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EASURES of inbreeding for linked loci have been defined by several authors, 
including HALDANE ( 1949) ,, SCHNELL (1 961 ) and SHIKATA (-1 962). These 

measures were defined to give the probability that genes at each of several linked 
loci were simultaneously identical by descent. A method for determining these 
quantities for  pedigrees of individuals or for systems of mating other than selfing 
had not been developed. 

By introducing trigametic and quadrigametic measures in addition to the usual 
digametic ones, COCKERHAM and WEIR (1 968) were able to evaluate an inbreed- 
ing function for all generations of a sib mating system. This paper extends that 
work to procedures that will accommodate pedigrees of individuals and all pedi- 
gree mating systems. Finite populations will be considered elsewhere. 

The object of this investigation then is to determine for a disomic individual 
with a known pedigree, the probability that two linked autosomal loci carry genes 
identical by descent. At the same time other probability measures are developed. 
No restriction is placed on the number of alleles per locus. 

DEFINITION O F  MEASURES 

The general measure is defined as in  COCKWHAM and WEIR (1968). For any two distinct 
genes, a, a' at one locus, and any two distinct genes b, b' at another locus, a general measure 
X(ab, a'b') is given by: 

X,,(ab, a'b') Prob(a E a', b b') 

[I::::::: Z'L'J = [rob(a Prob(a + .f a', a', b b +I b') 

X(ab, a'b') = X,,(ab, a'b') Prob(a E a', b + b') (1) 

The identity sign = means identity by descent. 
Now the four genes in the argument of X may be carried on two, three, or four distinct 

gametes. In  the digametic case, a distinction will be made when the two gametes unite. There 
are thus four cases to be defined: 

FA =X(ab3A,a'b'3A), 
~9~~ = X(ab E B, a%' E c), 
Y ~ , ~ ~  = X(ab E B, a' E D, b' E E), 
- >  81.C,DE = X(a E B, b E C, a' ED, b' E E). 

One digametic measure (2) expresses the fact that ab, a'b' are on gametes which unite to form 
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an individual A, while the other digametic measure (3) is for gametes ab and a'b', formed by 
individuals B and C respectively. Individuals B, D, E, form gametes carrying ab, a', b' re- 
spectively, for  the trigametic measpre (4), and a, b, a', b' are on four distinct gametes, from 
individuals B, C, D, E, respectively, in (5). The convention of reserving small letters for genes 
and capitals for individuals will be maintained throughout this discussion. In usual terminology, 
FA is the two locus inbreeding function of individual A and !Bc is the two locus coancestry 
function of individuals B and C. When A is an offspring of B and C, as in Figure 1, equation 
(6) holds. 

F, = Buc . (6) 
All measures are vectors with four components which sum to unity. The first and fourth 

components of FA, corresponding to the probabilities of double identity and double non-identity, 
are termed the two locus inbreeding and panmictic Coefficients, respectively, for A. Equation (1) 
and (2) show that the sum of the first two and the sum of the first and third components of FA 
are just the one locus inbreeding coefficients for the a and b loci, respectively. They are written 
as F, , and F,,,, or if they have the same value, as FIA. Similarly the sums of the remaining 
two components may be written as Fo,, and F,",,, or FOA. Table 1 gives marginal totals for the 
remaining three measures. 

For the two loci being considered, the linkage parameter X is such that the gametic array 
produced by an individual with genotype abja'b' is 

l + X  l + X  1-1 1-1 

4 4 4 4 
(- ab, - a'b', - ab', - a'b) . 

GENERAL EXPANSIONS 

The method of determining the inbreeding function F for some generation of 
an inbreeding system is first to express F in terms of the measures for the previous 
generation. Either the expansions are then carried back to the initial population, 
or a set of transition equations is solved for F. In either case, the expansions of 
measures back to the preceding generation must be established. 

The general method of expanding each of the measures will be demonstrated 
with reference to the pedigree of Figure 1. 

