
have recently been reported by HILL and ROBERTSON (1966). These authors were 
interested primarily in ascertaining the influence of the linkage parameter on 
response to artificial selection where the loci were assumed to have additive effects 
on the character under selection and not to interact. As is not uncommon with 
simulation procedures, the interpretations are moot and someiwhat vague. LATTER 
( 1966) conducted similar Monte Carlo programs endowed with corresponding 
difficulties. 

Conflicts in the results, of computation between different Monte Carlo studies 
confuse the issue further. For example, compare EWENS ( 1966), JAIN and ALLARD 
( 1965) and BODMER and PARSONS (1 962). It is indicated (confirmed in HILL and 
ROBERTSON [1966] ) that the transient behavior of the process is highly sensitive 

We express our great indebtedness to Mr. M. FELDMAN for many constructive criticisms and discussions 
Research supported in part under contract NIH 10452 Stanford University. 

Genetics 58:  141-159 January 1963 



1 42 S A M U E L  K A R L I N  A N D  J A M E S  MC GREGOR 

to the initial conditions, the range of values of the parameters (recombination 
fraction, selection coefficients and population size) and the formulation of the 
model. The exact analysis of some two locus stochastic models would aid in 
establishing the detailed nature of the dependence of rates and probabilities of 
fixation on the structure and parameters of the model. 

In  this paper we examine a finite state stochastic frequency model (of constant 
population size) for a pair of linked loci with alleles A, a and B, b at the first and 
second locus respectively. The four possible gametes are, of course, AB, Ab, aB 
and ab. The model proposed to describe the fluctuations of the gamete types is 
given the canonical formulation namely that analogous to the one locus random 
sampling model of FISHER and WRIGHT. Specifically, suppose the current genera- 
tion is composed of N diploid individuals with gametic numbers as listed in the 
table. 

Gamete Numbers 
AB 11 

( 1 )  Ab 22 

aB 1 3  

ab i4 
Total population of gametes 2N 

The iv ( V  = 1 ,  2, 3, 4) are non-negative integers obeying the constraint 
i1 4- iz 4- i3 + i, = 2N. We determine the next generation by performing random 
sampling (i.e., multinomial trials) 2N times on the gametic output of the popula- 
tion produced by random union of gamtes. (This will be referred to henceforth 
as random mating. This model of random union of gametes is different from that 
in which random union of zygotes is postulated. More details on this difference 

AB AB AB 
are given in the discussion.) Random mating yields the genotypes - - - AB’ Ab’ ab ’ 

ab -, in the proportions 
* *  ab 

iI2 2ili2 2i1i3 i,z --- 
4N2 ’ 4NZ 4N2 ’ ’ * * ’ m‘ 

respectively. If r denotes the recombination fraction, a genotype Ab/aB has a 
gametic output described by the array 

1 1 1 1 - r AB + - r ab + -( 1-r) Ab f -( 1-r) aB 
2 2 2 2 

and analogous segregation proportions apply in the other cases. Combining all 
the possibilities we find that a gamete chosen at random is AB with probability 
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where 
( 3 )  D = 1213 - 111, 

is the linkage deviation function corresponding to the present population makeup 
(D is more commonly called the linkage disequilibrium function). 

More generally, each performance of random sampling produces one of the 
gametes with corresponding probabilities as follows 

. .  . .  

Gamete Probability 

( 4 )  

AB 

Ab 

aB 

ab 

D 21 r 
p,=w+- 4N2 

D r 
4N2 

D 

‘ D  

i3 - r 
p 3 = =  - 4N2 

p,==+- z4 
4N2 

We are now ready i o  formulate the precise stochastic model underlying the 
fluctuations of the gamete frequencies over time. The state space of the process 
(symbolized by A)  is described by vectors of 4 nonnegative integers. 

A = {i = (i,, i2,  i,, i,) ; i, integers 2 0, i, 4- i, i3 -I- i, = 2N}, 

where i, represents the number of AB gametes in the current generation and 
i,, i,, i, that of Aa, aB and ab respectively. The next generation is formed by 2N 
multinomial trials as follows. If the parent population is described by the vector 
i = (il, i2, i,, i,) then each trial results in AB, Ab, aB and ab with probabilities 
p l ,  p2 ,  p 3  and p ,  respectively ( p z  defined in (4) ) . Repeated samplings are made 
with replacement. By this procedure we generate a Markov chain 

i fn)  = ( ilcn), i,(n), E A, n = 0, 1, 2, . . 
where i(s) is the vector which describes the population makeup in the nth genera- 
tion. Let i = (i,, i,. i,, i4) E A denote the current state variable and i = ( j , ,  i2, j 3 ,  i4) 
E A the state variable of the next generation. The transition probability law which 
governs the fluctuations of the population structure from generation to generation 
is computed in accordance to the multinomial distribution to be 

( 5 )  

2N-I-3 There are ( 2N ) states for the process corresponding to all possible 4-tuples 
of gamete combinations. 

