
THE NUMBER OF HETEROZYGOUS NUCLEOTIDE SITES 
MAINTAINED IN A FINITE POPULATION DUE TO 

STEADY FLUX OF MUTATIONS 

MOT00 KIMURA 

National Institute of Genetics, Mishima, Japan 

Received September 10, 1968 

N natural populations, it is expected that there is a constant supply of muta- I tions in each generation. These mutations may have different persistence 
depending on their fitnesses, but collectively, they constitute the ultimate source 
of genetic variability in the populations. 

Since the maintenance of genetic variability is an important subject of study 
in population genetics, it may be worthwhile to investigate, using various models, 
the effect of mutation on the genetic variability. For example, KIMURA and CROW 
(1964) studied the number of alleles maintained in a finite population, assuming 
that each mutant is an allele not preexisting in the population. 

In the present paper I will use a different model and will investigate the num- 
ber of heterozygous sites per individual and some related quantities that represent 
the statistical properties of the mutant frequency distribution, assuming that a 
very large number of independent sites are available for mutation. In this paper, 
“site” refers to a single nucleotide pair, although the theory is still appropriate 
to a small group of nucleotides, such as a codon. 

THE NUMBER O F  HETEROZYGOUS SITES 

Throughout this paper, I will consider a Mendelian population consisting of N 
diploid individuals, each of which has a chromosome set comprising a very large 
number of sites. Since the effective number of the population may be different 
from the actual number N ,  the letter N e  will be used to represent the “variance” 
effective number (cf. KIMURA and CROW 1963). 

Let us assume that in the entire population in each generation mutants appear 
on the average in vm. sites. We will also assume that the total number of sites per 
individual is so large and the mutation rate per site is so low that whenever a 
mutant appears, it represents a mutation at a previously homoallelic site. 

Now, consider a particular site in which a mutant has appeared. We will 
denote by p the frequency of the mutant form. Let + ( p , s ; t )  be the probability 
density that the frequency of the mutant form in the population becomes z after 
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t generations, given that it is p at t=O. Then, it can be shown (KIMURA 1964) 
that + satisfies the following partial differential equation 

( 1 )  a+(P,x;t> = LV a”(P,x;t> 3+(p,x;t) 
at 2 ap aP2 +Map a p  

where Map and Vap stand for the mean and the variance of the change of mutant 
frequency p per generation. More precisely, the mean and the variance of the 
amount of change in mutant frequency p during a short time interval from t to 
tS6t are Map 6 t  and Vap S t  respectively. The above equation is a time homo- 
geneous form of the Kolmogorov backward equation and is valid only when both 
Map and Vap are independent of the time parameter t. Except for such a restric- 
tion, the equation is quite general. In a typical situation which we will investigate 
more in detail later, we will assume that in each site the mutant has a selective 
advantage s in homozygotes and sh in heterozygotes over the preexisting form so 
that 

Map = sp(1-p) {h+(1--2h)p}, ( 2 )  

vap = p ( l - p ) / ( 2 N e ) .  (3) 

and that the sole factor causing random fluctuation in the mutant frequency is 
random sampling of gametes so that 

We will assume that the parameters p ,  s and sh are the same for mutations at 
different sites. However, if both s and s h  vary from site to site, we may use their 
means Sand &in the following treatments. 

Since any mutant that appears in a finite population is either lost from the 
population or fixed in it within a finite length of time (cf. KIMURA and OHTA 
1969) , under continued production of new mutations over many generations, a 
balance will be reached between production of new mutants and their random 
extinction or fixation. In such a state of statistical equilibrium there is a stable 
frequency distribution among mutant forms at different sites, if we consider only 
the sites in which the mutants are neither fixed nor lost. The main aim of the 
present section is to obtain the average number of heterozygous sites per indi- 
vidual in such an equilibrium population. 