In the expansions, averages of measures will sometimes be used. The notation is 

A 

FIGURE 1 .-The general pedigree. 



TWO LOCUS INBREEDING FUNCTIONS 

TABLE 1 

Marginal lotals of measures 

925 

' i lBC '1OBC . 1 '1.BC 

'OlBC 'OOBC 1 'O.BC 

I 
'.lBC '.OBC i 1  

Y l l B ,  DE YlOB. DE I '1.BD 

YOIB, DE ~ 0 0 ~ .  DE j 0 0 . ~ ~  

I 
'.,BE 0 . 0 ~ ~ .  1 '  

p , ~  = ?h  DE + p , E D ) ,  

f i B C , i ~  = '/z ( f i B c , ~ E  + ScB,,E). 

Digametic measure expansions are coiisidered first, t9BC being used as an ex- 
ample. From Figure 1 it can be seen that a gamete a'b' from individual C is a 

parental type from either G or H with probability - in each case, or a recom- 
binant type with a' from G and b' from H, or vice versa, each with probability 
l - A  

4 

4 B C . E  = '/z (BBC,DE + 4BC,ED) 7 

1 f A .  
4 

. Hence the followinp expansion: 

[X(ab E B, a'b@ E G) rt X(ab E B, a'b' E H)]  
1 + A  

X(ab E B, a'b' E C) = - 
4 l-A 

4 +- [X(abEB,a'EG,b'EH) + X ( a b e B , a ' ~ H , b ' ~ G ) l ,  

(7) 
l + A  1-A -.. d B C  = 8 B ( G I I )  = [dBG + E B H l  f - 2 3 B . G .  4 

For an example of a ti-igametric measure expansion, consider yB,GH. The gamete 
ab from B is replaced by its values in the previous generation. 

X(ab E B, a' E G, b@ E H) =-+X(ab E D, a' E G, b' E H)*+X( ab E E, a' E G, b' E H) ] 

- 
l + A  

[X(a E D, b E E, a' E G, b' E H)  + X(a E E, b E D, a' E G, b'e H)], 1 -A +- 
4 .  

(8) 
1 a+ A 1 - A  

Y B , G H = _ Y ( D E ) , G N = T  [ Y D , G H + z E , G H I  +-- l E , G H .  

A similar equation is obtained for yB,HG, so that 

(9) 
1 T A  l - A  

Z B , ~ H  _Y(DE) ,a'fi = - 4 [ ID ,=  + l E , d  +?&%,=* 
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Combining equations (7) and (9) finishes the expansion for jBc in terms of 
measures involving the parents of B and C. 

As an example of a quadrigametic measure expansion, consider &,E,,,. The four 
genes are now on separate gametes, so each has probability of one half of coming 
from one of two individuals. For example 

X (aeD, beE, a’eG, b’eH) = ‘/z [X (aeK, beE, a’eG, b’eH) 4- 
X (aeL, beE, a’eG, b’eH) 1,  

$DE,GH = i ( K L ) E , G I I =  % [gKE,GII+ cLE,GH] * (11) 
The parents of E, G a n d  H may also be brought in to complete the expansion. 
This method of treating one gene at a time may also be used to finish expanding 
- 7 B . E :  

1 + X  
1 (DE), (PQ)H = 8 [ l D , E  + - y D , E  f - YE,= + - YE,=] 

The parents of H can also be brought into the expansion. 
In  these general expansions, quadrigametic measures expand back to quad- 

rigametic measures. Trigametic measures expand back to trigametic and quadrig- 
ametic measures and digametic expand back to digametic, trigametric and 
quadrigametic. If the number of letters in the subscript of a measure is termed 
the order of the measure, these last statements may be restated as: in general 
expansions, measures expand back to measures with as great as or greater order. 