The model is now fully structured. The ultimate goal would be to describe as 
completely as possible the probabilistic distribution of the population vector i(n) 
or various probability laws of functionals of these vectors. The Markov chain 
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although simple in formulation is extremely complex in behavior and cannot be 
resolved in classical mathematical terms. We shall be content to extract special 
information of some genetic interest. Previously certain special functionals of the 
stochastic process corresponding to the mechanism of random union of zygotes 
have been examined by WRIGHT and KIMURA. WRIGHT (1933) used the method 
of path coefficients while KIMURA (1963) has developed some elegant refinements 
on the use of the method of identity by descent due to MALBCOT (1948) (see also 
MAL~COT 1951, 1959a, 195913). The stochastic model underlying the work of 
WRIGHT and KIMURA differs from that outlined above. The models are compared 
in the discussion. 

Every finite interbreeding genetic population not subject to gene mutation 
will eventually become homozygous. From classical properties of Markov chains 
and by the nature of the specific process at hand, the population ultimately fixes 
(due to random drift) in one of the pure states I, = ( 2 N ,  0, 0,O) , I, = (0 ,2N ,  0, 
0), I, = (0, 0,2N, 0) or I, = (0, 0, 0 ,2N)  consisting exclusively of AB, Ab, aB or 
ab gametes respectively. 

Notice we have postulated no selection differences in the formation of the next 
generation. This is, of course, a limitation on the model but even so the analysis 
of this simple model is complicated. This discussion may be helpful toward the 
end of carrying out a theoretical treatment of a corresponding stochastic model 
involving selection differences among the genotypes. 

Our objectives in this paper are fourfold. 
(I) We will determine the probabilities of fixation in states I,, I,, I, and I, as a 

function of the initial population makeup i = (i,, i,, i,, i4), the recombina- 
tion fraction r and the population size N .  

(11) We will ascertain the precise rate of approach to fixation. Indeed, the theory 
of finite Markov chains tells us that the probability fn that the population 
at the nth generation includes at least two types of gametes is asymptoti- 
cally of the order 

for some A, 0 < A < 1 where c ( i )  is a number depending on the initial 
population makeup but independent of the generation time n. The number 
X is called the rate of approach to fixation. The following interpretation 
can be ascribed to A. Consider a large number of independent populations 
each of size 2N governed independently by the same transition probability 
law (5) and assume many generations have already passed by. Then in 
each succeeding generation a proportion 1-A of these populations become 
fixed. The quantity 1/ ( 1 -A) is also related to the concept of effective popu- 
lation size and can be interpreted in these terms (see KIMURA and CROW 
1963). 

(111) Fixation takes place in two stages. First one of the two loci becomes homo- 
zygous. Thereafter the fluctuations of the process are completely described 
by the WRIGHT-FISHER binomial sampling model involving two alleles at 
one locus. We will determine the probabilites (as a function of the initial 

f" @ c( i )  A" n-+ CO 
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population makeup i = (il, i,, i,, i4) and the parameter r )  that the popula- 
tion fixes first in one of the four alleles A, a, B or b. 

(IV) Finally and of m x t  importance we will determine the rate of loss of some 
allele from the population. More specifically, let z - ~  denote the probability 
that in the nth generation all four gametes are present. From standard 
theory concerning Markov chains, we know that xn has the asymptotic 
form xn + K ( i )  pn as n + 00 where 0 < p < 1 and K ( i )  depends on the 
initial population numbers i = (il, i,, i,, i4) but is independent of n. Thus 
the chance per generation that the population loses its original polymorphic 
state is of the order l-p. 

The importance of the answers to the problems posed in I11 and IV pertaining 
to the effects of small population size on evolutionary theory is discussed in 
WRIGHT (1931 ) , MORAN (1962), and elsewhere. For example, in the case of a 
small population (say laboratory stock) subject to an inbreeding mechanism, it 
is important to know how long the original 4 gametes will remain together in the 
population for different sets of initial numbers of gametic types. Inbreeding 
models in this connection are usually easier to analyse than those involving ran- 
dom mating. The problems in the former are in some sense linear, while those in 
the latter are at best quadratic. 