Let us consider the function +(p,z ; t )  in equation ( 1 ) .  Since vm is the number 
of sites in which new mutations appear in the population in each generation, 
vm+ (p ,x ; t )dx  represents the contribution made by mutants which appeared t 
generations earlier with initial frequency p to the present frequency class in 
which the mutant frequencies are in the range x - z f d x  (i.e. from x to z-t-dx). 
Thus, considering all the contributions made by mutations in the past, the ex- 
pected number of sites in which the mutants are in the frequency range x-xt-dx 
in the present generation is 

[vm 1: + ( p , W ) d t I h  ( 4 )  

which we will denote %y 0 (p,x) dx, where O<x< 1. 
Now, under random mating, the frequency of the heterozygote is 2x ( 1  -x) 
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for a site having the mutant with frequency x. So, assuming random mating, the 
total number of heterozygous sites per individual is 

~ ( p )  = J: 22(1- -x)@(p,z )dx  

We note that the integral with respect to x is strictly over the open interval 
(O<x<l) since we consider only sites in which the mutant frequency is neither 
0 nor 1. Actually it would be more appropriate to write the limit of integration 
as 1 / ( 2 N )  and 1-l/(ZN) rather than 0-and 1, but for the sake of simplicity I 
will use the latter limits unless this causes the integral to diverge. In order to 
obtain an equation for H ( p ) ,  we multiply each term of equation (1) by 
v,2x (1 -x) , and then integrate each of the resulting terms first with respect to x 
over the interval (0 , l )  and then with respect to t over (0,m). This yields 

1:; { v m  J: 2x( l - - s )+(p ,x; t )dx)d t  

The left hand side of this equation becomes 

vm I:, 2x(l-4d(p,x;4dz 

- vm j1,22(1-x)+(P,x;o)dx 

which is further reduced to -2p( l -p)vm by applying the conditions 
$J(p,x;Z)  = o  (O<x<l) (7)  

and 
(8) 

where 6 (*) is Dirac delta function. The first condition (7)  follows from the fact 
that the mutant foqtn either becomes fixed or lost within a finite length of time. 
The second condition (8) is simply an expression of the fact that the initial 
frequency of the mutant is p. 

d (p,z;O) = s b - p ) ,  

Thus, we obtain the ordinary differential equation for H ( p ) ,  

(9) 
1 - V 2 

H ” ( p )  *+ M6P H’(p )  + 2vm p(1-p) = 0. 
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and 

u ( p )  = G ( x ) d z  /I: G ( z ) d x  (KIMURA 1962) (13) 

is the probability of ultimate fixation, in which 

where exp { .} denotes the exponential function. 
In the special case of no dominance for which h=i/z, formula (2) gives 

Map = %sp( 1-p). Combining this with the formula for VaD given in ( 3 ) ,  we 
have G (1) =e-2Nesz or G (5) =e-2Sz if we put S=Nes. Then, qH (6) =4NevmeZSE 
(1 -e-2s) /S, and U ( p )  = ( 1 -e-2s’)) / (1  -e-2s). Thus formula (1 1 ) yields 

where S=N,s. This may also be expressed as 
4 v m  

(1 5’)  

H ( p )  =4Nevmp(l--p). (16) 

H b )  =s cu(P>-PI. 

At the limit of s+O, we have 

In a population consisting of N individuals, if the mutant form in each site is 
represented only once at the moment of its occurrence; p=1/(2N) and the num- 
ber of heterozygous sites per individual is given by H(1/2N) in the above for- 
mulas. Thus, for the case of no dominance, we have approximately 

H(1/2N)z4vn,(Ne/N) (17a) 
if the mutant is advantageous such that 2Nes>>1, 

H (  1/2N) =2vva/(Ns’) (17b) 
if it is deleterious such that 2N&>>l in which s‘=-s, and, 

H ( 1 /2N) =2vm (Ne/N) (17c) 
if it is almost neutral such that 12NesI <<I. 

These results suggest that mutations having a definite advantage or disad- 
vantage can not contribute greatly to the heterozygosity of an  individual because 
of the rare occurrence of advantageous mutations and rapid elimination of 
deleterious ones. They also show that in a finite population the total number of 
heterozygous sites per individual is determined by the number of mutations per 
gamete and the population numbers, and not by the total number of sites. 