SPECIAL EXPANSIONS 

Although the X measures are defined for distinct genes, a, a‘ and b, b’, no 
restrictions are placed on the individuals from which these genes originate. When- 
ever one individual does provide more than one of the distinct gametes for a 
measure (so that the individual appears more than once in the subscript) special 
expansions are needed. If the individual provides two genes at one locus, they may 
be copies of the same gene in that individual and so automatically identical by 
descent. There is also the fact that genes on any number of gametes produced by 
one individual can only have been carried on one or  two gametes in the previous 
generation. Thus, when an individual occurs more than once in the subscript of 
a measure, the expansion includes a measure of a lower order. 

One special expansion, that for e,,, will be derived here and the remaining ten 
special cases listed in the appendix. Details of derivation of those are given by 
WEIR (1968). 

For _e,,, the two gametes ab, a’b’ from individual B, are each replaced by their 
gametic arrays. These arrays are identical and equal to 
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TABLE 2 

Expansion of B~~~~ 

92 7 

'11BB 

ab 
l + h  l + h  1 - h  1 - h  

4 4 4 4 
- - - -  

aEbE aDbD 'DbE 

where subscripts indicate from which parents the genes came. These arrays are 
arranged as headings in a two-way table (Table 2), and the probabilities that the 
two gametes carry genes identical by descent are entered in the body of the table. 

Collecting all the terms from Table 2 gives 

- 1 + A 2  
- e l . l E D  + i/z elOED + 1/2 BOlED + ___ BOOED * 4 

Applying the same procedure for the other three components of B,, leads to the 
following equation: 

flBB = % - - -  

4 
1 f X "  0 0 0 -  

4 -  
= @ ( A >  F,, (13) 

where @ ( A )  denotes the 4 X 4 matrix. Note that F, is of lower order than fl,,. 
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SPECIFIC PEDIGREE 

First to be considered are pedigrees of specific individuals. It is required to de- 
termine the inbreeding function of some specified individual when the common 
ancestors of its parents are of known relationship and degree in inbreeding. 

The inbreeding function of the individual is expanded back to digametic, 
trigametic and quadrigametic measures involving its parents. These measures in 
turn are expanded back to measures involving their parents. This process con- 
tinues until the inbreeding function under study has been expressed entirely in 
terms of measures involving the common ancestors, whereupon the numerical 
values for these measures are substituted. 

As an example, consider the pedigree of Figure 2. For the one locus coefficients 
direct application of WRIGHT'S general formula gives 

Fit= (%)3[1  +FIG] + (%)'[I + F i ~ l ,  
Fiji= (%)'[I +Ficl + (%)'[I +Fm] + (%)'[1 +F1~1+ (%)'[I +FIG], 

which assumes that G and H are unrelated and thus FID is zero. (If G and H are 
related, elGH = F,, is not zero and Flc must have 1/2 F I D  added to it while F 1 A  

must have (%) 'F,, added.) If further, G and H are non-inbred 
Fic = x ,  F i A  1 $5. 

FIGURE 2.-Specific pedigree. 
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The two locus inbreeding function F A  is expanded back until it is expressed 
entirely in terms of measures involving only the common ancestors C, D, H and G. 
There will be need for the special expansions listed in the appendix. From (6) 

F A  = B B c ,  

which, from (7) 
- l + X  1 + h  l-h e,, + yc,w * -- LE ecc,+- 

4 
This expansion also illustrates the general rule that the first stage of an expansion 
is to the parents of the' youngest individual in the subscript. Using the expansion 
in equations (13), (7) and (36) for Bee, and y c , ~  - gives 

1 -A 
I + -1 YE,DD 7 

(l-A) (2+h) 
8 - 8 -  + 

where I is the 4 x 4 unit matrix, and_BDE is written as Fc. The expansions of equa- 
tions (36) and (33) are now used to expand yn , i j z  and YE,DD to measures involving 
the parents of D, while general expansions su%ce for t6e parents of E. They lead to 