The explicit solutions of problems (I) through (IV) are summarized and 
interpreted in Section I!. The rate of decrease of the variance of the linkage dis- 
equilibrium function is also determined. The rigorous proofs of the results of 
Section 2 involve careful use of the transformation properties of the probability 
transition matrix (5) when applied to certain polynomials in the variables i,, i,, 
i, and i,. The detailed argument will be presented elsewhere. Extensions of some 
of the results of Section 2 to take account of a general progeny distribution per 
mating are indicated in Section 3. Section 4 concludes with a general discussion 
of the significance and ]limitations of the results of this paper and some discussion 
of previous work. 

A few comments on previous related studies may facilitate interpretation of the 
ensuing mathematical results. With no selection differences present among geno- 
types and infinite popuilations undergoing random mating it is a classical result 
that the gamete frequencies converge geometrically fast with rate l-r (note the 
dependence on r )  to a set of frequencies which are at zero linkage deviation (see 
LI 1955 o r  KEMPTHORIVE 1957 for appropriate historical references concerning 
this result). 

The rates of approach to homozygosity were determined for certain monoecious 
and dioecious one locus random mating finite population stochastic models by 
WATTERSON (1959a), (1959b), MORAN and WATTERSON (1959), and MORAN 
(1962). An approximate value for the rate of approach to homozygosity was ob- 
tained by KIMURA (1955) in his analysis of the standard diffusion approximation 
to the finite population process. A general method for determining the rate of 
approach to statistical equilibrium, or  homozygosity and the probabilities of 
fixation of one or the other gene under a variety of mating systems allowing for 
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the pressures of mutation, migration and finite population size has been elabo- 
rated in KARLIN and MCGREGOR (1964a, 1965a), see also KARLIN (1966a, Chap. 
13). We mentioned earlier the simulation studies of the interaction between 
effective population size and linkage intensity under artificial selection given by 
LATTER (1966) and HILL and ROBERTSON (1966) , see also EWENS (1966). A 
novel form of diffusion approximations involving a killing term, was used by 
KARLIN, MCGREGOR and BODMER (1965) to determine the probability of recombi- 
nation before fixation as a function of the initial gametic frequencies, the recom- 
bination fraction, the population size, selective values and the mating system. 

The present paper seems to be the first to resolve precisely the questions (I) to 
(IV) , with special emphasis on (111) and (IV) , for the classical FISHER-WRIGHT 
random sampling of a two locus two allele finite population size stochastic model. 
The qualitative consequences are intriguing and in the light of previous work 
perhaps surprising. 

RESULTS A N D  GENERAL DISCUSSION 

In this section formulae and conclusions are set forth which fulfill the objectives 
of Section 1. The formulae obtained are exact; the methods by which they were 
obtained involve, as mentioned before, some detailed analysis of the Markov 
chains involved. We feel this is not the appropriate forum to record these argu- 
ments. For the details the reader is referred to BODMER, FELDMAN and KARLIN 
(1968). There is some conflict between the interpretations of these results with 
some of the inferences derived from the simulation studies reported by HILL and 
ROBERTSON (1 966). 

I. Probabilities of Fixation in a Pure G a m t e  State. Every finite interbreeding 
genetic population not subject to gene mutation will eventually become homozy- 
gous. Fixation can occur in one of four pure states consisting entirely of one of the 
four gametes AB, Ab, aB or ab. The probabilities of these events are listed in 
Table 1 and obviously depend on the initial population numbers, the recombina- 
tion fraction r, and the total population size. 

We are grateful to DR. M. KIMURA who pointed out to us that the results of 

TABLE 1 

Initial population vector i = ( i l ,  i,, i,, i,) D = i ,  i ,  - i, i ,  

Probability of fixation as 
a function of I ,  rand A’ Pule state 

r 
D 

D 

D 

D 

11  -+ 
i, 

AB gamete 2N 2 N [ l - r f r 2 N ]  
(2N,  o,o, 0) 

2N 2N [ 1 --r+r2N] Ab gamete 

13 
(0 ,2N,  0, 0) 
aB gamete _- 

2N 2N [ 1 -r+r2N] (O,O,  2N, 0 )  
14 ab gamete - 
2N + 2N [l-r+r2N] ( O , O ,  0, EN) 

r _-  
r 

r 
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Table 1 can be obtained by adapting the method of identity by descent as in 
KIMURA (1963). This method, however, cannot be applied to obtain the results 
in the later sections (especially parts I11 and IV) of this paper. 

The following are easily inferred from the table. 
(a) The probability of fixation of the population in a particular gamete (say 

Ab) depends on the initial population numbers of the four gametes only through 
the initial frequency of that particular gamete (Ab) and the linkage deviation 
function of the initial population vector. 