STATISTICAL PROPERTIES O F  THE EQUILIBRIUM DISTRIBUTION 

UNDER STEADY FLUX O F  MUTATIONS 

The number of heterozygous sites H ( p )  studied in the previous section is but 
one property of the equilibrium distribution @ (p,x) . Namely, it is the expectation 
of 22(1-x) with respect to this distribution. Here @((p,x) represents the stable 
frequency distribution of mutant forms among segregating sites (O<x<l ) such 
that @ ( p , x ) d x  gives the expected number of sites having mutants in the frequency 
range x - x f d x .  
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Now, let us study more generally the expectation of an arbitrary function f(z) 
with respect to this distribution. We will denote such an expectation (functional) 
by I f (p ) ,  that is, 

I f  (PI  = 1: f(x>*(p,x)dx 

Again, the integral with respect to x is over the open interval (0,l) and actually 
it is more appropriate if we use 1 / ( 2 N )  and I - l / ( 2 N )  as the limit of the integra- 
tion, especially when the value of the integral changes significantly by including 
z = 0 and 1. Using the same procedure that was used to derive (9) from ( 1 )  
except that in this case each term of (1) is multiplied by vmf(x) rather than by 
vm2z( 1 - z ) ,  we obtain the following ordinary differential equation for I f  ( p )  : 

$4 V , p I f ” ( p )  + M,pI f ) (P)  + v m f ( p >  = 0 * (19) 

This corresponds to (9) which is a special case of f ( p )  =2p ( 1  -p) . Furthermore, 
since the “mutations” at p=O and p=l do not contribute to the segregating sites, 
C#J (0,z;t) =$ (1 ,x; t )  =O for O<x<l. Therefore we have the boundary conditions 

The solution of equation (19) which satisfies the boundary conditions ( 2 0 )  is 

I f ( 0 )  = Z f ( 1 )  = 0. ( 2 0 )  

(21)  I f ( P )  = {i-u(p)}J: $fr (ou( t )d( t )  - t u b >  1; $dt ) { l -&)}a  7 

$ f ( O  = 2 v m f ( t >  J; G ( x ) d x / { V , p ( C ) )  

where u ( p )  is the probability of fixation given by (13) and 

= 2 v m f ( t >  / {V,p’(t)} 7 ( 2 2 )  

in which u’ ( t )=du( [ ) /d f .  We note here that H ( p )  in the previous section is a 
special case of Zf ( p )  in which f (x) =2z( 1-z) , as comparison of (21 ) with ( 1  1 ) 
clearly shows. Furthermore, there are several other quantities of genetic interest 
that may be derived by assigning various functions of z to f in the above formula 
(21 ). 

The total number of segregating sites in the population at any given moment 
may be obtained by taking f (x) = I  in ( 2 1 ) .  If there is no dominance and the 
random change in mutant frequency is due to random sampling of gametes, 
that is, if 

(23 )  
S 

Man = y p ( 1 - p )  and Vap = p ( l - p ) / ( 2 N e )  7 
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where S=Nes. If the mutant is represented only once at the moment of its occur- 
rence, p=1/(2N), and the above formula reduces approximately to 

assuming that Is1 is small and N is large. The integrals in the right hand side of 
the above formula may be evaluated by using the exponential integrals 

for which fairly extensive tabulations are available (cf. ABRAMOWITZ and STEGUN 
1964). Thus, if the mutant is advantageous such that S=Nes>>l, we obtain 

II( 1/2N) 2vm (Ne/”) (loge(4”es) y + I}, (26) 

Z1(1/2N) 2~m(Ne/N) {--loge(Nes’/N) - y I}. (27) 

where y is EULER’S constant 0.5772. . . . On the other hand, if the mutant is 
deleterious ( K O )  , writing -s=s‘ and assuming Nefl>>l, we obtain 

If the mutation is neutral (s = 0), formula (24) reduces to 

I , ( p )  = -4Nevm{plogep + (l-p)10ge(l-p)}, (28) 

from which we obtain 
I1(1/2N) 2vm(Ne/N){loge(2N) I )}  (29) 