As a final step the tri- and quadrigametic measures involving D are expanded 
written as FD back to measures involving G and H. The final expansion, with 

is 

l-A + [GI+ (l-A) 32 (2+X) @pi) + (?)$(A) + - i € ~ ( i ) @ ( x ) ]  8 FD 

If G and H are assumed to be non-inbred and unrelated 
F G  = FE, = F D  = [I O,O,O,l ] ' . 
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The inbreeding function of C, the offspring of non-inbred full sibs, which can be 
evaluated by an expansion similar to that above, is 

(14) 

This follows from combining values of the locus coefficient F,, (which equals 
F,,, f F,,, or F,,, + F,,,) found above and of F,,, given by previous authors 
(HALDANE 1949). For the trigametic measures yG,HH and yH,GG there is no chance 
of identical genes, so 

YG,HH = yH,GG = [O,O,O,l]’ . 
The measures y G ; ~  and yIr,G howeier do involve two genes at one locus from the 
same individd,  so that- 

Y c + , ~ = p , ~ =  [o, $ 4 7  %, 1/21’. 
The quadrigametic measure !=,= is the average of the four measures ~ G H , G H ,  

- 

- ~ G H , H G ,  ?HG,GII andJHG,HG, and has the value 
L?GTI,m= [1/87 1/87 1/87 5/81’. 

Substituting the values of the measures for the common ancestors into the com- 

. (15) + 47X3 + 20X4 + 10X5 + 4X6 + h7)/512 
10h5-4X6-h7)/512 

+47X3 + 20h‘ 4- 10X’ + 4X6 + Xi)/512 
(128 - 1 O X  - 36h2 - 47h3 - 20h4 - 10h’ --A6 -h7)/512 1 

For complete linkage ( A  = l) ,  F,,A = FIA = i/z, while for free recombination 
( A Z O ) ,  F l l A = F 2 1 A = i / .  

PEDIGREE SYSTEMS O F  MATING 

When there is a constant mating pattern for every generation, the above 
approach is neither practicable for long pedigrees nor necessary. Instead, recur- 
rence relations for various measures are established. 

As noted in COCKERHAM and WEIR (1968), the fact that the marginal totals in 
Table 1 can be found from the one locus inbreeding and panmictic coefficients, 
means that only one component of the two locus inbreeding function needs to be 
found. For convenience the two locus panmictic coefficient and corresponding 
(fourth) components of other measures are used. 

Because of the recurring nature of the pedigree systems, a new notation is 
introduced. Instead of being subscripted according to individual, measures are 
superscripted according to generation. Subscripts refer to individuals providing 
gametes in the argument of the measures while superscripts refer to the generation 
formed by the gametes. 

The object is to find a set of simultaneous transition equations between values 
in successive generations of a minimal set of (fourth components of) measures. 
The two locus panmictic coefficient is necessarily a member of this smallest, or 
complete, set of measures. Any member of a complete set of measures in gener- 
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U V 

t 

t +I 

t + 2  

I 

FIGURE 3.-Backcrossing to the same parent pedigree. 

ation (t+l) can be expressed in terms of members of the set in generation t .  
The first step is to expand F;:l back into measures of the previous generation. 

The types of additional measures necessary on the right hand side of this equation 
are noted, and transition equations established relating their values in generation 
( t+l)  to values of measures in generation t .  This process is continued until there 
are just enough (s) equations. The complete set of measures, of order s, is such 
that if any measure is removed from the set, the transition equations of the 
remaining (s-I ) cannot be expressed in terms of only themselves in the previous 
generation. 

As F:?l is of principal interest, the s simultaneous transition equations are used 
for its determination. If s is sufficiently small this can be done directly. Consider 
for example the parent offspring pedigree of Figure 3 where each mating is a 
backcrossing to the same parent. 