(b) If we start the process with i, AB, i, Ab, i, aB and i, ab, the probability of 
fixation in a particular gamete depends on the recombination fraction if and only 
if D = i, i, - i, i, # 0, i.e., if and only if the initial frequencies are not in a state 
of zero linkage deviation. 

The second observation is somewhat striking since stochastic fluctuations will 
most likely disturb the value of D in one generation to a nonzero value. Never- 
theless in a certain average sense linkage equilibrium persists over succeed- 
ing generations. To explain this notion we let i' = (il', &', i:, i4') describe the 
population vector after one generation and let i = (i,, i,, i,, i4) denote the initial 
population vector. It is interesting to compare the linkage deviation function 
D' = iLJ i,' - i,' i,' for the second generation with that of D = i, i, - i, i, of the 
initial generation. Of course, D' is a random variable following a probability 
distribution that can in principle (although not in a practical fashion) be calcu- 
lated from knowledge of the probabilistic laws ( 5 )  governing the process. The 
expected value of D' can be routinely determined and we obtain the simple 
formula 
(6) 
(We use the symbol 2 ( X )  to denote expectation of X . )  The above was also noted 
by HILL and ROBERTSON. After n generations, we have 

which shows that the average value of D(n) approaches zero at a geometric rate 
decreasing by a factor of (1--1/2N) (1-r) per generation. Notice that if D(O) = 0 
then € ( D n )  = 0 for all n. Later (see (19) ) we shall describe the transient be- 
havior of the variance of D(n) as n-+ W .  The rate of decrease differs markedly 
from that of € ( D " ) .  In fact, Var(D(")) tends to zero at a slower geometric rate 
suggesting that althouglh the average value of D ( n )  may be close to zero the actual 
value of the linkage deviation function could be relatively appreciably different 
from zero. 

(c) HILL and ROBERTSON (1966) and also LATTER (1966) in their computer 
runs always start with D = 0 for the initial population. Inspection of the form- 
ulae of Table 1 reveals that the probabilities of fixation depend on the initial 
value of D in an esseniial fashion (cf. also the first statement of paragraph (b) 
above). Several relevant genetic considerations which dictate against the assump- 
tion of initial value of ,D = 0 are indicated in the discussion at the conclusion of 
the paper. 

(d) HILL and ROBERTSON (1966) claim that the probabilities of fixation depend 
on the recombination fraction I only as a function of Nr.  The formulas of Table 1 

€(I)') = (1-1/2N) (1-r) n. 

(7) E ( D n )  = [(1--1/2N) (l-r)InD(')  
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contradict this assertion. HILL and ROBERTSON carried out a simulation program 
based on the stochastic model as formulated here, actually slightly more general 
in that small selection pressures operate favoring a specific gamete. If the selection 
differences are very small then continuity considerations dictate that the proba- 
bilities of fixation derivable from the Hill-Robertson studies should almost agree 
lwith the formulas of Table 1 .  Therefore, the dependence of r in any case does 
not occur in the combination N r .  

(e) Suppose N is large and r is small such that 2Nr = y is moderate. The 
formulae of Table 1 then can be effectively approximated as follows: 

Probability of fixation in the gamete in question is 

AB gamete - x1 + - y o  
l+Y 

Ab gamete - x2 - - y o  
l+Y 

l+Y 
aB gamete - x3 - - y o  
ab gamete - x4 + - y o  It7 

where - 
D = X~ X S  - x1 x4 

and xl ,  x2, x3, x4 represent the initial frequencies of the AB, Ab, aB and ab gamete 
respecitvely. Notice that if N r  is very large then y / l  + y  ) is near 1 .  In this circum- 
stance we obtain the good approximations for the probability of fixation in the 
gamete indicated, 

AB - PA PB 
Ab - PA pb 
aB - pa P B  

(9) 

ab- pa pb 
where p A  = x1+x2 denotes the initial frequency of the A allele with similar mean- 
ing ascribed to pa, pB and pb. The result expressed in (9), in essence, agrees with 
the corresponding classical result from deterministic theory. 

11. Rate of Approach to Fixation. As pointed out in the Introduction, the proba- 
bility fa that the nth generation includes at least two types of gametes is of the 
order 

f n  + c(E) A* 
where 0 < h < 1 and c ( i )  is a constant depending on the initial population vector 
i but not on the time index n. The value x is referred to as the rate of approach 
to fixation. We can interpret I / (  1-A) approximately as the expected number of 
elapsed generations required before the population comprises a single pure type. 