Going back to the general formula (21 ) , the mean and the variance of the number 
of mutants per individual is given by I f  ( p )  with f=2z and 22 (1 -x) respectively. 
The variance of the number of heterozygous sites per individual may be obtained 
from H ( p )  --K ( p )  , where K (  p )  =Zf ( p )  with f= { 2x ( 1 -x) } 2. For the case of no 
dominance corresponding to (23), we have, assuming sZ0, 

where S=Nes and U ( p )  = (1 -e-2sp) / ( 1 -e-zs). On the other hand, if s=O, we have 

(31 1 4 
K ( p )  = 7 NevmP ( 1-p) ( 1 +~-p’> 

Thus, for neutral mutations, the variance in the number of heterozygous sites per 
individual is 

(32) 
4 
3 ( p )  = - Nevmp (1-p) (2-p+p2) 

If p=1/(2N), this gives 
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approximately. The substitutional load in a finite population studied by KIMURA 
and MARUYAMA (1969) is given by If ( p )  with f = s-{ sp2fsh2p ( 1  - p )  } assum- 
ing that sZsh>O in (2 ) .  

Finally, as seen from the definition ( 18) , the distribution function @ itself may 
be obtained from Z,(p) of (21) by putting f(z) =S (z-y), where 6 (.) is the Dirac 
delta function. In this case 

and the first integral in the right hand side of (21) vanishes if y > p  because in 
the integral f S p  and therefore 6 ([--y)=O. On the other hand, the second integral 
vanishes if y<p because in that integral <2p and therefore 6 ( f -y )  =O. Thus, we 
obtain 

for p S y <  1, and 

for O<ylp. The case which may be of the most genetic significance is the one in 
which each mutant is represented only once at the moment of its occurrence so 
that p=1/(2N). In  this case, only (34) is needed to express the mutant frequency 
distribution among segregating sites. Thus writing @ ( y )  for @(1/2N, y )  and 
using the letter z rather than y to represent the mutant frequency, we obtain the 
distribution 

!b(‘9 = 2 v m a  (t-Y-)/{V,p’(E)}, 

@(P,Y) = 2vmu(p) { 1-u(Y)}/{VgyU’(Y)} 

@(P,Y) = 2%L{ l -u (p>}u(Y) / {v ,y~(Y)}  (35) 

(34) 

in which 1/(2N) S z S l - l / ( 2 N ) .  Since from (13), we have approximately 

the above distribution (36) may also be expressed as 

j :G(zm 

V , p ( z )  S b G ( X ) d z  
7 (37) 

where v = v,/(%N) is the mutation rate per gamete per generation, still assuming 
that whenever a mutation occurs it represents a new mutation at a different site 

2 v  @(x) = 

and that each mutant is represented only once at the moment of its occurrence. 
This agrees with the formula obtained by KIMURA (1964) as an extension of 
WRIGHT’S distribution for irreversible mutation, except that v there stands for 
the mutation rate per locus. 

DISCUSSION 

We should start our discussion by examining the adequacy of the present 
model. The basic assumptions of the model are that: (i) a very large (practically 
infinite) number of sites are available for mutation and (ii) whenever a mutant 
appears, it represents a mutation at a new (different) site. However, since we 
are only considering segregating sites, the second assumption may be weakened 
and replaced by the assumption that whenever a mutation occurs it takes place 
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at a site in which a previous mutation is not still segregating. This means that 
the present model is adequate to represent reality if the total number of sites 
available for mutation is very much larger than I, ( p )  the number of temporarily 
segregating sites. 

There are never more than four “alleles” corresponding to four kinds of nucleo- 
tides. However only very rarely will more than two types be present simultane- 
ously so two-allele theory is adequate. 

In mammals, the number of nucleotide pairs making up the haploid chromo- 
some set is estimated to be 3-4x1O9 and this is sufficient to code for 2~ lo6 poly- 
peptides each consisting of 500 amino acids. In other words, the total number 
of cistrons may be as large as two million. On the other hand, the effective number 
of population ( N e )  is probably tens of thousands or less in most cases. 