In that figure, individuals A, B, C are in generations t+2, t+l ,  t respectively. 
The initial pair U and V are not related and their offspring is in generation 0. The 
case where they are also non-inbred will be considered first. Expanding the two 
locus panmictic coefficient for A gives 

1 +.A 1--h 
FOOA = eoOBU = - reoow + eooCul + y o o u , ~  . 4 

From equation (1 3) 
1 + A 2  

4 eoouu = - 

because Fu = [ O ,  0, 0,1]' when U is non-inbred. Equation (16) can thus be written 
as in (I 7)  where +t+l is an abbreviation for yoOc,=. 



932 B. S. WEIR A N D  C. CLARK COCKERHAM 

Now an expansion must be given for the additional measure yooc,E = +t+l intro- 
duced in (16). Expanding to the parents of B gives 

(18) 
From the appendix, equation (31), 

since U is non-bred, and this value substituted into (18) gives 

yoou,GT = i /z yoou,uu + i /z yoorr,cu 

yoov,uu = ?4 7 

@+' 1 /a + % +f+l * (19) 
Eliminating + from (1 7) and (19) provides the recurrence relation for the two 

locus panmictic coefficient: 
3 + A  - 1 + A  3 --A+ A* + A 3  Ft + 2 '1 ,- Ft 4-1 I _  

00 4 O0 8 Fk+ 32 
As U and V were unrelated their offspring is non-inbred, so that FO,,= I. The 

first value of + is +" = y o o v , ~  which is equal to i / .  Equation (1 7) then gives the 

. Substitution of h = 1 other initial value required for (20) : F1,, = 
into (17) gives the usual (JENNINGS 1916) one locus equation: 

Combining values found from equations (20) and (21) enables the following 
inbreeding functions to be found: 

9 + A  + A'+ A 3  

16 

FE+' = % + y2 F:+', F,' = % . (21 1 

Fo = [O,O, 0, I]' 

(3 - X - X 2  - X")/16 
(3 - h - X' - X3)/16 

9 + 2h + 6X'+ 6h3 +h')/6Z 
(15 - 2X - 6X' - 6X3 -A4)J64 
(15 - 2h - 6h' - 6X3 - h")/64 + 2X + 6A2 + 6h3 + A*) /64 - . . . .  

( 3  - - A'- h3 

In all generations F,, = F, if 
A more practical case may now be considered. This mating scheme is often 

used when U and V are unrelated but each is completely inbred. Equation (1 6) 
still holds, but because any two genes at one locus from U must now be identical, 
Ooouu = y o o L T , ~  = 0. The recurrence formula for Fo, thus follows immediately 
from (16): 

= 1 and Fo0 = Fi if h = 0. 

Substituting h=l gives the equation for the one locus panmictic coefficient, 
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which, together with (22) leads to the recurrence relation for the whole vector F. 

Ftf1- - i % % -  FO= 0 (23) 
- 

l+h 1: ikjFt, l+h I] 
0 0 0 -  

This system is very similar to selfing, for which the appropriate transition 
equation (SHIKATA 1962; NARAIN 1965) follows from equation (13): 

Ft+' = @ ( A )  Ft . 
The matrix @ ( A )  differs from that in equation (23) only by having each X re- 
placed by X2, so that the two systems differ only when linkage is neither complete 
nor zero. The matrix in equation (23) may be written as @ (da. 

Numerical values of F,, for backcrossing to the same parent for each of the two 
initial conditions are shown in Figure 4. The curves for initial double identity also 
represent a selfing system, i.e., the curves for X = 0.8 and X = 0.5 are also selfing 
curves for h = 0.89 and h = 0.71. The boundary curves (A = 0, h = 1) for initial 
identity and selfing are the same. For the system with initial non-identity, which 
does not tend to complete identity, the values at the right of each curve indicate 
the limiting value of Fll. This example has illustrated the procedure for systems 
with a small complete set of measures. 

For complete sets of larger order, matrix techniques must be used to solve the 

51 

1.0 

1 2 3 4 5 6 7 8 
Generat ion 

FIGURE 4.-F;, for backcrossing to the same parent. 