For the model at hand the rate of approach to fixation (= homozygosity) is 
determined to be 
( 1 0 )  A = 1 - 1/2N. 
It is perhaps surprising that the rate of approach to fixation is independent of the 
recombination fraction and the number of loci involved and coincides with the 
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rate of approach to fixation for the corresponding stochastic model of two alleles 
at one locus. This is also the case where the model is formulated involving a 
general fertility distribution (i.e., different from the Poisson progeny distribution 
implied by multinomial sampling, see section 3 ) .  This is not true of the rate at 
which the first allele is lost. 

It is also worthwhile to underscore the fact that the expected value of Of%’ 
tends to zero at a faster rate (provided r > O ) ,  by a factor I-r, than the rate of 
approach to fixation. 

111. Probabilities of First Fixation of a Specified Allele. In  Table 2 below we 
record the probabilities of the events that the allele A, a, B or b respectively be- 
comes fixed first. The following interpretations emerge from examination of the 
formulas in Table 2. 

(a) The probabilities that any given allele fixes first are independent of the 
recombination fraction only in the special circumstance that initially there is 
zero linkage deviation, i.e., Do) = 0. 

(b) The probability that the (A,a) locus fixes prior to the (B,b) locus is 
obviously 

Notice that this expression is always independent of r.  
(c) The probabilities QA, QB, Q,, Qb generally depend on the initial population 

numbers ( i l ,  i,, i,, i 4 )  as  a ratio of a cubic to a quadratic polynomial in these 
variables. 

(d) Let xl, x,, x3, x4 denote as before the initial frequencies of the AB, Ab, aB, 
ab gametes respectively and let = x2 x 3  - z1 z4 represent the linkage deviation 

TABLE 2 

( i ,  i ,  i ,  i ,) is the initial population vector 

Allele Q = Probability of the Allele in Question Fixing First 



150 S A M U E L  K A R L I N  A N D  JAMES M C  GREGOR 

function of the initial generation frequencies. For N large and 2Nr = y moderate 
we obtain the approximate formulas 

- 1 -  
( 2 1 + 2 3 )  D--D 

2+Y 
(xlfz3) 2 2  -- - 

2+Y 
QA 

(XlfZ2) ( 2 3 + 2 4 )  + (21+x3) (xZ+Z4) 

Y 

Qb (ZlfXZ) ( 2 3 d - 2 4 )  + (x1+23) (xZs-14) 

It is easy to verify that when y is large (i.e., N r  large) the formulas simplify to 

It is interesting to observe that the formulae in (1 3) of probabilities of fixation of 
some specified allele depend only on the initial allele frequencies and not on the 
initial gamete frequencies. We emphasize that this is only correct approximately 
provided N r  is sufficiently large. For moderate values of N r  but N large the form- 
ulas of (12) prevail and now the dependence on the initial gamete frequencies 
is significant. 

Qualitative information concerning the monotone variation of, say, QA as a 
function of pA7 pB7 pa, pb can be readily extracted from examination of the form- 
ulas ( 13). We do not pursue this end here. 

(e) When r = 0 (tight linkage i.e., no recombination) the formulas of Table 2 
reduce to the following: 

where r = (i& 4- ili4)/2 and C = (ilfiz) (i3fi4) f ( i l f i3 )  ( i Z + i 4 ) .  
Notice in this case that the quantities in (14) involve only ratios of quadratics 

in the variables i,, i,, i,, i, (cf. paragraph (c) above) in contrast with Table 2 
where the numerators involve cubics. 

IV. Rate of Loss of an Allele. (a) The standard analysis of finite Markov chains 
informs us that the probability rn that all four gametes are present in the nth 
generation is of the order 
(15) rn+ B ( i )  pn 
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for some p (0 < p < 1) where B ( f )  is a constant depending on the initial popula- 
tion numbers but is independent of n. Thus a,, decreases at a geometric rate by a 
factor JA per generation. We refer to the constant 1-p as the rate of loss of an  
allele. The explicit value of p can be determined. It is 

p " (  l - - ) x ,  1 
2N 

where xo is the largest positive root of the cubic equation 
(17) 
where the constants E, F and G are explicitly the burdensome expressions 

-x3 + x2E + X F  f G =  0 

(2NZ)E=- [2N(l-r) + (2r-3)] (1-r) (N-1) 
4- (N- l ) ( l -2~)(2N-r )  +2N2( l+ r )  + (r-4N) r ,  

+ (r-2N)N + (2N-3) (1-r) [(3r-l) - (1-2r)N]}, 
( 2 ~ 3 ) ~ = :  ( i - r ) ( ~ - i )  {[(2r--3) +2~(1--r)]  [ r - ~ ( i + r ) i  

( 2 ~ 3 ) ~ = =  (1-43 (2~- -3 )  ( ~ - 1 1 2 .  