If in each generation, one advantageous mutant gene appears within the popu- 
lation (v,=l) consisting of N=104 individuals and having an effective number 
half as large (N, /N=0.5) ,  then, assuming s=O.Ol, we have, from (26), I , (  1/2N) 

16.1. This is very much smaller than two million and the model is clearly ade- 
quate to treat such a situation. Mutant genes with definitely deleterious effects 
such as A-O.1 must be much more common. So, if we take -s=s’=O.l and 
~=~,/(2N)=0.1, that is, 10% selective disadvantage and the mutation rate per 
gamete of 0.1, we have, from (27), Z,(1/2N)~6.8x1O3, which is still much 
smaller than two million. There is some possibility that neutral or nearly neutral 
mutations occur at a considerably higher rate of roughly 2 per gamete per gener- 
ation (KIMURA 1968a). If we take v=v,/(2N) =2, we obtain, from (29) , I ,  (1/2N) 
~ 4 . 4 ~ 1 0 ~ .  This is a large number amounting to about 22% of the total number 
cistronic loci, a fraction too large to be neglected. However, the model is appro- 
priate if we consider the total number of nucleotide sites (4x lo9) rather than the 
cistrons. Actually, the present model is most pertinent if we take the individual 
nucleotide site as the unit of mutation. Then I, (1/2N) represents the number of 
nucleotide sites in which mutant forms are segregating in the population. 

Similarly, H (  l/2N) represent the number of heterozygous nucleotide sites per 
individual. Assuming that the majority of molecular mutations due to base substi- 
tution is almost neutral for natural selection and that they occur at the rate of 2 
per gamete per generation ( v=vm/2N=2>, we have, from (1 7c), 

H (  1/2N) z8Ne. 
Thus, in a population of effective size 10,000, the average number of heterozygous 
nucleotide sites per individual is about 8 ~ 1 0 ~ .  Furthermore, from ( 3 3 ) ,  the stan- 
dard deviation of this number is about 230. 

The probability of a particular site being heterozygous for a selectively neutral 
mutant is 4Neu, where U (i.e. u=v/total number of sites) is the mutation rate per 
site. More accurately, if mutation rates are equal in all directions, the proportion 
of heterozygous sites is 4Neu/( 1 4- 16Neu/3) (cf. KIMURA 1968b). However, U is 
of the order whereas N e  is probably less than lo5, so 4N,u is completely 
adequate. 

A cistron of 1000 sites will be heterozygous at one or more sites with probability 
1 - ( 1  -4N eU ) 1000-1 -e-4000Keu . For example, if u = ~ O - ~  and Ne=105, the heterozy- 
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gosity per nucleotide is 4X10-4 and the proportion of heterozygous cistrons is 
1-e-0.4=0.33. 

On the other hand, KIMURA and CROW (1964) and KIMURA (1968b) showed 
that for a model in which each new mutant per cistron is not previously repre- 
sented in the population-a model that should be almost equivalent to the present 
model-the heterozygosity is 4NeU/( 1+4NeU) , where U is the mutation rate per 
cistron. For a cistron of 1000 nucleotides, then, U=10-6 and 4NeU/( 1+4NeU) is 
0.4/(1+0.4)=0.29. 

and 4NeU/ ( 1 +4NeU) is because 
the first permits each site to come to equilibrium independently whereas the 
second regards all sites as completely linked. The truth must usually be some- 
where in between the two models. If intra-cistronic recombination is frequent 
the present model is more appropriate; probably this is so low that the second 
formula is more correct. However, if the number of heterozygous sites per indi- 
vidual is of interest, the formula of the present paper is appropriate. 

There is another interpretation of H (  1/2N) that is of particular use in assessing 
the substitutional load based on competition. Since Z f ( p )  with f=2s( 1-s) gives 
the variance of the number of mutants per individual, am = dH(1/2N) is equal 
to the standard deviation, if each mutant is represented only once at the moment 
of its occurrence. Now, let us assume that in each generation definitely advan- 
tageous mutations with respect to competitive ability occur at vm of the sites. 
Then, at statistical equilibrium in which the gene substitution is proceeding at a 
constant rate, the difference in the number of mutant sites between an average 
individual and the one having the most probable largest number of mutants 
within the population is 

times of U,. The above asymptotic formula (38) is FRANK’S formula giving “the 
most probable largest normal value” (cf. GUMBEL 1958). 