1.0 

050 

10 38 
0.29 
0.25 
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t -  1 

t + l  

t 

FIGURE 5.-Mating to the younger parent pedigree. 

simultaneous transition equations for F,,. The s transition equations are written 
in the form: 

where U: is the s-vector [Fo,, X,,,, . . . , XoOs-,] of measures in the complete set, 
and 0 is an s x s transition matrix. Since the minimal equation f (x) of the tran- 
sition matrix is the equation of lowest order satisfied by the matrix itself, the 
simplest recurrence relation for F,,, must follow from that equation (COCKERHAM 
and WEIR 1968). In particular, it is the first component of the vector equation 

f(n) ut=O. 
When f (x) has factors, that factor g(x), of smallest order, such that g(a)ut  has 
zero first component gives the required simplest recurrence relation. 

The procedure was demonstrated for sib mating (s = 6) by COCKERHAM and 
WEIR (1 968), and will be used here to treat parent offspring mating where each 
mating is to the younger parent as in Figure 5,  where A belongs to generation 

ut+1= Ut, (24) 

( t + l ) .  
Once again, the first step is to expand F,,,,. 

l + A  1 -A  
&ocB,= - [eoocc + eoucDi + - ynnc,?E Fnoa 4 

i.e. 

Note the introduction of the abbreviation at for yooc,cy. Other abbreviations will 
be introduced in the following equations without comment. The two additional 
measures introduced here must be expanded, using the special expansions. From 
equation (1 3) : 
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1 +A2 
4 eOOBB=- Fool3 , 

i.e. 
From the appendix, equation (36) : 

Y O O B , E  = % ( y O O C , s  + yOOD,CC) 7 

&+I= I i.e. /4 
From the appendix, equation (33)  : 

YOOC,BB = % (eOOCC + eOOCD) + i /z  y O O C , s  ? 

i.e. /P+l=% (+"+io) + '/z a t .  (28) 

The complete set (Foe, 4, a, 8)  is thus of order 

--- 
4 2 

0 

0 

% ' / z  
From the characteristic equation of the transition 
formula is found: 

4, and the transition 

% 1 0 

matrix, the following 

equation is 

(29) 

' recurrence 

2 + X  2 + ~ + ~ 3  Ft+z- 1 f 5 X + A 2 + f 3  t + l -  X ( l  +X2) 
Ft+4=-F:z3+ 00 4 16 00 64 FO" 64 Fio * 

(30 )  
When X = 1, the usual one locus equation (JENNINGS 1916) is found: 

so that Ft,, = Ft,. When X = 0, the equation is that found for sib mating by 
COCKERHAM and WEIR (1968) : 

so that Fi0 = (Fi) z. Mating to the younger parent and full sib mating thus differ 
only when linkage is neither complete nor zero. Figure 6 gives curves for F,, for 
various linkage values. 

F t + z  = I 
"0 Ai F:,+l + 34 q0 7 

1 F ~ , + 1 = ' / z F t + z + ~ F t + l -  0 0  00 aF:, , 

DISCUSSION 

A method has been presented which enables the determination of the two locus 
inbreeding function in the presence of linkage. Various probability measures are 
defined for two, three, or four gametes, and the method rests upon relating values 
of these measures for the offspring to their values for the parents. 

All possible types of expansions of the measures have been listed, and they fall 
into two classes according to whether the gametes all come from different indi- 
viduals or not. If distinct individuals are involved the measures expand back to 
measures of equal or smaller order. For specific pedigrees, the inbreeding func- 
tion of an individual is expanded back until it has been expressed in terms of 
measures involving the common ancestors of its parents. For pedigree systems of 
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0.0 ' I I I I I I I I I I I 

0 2 4 6 8 10 12 14 16 18 20 22 24 
Generat ion 

FIGURE 6.-F,, for mating to the younger parent. 

mating a set of transition equations for the fourth components of a complete set 
of measures is derived and written in matrix form. 