For any specification of i2N and r, (1 7) is a concrete cubic equation. Thus for no 
linkage i.e., r = 1/2 the cubic (1 7 )  becomes 

(N-1) (-14N' + 18N - 7 )  
) + x  16N3 

14N2 - 14N + 5 
8N2 

- 5 3  + xz ( ~ 

which does not possess rational roots. 
It can be proved that as T- varies from 0 to 1, p decreases from 

Numerical calculation of p have been made in Table 3, below for various choices 
of 2N and r. 

It is of interest to compare the values of p with the corresponding rate pq,p of the 
loss of q out of p alleles (0 5 q < p-1 )  in a one locus p allele population of 2N 
haploid individuals reproducing by binomial sampling. In other words, the proba- 
bility that the population in the nth generation includes at least p-q alleles is of 
the order + C[pq,,ln where 0 < pq,p < 1 and C is a constant depending on the 
initial population structure but not on n. We found (KARLIN and MCGREGOR 
1965a) the value to be 

pq,p  (2N)!/(2N)p-q. 
( In  the cited paper we actually determined pq,, for a p allele haploid model with 
general fertility distribution for the number of offspring per mating.) 

We have the inequalities 

holding independent of the value of r provided only that r is positive. Thus the 
probability of maintaining all four gametes in the nth generation of the two locus 
model decreases to zero at a slower rate than the probability of having at least 
three alleles of a 4 allele haploid population present in the nth generation. How- 
ever, the rate at which two alleles are lost from a 4 allele haploid population 
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exceeds the value of ,p. This could be argued on intuitive grounds as well. In the 
two locus model the instant that one allele fixes, then two gametes are lost simul- 
taneously and therefore indeed (1 - 1/2N) = pz,a > ,p. Of course for I = 0, p = 
pn,2 = pz,4 as expected. 

A quantitative comparison of p and p*2,4 and ,pl,4 is available from (18) and 
(16). 

(a)  We can use the quantity ,p to determine how many generations may pass 
in which the probability of the event that all gametes are represented in the popu- 
lation remains greater than a: (e.g., a: = . l ,  Q = .05 or a: = .Ol). The solution of 
this problem is obtained simply by determining n to satisfy T" = a. By (15) this 
is approximately equivalent to C(i),p" = cy and therefore n - log a/log p for 1y 

sufficiently small since the effect of the initial population vector (expressed 
through C (Z) ) is negligible compared to loga:/log p. The above computations play 
a role in appraising the influence of linkage on evolutionary change. 

(b) The final remark of this section concerns the variance of the linkage devi- 
ation function D(") as a function of time. It can be proved that Var(D(")) tends 
to zero at the asymptotic rate 
(19) Var(D(")) lu y ( i )  pn 
where y ( i )  is a positive constant depending on the initial conditions. I t  is not 
difficult to establish the relationship 

for all r > 0 (20) 

Comparing (20) and (7 )  we see that €(D(")) tends to zero at a faster rate than 
Var (D") . Hence while both may be close to zero after the effect of the initial con- 
ditions wears off, the variance of D(") is of larger order than its expectation. We 
Infer from this that the actual value of D(") (as opposed to €(Dn)) in a relative 
sense is significantly different from zero although equally likely of positive or 
negative sign. 

The contrast in the approach of €(D("') and Var(Dn) to zero invalidates 
the assumption frequently made (HILL and ROBERTSON 1966, LATTER 1966) 
that the initial gamete frequencies are in linkage equilibrium, i.e., have zero 
linkage deviation. 

The Case of a General Progeny Distribution. The model constructed in the 

1 
P > (1 -m) (1-r) 

TABLE 3 

Values of p (rate of loss of first allele from the population) 

r =  

2N 6 
2N 10 
2N 16 
2N 20 
2N 30 
2N 50 
2N 100 

.o 
~ 

.833 
,900 
.938 
.950 
,967 
,980 
990 

.01 __ 
,825 
,891 
.928 
.941 
,958 
,971 
.983 

.05 - 
.795 
,863 
,903 
.920 
.942 
,962 
.980 

.10 __ 
,764 
,842 
,889 
.go9 
.937 
,960 
,980 

20 - 
,721 
.823 
.879 
.904 
,935 
.960 
,980 

.30 

.697 

.815 
,877 
,903 
.934 
.960 
,980 

.40 

,683 
,813 
,876 
.903 
,934 
,960 
,980 

.45 

.679 
,812 
.876 
.903 
,934 
.960 
.980 

___ .49 

,676 
.811 
,875 
,903 
.934 
.960 
.980 

__ .50 

,676 
,811 
,875 
.903 
,934 
.960 
,980 

- .70 
.668 
,810 
.875 
.903 
.934 
.960 
.980 

.90 

.667 
,810 
.875 
.903 
.934 
,960 
,980 
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Introduction can be extended to allow the possibility of a general progeny distri- 
bution for the number of offspring contributed per mating. 