Let K be the average number of gene substitutions in the population per genera- 
tion so that K=vmu(l/2N) (cf. KIMURA and MARUYAMA 1968). Then the substi- 
tutional load measured in Malthusian parameters with respect to competitive 
ability may be given by 

The lack of correspondence between I 

2x.I  M -\/210g, (0.4N) (38) 

- s -  Le = - s??,i um. 
2 (39) 

Assuming no dominance and enough selective advantage (Nes> > 1 ) , we have 
approximately U ( 1/2N) =s ( N e / N )  and U, = -\/4v, (Ne,”) , and therefore, 

where 
ze = d2Ksloge (0.4N) (40) 

K = vms (Ne,”) (41) 
For example, let us consider a population of N=25,000 in which gene substi- 

tution is being carried out at the rate of 2 per generation (K=2). If the selection 
coefficient of the advantageous mutant gene is s/2=0.1, we have Lez2.7 from 
(40), namely, disregarding environmental effects an individual carrying the 
largest number of advantageous mutant genes in the population must have about 
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e2.7 or 14.9 times as many offspring as the average individual. In this case, the 
actual number vm of advantageous mutations appearing in each generation is 20 
from (41) assuming that Ne/N=0.5.  On the other hand, if the selection coefficient 
is one hundredth as large (s/2=0.001), the load becomes 1/10 as large ( L ~ 0 . 2 7 )  
but the number of advantageous mutations must be 100 times more frequent 
(~,=2,000) , such that one out of every 25 gametes carries a new advantageous 
mutation in each generation. This is a very high rate of production of advan- 
tageous mutations comparable to that of recessive lethal genes. 

The mathematical treatment in the present paper enables us to obtain not only 
the average number of heterozygous nucleotide sites but also various statistical 
properties of the mutant frequency distribution attained under a steady flux of 
mutations including the frequency distribution itself. The gene frequency distri- 
bution obtained by FISHER (1930) assuming a supply of one mutation in each 
generation and also the distribution obtained by WRIGHT (1945) assuming irre- 
versible mutations were both the solutions of the appropriate forward equations 
under the condition of constant probability flux. The present treatment shows 
that they are special cases of equation (37) derived by assigning a special function 
t o f ( z )  in (21). 

I believe that the present treatment has brought some refinement and extension 
to the great work of WRIGHT (1938, 1942 and 1945) on the distribution of gene 
frequencies under irreversible mutation. By so doing I hope to penetrate into the 
domain of population genetics at the molecular level. 

I would like to express my thanks to  DR. J. F. CROW for reading the manuscript and making 
valuable suggestions. 

SUMMARY 

A theoretical treatment was presented which enables us to obtain the average 
number of heterozygous nucleotide sites per individual and related quantities that 
describe the statistical property of the mutant frequency distribution attained 
under steady flux of mutations in a finite population.-The main assumptions of 
the model are that (i) a very large (practically infinite) number of sites are avail- 
able for mutation and (ii) whenever a mutant appears, it represents a mutation 
at a new (different) site. Such a model may be particularly realistic if  we con- 
sider the individual nucleotide site rather than the conventional genetic locus as 
a unit of mutation.-In a population consisting of N individuals and having the 
variance effective number Ne,  the average number of heterozygous sites per indi- 
vidual due to neutral or nearly neutral mutations is 2v,N,/N, where vm is the 
number of sites in which new mutations appear in the population in each genera- 
tion.-In a mammalian species having the variance effective number of 10,000, if 
the majority of molecular mutations due to base substitutions is almost neutral 
for natural selection and if they occur at the rate of 2 per gamete per generation 
( vm/2N=2) , then the average number of heterozygous nucleotide sites per indi- 
vidual becomes about 8X104 with the standard deviation of about 230. 
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