Calculating even the first few powers of the transition matrix to provide alge- 
braic expressions for F,, (and hence F) , or calculating the minimal equation of 
the matrix to give a recurrence relation for Fa,, is practicable only for small 
matrices. A more useful analysis is provided by numerical values of the inbreed- 
ing function for various linkage values. 

The limiting behavior of an inbreeding system, as regards the loss of double 
non-identity, is characterized by the largest eigenvalue of the transition matrix. 
AS this eigenvalue satisfies the factor of the minimal equation furnishing the 
recurrence formula for F,", it must be the limiting value of the ratio of successive 
values of Fan. One minus this limiting rate of loss of double non-identity may be 
termed the rate of inbreeding. If the largest eigenvalue for a certain amount of 
linkage is written as ,u (A) , and v (A)  is any other eigenvalue, then for t sufficiently 
large for [v(A)Jp(A)lt to be negligible: Ft,S1 = p(h)FF,, and FF+l = p(I)Ft,. 
Using the relations Fa = F,, + F,, = Fa, + Fin and F,, = 1 - F,, - Fa, - F,, the 
following equation is obtained. 

l - P ( l )  I-,u(1) l+P(A)-2,u(l) 

P ( I >  -CL@) 

P (1)  -/&> 

CL (A) I Ft ,P(1)  0 

0 P ( 1 )  
Ftf1 = 

0 0 

It can be shown that @(A) is a monotone increasing function of h (WEIR 1968). 
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TABLE 3 

Largest eigenualue of transition matrix for mating to the younger parent 

93 7 

x a ( k )  

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

.65451* 

.65613 
,65919' 
.66407 
.67131 
.68161 
.69587* 
.71508* 
.740 13 * 
.77148* 
.80902* 

* Values also found by BENNETT (1954) 

Table 3 gives values of p(h)  for mating to the younger parent, where asterisks 
denote values found previously by BENNETT (1954). While his approach was 
different, the largest eigenvalue of his 8 x 8 matrix also gave the limiting rate of 
decrease of double non-identity. 

To characterize the effects of linkage on the identity by descent of two pairs 
of linked genes, an identity disequilibrium function (COCKERHAM and WEIR 
1968) is defined. This function has four components, each with the same numer- 
ical value: 

i, i = 0, 1 t - Ft - FtFt 
9,i - 1.3 1. 3 

&=-  910 - -- 101 - - T o o  . 
For a non-inbred initial population, $"' = 0 and if complete double identity is 
obtained finally, r ] ;  = 0. For all other generations qll is positive, so that 

a', b 
as noted by HALDANE ( 1  949). 

For selfing the maximum disequilibrium for any value of A occurs in the first 
generation, for sib mating (COCKERHAM and WEIR 1968) in one of the first three 
generations, and for mating to the younger parent in one of the first four genera- 
tions (Table 4). For backcrossing to the same parent and initial double identity, 
the maximum identity disequilibrium is always in the first generation, but for 
initial double non-identity the generation ranges from the first ( A  = 0.1) to an 
infinitely distant one ( A  = 1 .O) . 

In general, any pedigree has no identity disequilibrium for zero linkage and a 
disequilibrium value of 

for complete linkage, which has a maximum of 0.25 at F, 0.5. Other linkage 
values give disequilibria between these two bounds. The family of F,, curves for 
any pedigree system of mating is bounded by the curves for F, and F: which 

Prob (a b') > Prob (a = a') Prob (b 5 b') , 

vi i=Fi(1  -F i )  
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TABLE 4 

Maximum value of identity disequilibrium and generation of attainment 
for mating to the younger parent 

Linkage parameter Maximum identity disequilibrium Generation 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

.o 

.0069 

.0155 

.0261 
,0390 
.0550 
.0745 
.lo37 
.1394 
.I883 
,2500 

0 
2 
2 
2 
2 
2 
3 
3 
3 
4 
4 

converge as F, approaches unity. Thus, the generation of maximum identity 
disequilibrium varies from zero for 0.5 
for h = 1, which in the latter case increases with the number of individuals in the 
system of mating. However, linkage effects do not increase linearly with the 
amount of linkage, for F;,, and p ( X )  (and hence Ft and 7 f I  ) are polynomials in A. 
As can be seen from Figures 4 and 6 and Tables 3 and 4, linkage effects are 
appreciable only once 