We denote the state slpace by A. A finite state M.C. defined on A = {i = (ill i2, 
i,, i,) ji, integers 2 0 andl 2 i, = 2N)  and governing the fluctuations of the gamete 
populations under the iiifluence of general fertility and the recombination frac- 
tion r is set up in the framework of the direct product branching process as follows 

(see KARLIN and MCGI~EGOR 1964a). Let f ( s )  = arc sh denote the probability 

generating function (p.g.f.) of the number of offspring resulting from a union of 
two gametes. Thus, for example, a union of AB and Ab produces a random num- 
ber of offspring with p.g.f. f (s) where each gamete from this union is either AB 
or Ab with probability :1/2 each. Let g(sl, x,, ss, s,) denote the joint p.g.f. of the 
numbers of AB, Ab, aB and ab gametes respectively created after one generation 
of reproduction by random union of gametes, where the parent population con- 
sists of i,, i,, i,, i,, AB, Ab, aB and ab gametes respectively. Considering all the 
possibilities we obtain 

m 

k=O 

(21) gb1, xz, 5 3 ,  x4) 

( s 2 + x 3 )  + r(51+s4) ) y 4  (Z?+ZI 

x fi: (5,) fy (1-r) 2 -4 2 

(Notice that a union of AB and ab can produce off spring of all kinds due to the 
possibility of recombination, and similarly for a union of Ab and aB.) The x's 
appearing in (21) are variables of the generating function and are not to be con- 
fused with the use of s's as gamete frequencies in (8). 

A frequency model ;is induced by considering only those realizations of the 
process (21), which yield 2N gametes. In other words, 'we condition the outcome 
so that the total number of offspring is 2N. Equivalently we postulate that the 
fluctuations of the gamete populations is governed by a Markov chain on the state 
space A with transition probability matrix 

31 32 j 3  j4 coefficient x1 s2 s3 z4 in g(sl, s2, z,, z,) 

coefficient 2 2 ~  in g(z, z ,  z ,  z )  = f"" ( z )  
(22) e,) = 

for i = (il, i2, i,, i,) E A and i = (il, iz, i3, i4) c A. 
When the offspring distribution is Poisson, i.e., f ( x )  = @($-I) the transition 

probability matrix (22) reduces to the case of multinomial sampling with ex- 
plicit transition probability law given in ( 5 ) .  Actually, the multinomial sampling 
model of the Introduction proposed to study fluctuations of gene frequency 
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necessarily implies that the offspring distribution per parent is Poisson (see 
KARLIN and MCGREGOR 1964a, 1968 for further discussion of this point). KOJIMA 
and KELLEHER (1962) pointed out the inadequacy of the Poisson assumption and 
the superior fit for the progeny distribution (especially relevant to data on human 
populations) of the negative binomial family of probability generating functions. 

We now describe a series of results partly extending those of Section 2. The 
previous formulas need to be appropriately modified to include the non-Poisson 
character of the progeny distribution function. 

(I) Probability of Fixation. Let the initial population vector be i = (i,, i,, is, i4) 
and let D = i,i, - i,i,, 

Probability of fixation 
in the gamete in question Gamete 

AB 

Ab 

aB 

ab 

D 11 r -+ 
2N (2N)'(1-,8) 

D r 
12 - - 

2N (2N)Z( 1-p) 

D i3 - r - 
2N (2N)Z(l-P) 

D i4 r -+ 
2N (2N) (1-p) 

where 

Z 2 N - 2  in f""-2 (z>rP(z>l '  
A?, = 7 

coeff. zZN in f"" ( z )  
and 

coeff. Z Z N - ~  in f 4 ~ ~ - 1  ( 2 )  f" (2) 

coeff. z 2 ~  in PN'  (2) 

A,? = 

In comparing (23) and ( 4 )  we observe that the two sets of formulas differ 
only in the coefficient of rD. Thus the general progeny distribution per mating 
will affect the probabilities of fixation only if the initial linkage deviation value D 
is non-zero and then the fertility component contributes a scale factor multi- 
plying D. 