Now that a way for treating inbreeding with two linked loci has been estab- 
lished, it is clear how greater numbers of linked loci may be accommodated. For 
each additional locus considered only one component of the n locus inbreeding 
function needs to be determined since appropriate marginal total of the 2" com- 
ponents are equal to the inbreeding functions for smaller numbers of loci. Enum- 
eration for specific pedigrees would be impracticable for very large n unless a 
computer was used for specified values o€ A. For systems of mating, transition 
equations for  a complete set of measures could be established, but again numer- 
ical methods would be needed to solve them. 

Identity disequilibrium functions could be defined to express the effects of 
linkage on the inbreeding functions. Consider the three locus case for example. 
The eight components of the inbreeding €unction for the a, b, c loci are written as 
F,,, (i, j ,  k = 0, 1). Disequilibrium could be measured by Ft7k - F,F,Fk, but this 
includes two locus disequilibrium effects. If only the b and c loci were linked for 
example, this function would be F,F,k - F,F,Fk = FrTbclk. Hence the following 
quantity is defined to measure that three locus identity disequilibrium not ac- 
counted for by two locus disequilibria: 

= 0 to the generation for which F, 

is about 0.7, after which they increase rapidly. 

7abcLIk  Frjk - F,F,Fk - Fiqbc,k - FjVcaki - FWab,). 

Once again there is only one numerical value, for, dropping the abc subscript: 
- - 7111 = 7011 = - 7101 = 71110 = Vl00 = golo = To01 = - 7000. 
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The maximum three locus disequilibrium must occur when the three loci are 
completely linked. In  this case F,,, = F.ll = F1., = Fll. = F, and 

which is positive until F, = 0.5 and negative thereafter. It is large relative to Fill 
only when F, is small, and in this region is also comparable to 3F1q11. As linkage 
decreases qlll rapidly decreases for it involves polynomials in linkage parameters. 

There would seem to be little point though in deriving empirical results for 
more than two loci. For n loci, the family of curves for the n locus inbreeding 
coefficient is bounded above by F, and below by and these bounds converge as 
Fl approaches unity. The inbreeding coefficients are monotonic functions of the 
linkage parameters so that linkage increases the probability of identity at all loci. 
Similarly the n locus panmictic coefficient increases from to F,, so that linkage 
also increases the probability of non-identity at all loci. 

In summary then, the primary effects of linkage can be summarized in terms 
of two loci effects except in the cases of extreme linkage when one locus results 
are good approximations. The effects of linkage on inbreeding functions are to 
increase the frequencies of the classes of all identity or non-identity at the expense 
of all other classes. 

qi i i  = Fi(1 -Fi) (1 -2F1), 

SUMMARY 

A method for determining the two locus inbreeding function for pedigrees of 
individuals is discussed, and illustrated for a specific pedigree and two forms of 
parent offspring mating.-A general function with four components, each of 
which is a probability statement concerning the identity by descent of any two 
pairs of genes, is defined. Three broad classes; digametic, trigametic and quadri- 
gametic of the function are discussed. When the two pairs of genes are on uniting 
gametes, the digametic function is just the two locus inbreeding function.-For 
specific pedigrees the two locus inbreeding function of an individual is expressed 
in terms of functions involving just the common ancestors of its parents. For pedi- 
gree systems of mating, simultaneous transition equations for a complete set of 
functions, which includes the inbreeding function, are established. A minimal 
equation of the transition equation yields the recurrence formula for the two locus 
panmictic coefficient, while the largest eigenvalue of the matrix gives the limiting 
rate of loss of double non-identity for the system.-Some general conclusions 
regarding the effects of linkage on inbreeding are drawn. 
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