It is interesting to consider the values of P, x,~, and A,, for some typical distribu- 
tions (Table 4 ) .  Notice that the Poisson distribution provides a value of p inter- 
mediate between that for the binomial family and the negative binomial family. 

(11) Rate of Approach to Fixation. We can prove that the rate of approach to 
fixation is of the order (see ( 1  0) ) , 1 -A where 

(24) x = 4NZ x z l  + (A,, - hZ1)/2 
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and again this value coincides with the rate of approach of fixation for the one 
locus two allele random union of gamete model lwith general fertility probability 
generating function f (z) . 

(c) Mean Change of Disequilibrium Function. The expected change of the 
linkage deviation function can be computed exactly. We find that 

and generally 

Inspection of Table 4 reveals that the mean value of D(") tends to zero at a faster 
rate when the progeny distribution is binomial than when it is Poisson, even 
though the expected number of offspring is the same. Furthermore the rate of 
approach of the mean of D(%) to zero in the Poisson case is faster than for the case 
where the progeny distribution is a negative binomial law. 

We have not been able to determine the rate of loss of the first allele from the 
population in the case of a general fertility probability generating function. The 
formulae for the probabilities of which locus fixes first given in (1 1) still hold 
under the more general conditions. 

E(D(1)) = D(0) 

€(D(")) = 8% DO 

DISCUSSION 

KIMURA (1963) has obtained the probability of fixation in a given gamete for 
the case of random union of zygotes; that is where recombination occurs only in 
homologous chromosomes from one individual. The fact that our model, the 
straightforward generalization of the classical Wright-Fisher model gives slightly 
different results is merely a manifestation of the fact that in the presence of 
recombination the stochastic process of random union of gametes is not equivalent 
to the stochastic process of random union of zygotes. 

From Table 1, the probability of fixation in a particular gamete for the mul- 
tinomial sampling model depends on the initial population only through the 
frequency of that gamete and the initial linkage deviation D(O). A comparison of 
the expectation and variance of D(n)  has been made and the variance of D(") can 
be shown to converge to zero at a slower rate than its expectation. These two 
facts taken together, indicate that the assumption made by HILL and ROBERTSON 
(1966) and LATTER (1966), that D(O) = 0, is a very stringent one. In fact one 
of the most interesting problems arising in populations such as have been con- 
sidered here is that of the increase of an initially rare gamete. In this case it is 
obvious that one can have D initially near its maximum (%) . 

Again from Table 1, the probabilities of fixation depend on r (if D is not 
initially zero) but not through the quantity Nr. Although the simulation studies 
made by HILL and ROBERTSON and LATTER are slightly more general, in that they 
include selection, we expect that if the selection pressures are small enough (say 
less than o ( l / N ) )  then continuity would dictate that our results should almost 
agree with those of the above authors. However, both these studies claim that the 
probabilities of fixation depend on r through Nr, in obvious disagreement with 
our findings. In both simulation studies mentioned above, use has been made of 
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the function u(po) ,  the chance of eventual fixation of a gene with initial fre- 
quency po. However, this function is calculated on the bases of the one locus 
diffusion approximation, and the validity of its use in a two locus situation with 
nonzero recombination fraction seems questionable. 

A number of important questions remain unanswered. We hope to attempt a 
simulation study includiing selection and based on the models and results obtained 
above. There remains the interesting problem of the rates and probabilities of 
loss of an allele from the population in the general fertility case. We also hope 
to attack the analogous problems with three or more loci. It should be men- 
tioned that the above treatment is easily modified to take account of any linear 
evolutionary pressures, e.g., migration and mutation, cf. KARLIN and MCGREGOR 
(1965a). The analogous problems for 2 loci and any number of alleles also present 
no difficulties. It seems feasible that a rigorous approach to the corresponding 
problems of diffusion approximation can also be based on the findings of this 
paper, perhaps along the lines of KARLIN and MCGREGOR (1965a). 

SUMMARY 

A stochastic treatment of a two locus random mating population model taking 
account of recombination is given. This seems to be the first time exact results 
have been obtained for such quantities as the probability of fixation in a given 
allele and, the rate of loss of a given allele from the population. The probability 
of fixation in a given galmete in the case of general fertility is also given for the 
first time. although KINCURA (1963) had previously obtained this for a different 
model in the special case of a Poisson progeny distribution function. The rate of 
decrease of the expectation and variance of the linkage disequilibrium function 
are also determined and their rather surprising consequences discussed. The 
results are compared with those from recent simulation studies of HILL and 
ROBERTSON (1966) and the work of KIMURA (1963). 
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