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N the preceding paper ( SCUDO and KARLIN 1969), several one-locus models for I assortment based on the phenotypes with complete dominance were analyzed. 
Complete dominance is common for assortment on traits like color and pattern. 
Some cases are known, however, where some mating choice is based on chromatic 
traits determined by a single locus with other forms of interaction (SHEPPARD 
1952). Assortment is also known to occur for other morphological and behavioral 
traits. The genetics of such traits is, however, not well developed up to the present 
time. 

This paper will be mainly concerned with assortment based on a pair of alleles 
where the heterozygote can be distinguished from both homozygotes. As in the 
first paper, we delimit a model by specifying the effects of a tendency to assort on 
the individual reproductive behavior and the fertility. We further restrict OUT 
consideration to the Gase in which the preference is manifested only in one sex. 
In most cases it does not matter which sex assorts but, for definiteness (reflecting 
the most common case in nature), the female is stipulated to be the assorting sex. 

Paralleling the development of the preceding paper, we shall be mainly inter- 
ested in the direct evolutionary effects of assortment; the production of gene 
substitutions or the maintenance of partial genetic isolation between two ppula- 
tions. In contrast to the case of dominance, assortment for autosomal traits with- 
out dominance can also produce stable polymorphisms. 

Formulation of the Models 
We consider first a particula case in which the heterozygote behaves differ- 

ently from both homozygotes. To account for assortment in a general formulation 
would involve six parameters. Corresponding to each genotype it would be 
necessary to prescribe the fractions of individuals who refuse to mate with the 
other two genotypes. 

Instead of examining the model in its most general form we assume that 
individuals assort only on the basis of the genotype being different. In other words, 
assorting individuals would just prefer a pa’artner of their own genotype. The 
propensity for assortment for the three genotypes, AA, AA’ and A’A’ is described 
by the parameters CY, p and y, respectively: That is, a fraction OL of the females of 
genotype AA “tend to” mate with their own kind while the complementary 
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fraction mates at random. Similarly for p and y.  The frequencies ob the genotypes 
in the rzth generation will be denoted by X,, Y ,  and Z,, respectively, and gen- 
erally by X, Y, and 2. 

As in the preceding paper, our models attempt to take into account factors like 
the availability of proper mates, the timing of mating, the relative contributions 
of the assorting and nonassorting individuals to the next generation, the chance 
of encounter, and the ability of males to fertilize different numbers of females. 

The first two models apply to animals forming permanent bonds whose popu- 
lations have an effective 1 : 1 sex ratio. If assorting occurs first and laaer all remain- 
ing females (with frequencies (I-a) X, (1-p) Y and (1-y) Z of the AA, AA' 
and A'A' kinds, respectively) pair at random, we obtain the frequencies of mating 
types and recursion relations as given in Table 1. Analogously to 'the case of 
dominance, two contrasting assumptions can be made concerning the relative 
fertilities of the assorting and the random-mating females. The first, (Case l),  
introduced earlier by O'DONALD ( 1960), assumes that there is no impairment of 
fertility in assorting versus random-mating individuals. For the second, we assume 
that the delay in mating reduces the average relative fertility of the random mat- 
ing females to R* = 1 - a x  - pY - yZ (Case 2 ) .  

An alternative model to account for the effects of die timing postulates that 
females practicing random mating pair earlier than the assorting females. Con- 
sequently, the following fractions of male and female individuals are available 
for assortative pair bonding: 

genotypes available males assorting females 
AA X(aX + pY + y Z )  iYX 
AA' Y (ax + J3Y + y Z )  PY 
A'A' Z ( a X  + pY + yZ)  Y Z  

TABLE 1 

Population array and recursion formulae in the case of permanent pairs and 1:1 sex ratio. 
Assorting occurs prior to random mating 

Frequencies 
Mating types Assorting Random mating 

A A X A A  CUX [ (1 -4 XI 2/R 
A A x A A '  2(1--(U)X. (I--p)Y/R 
AA x A'A' 2(1--0l)X. (I-Y)Z/R 
AA'xAA' BY ((1--PI Y)Z/R 
AA' x A'A' 2 (1 --p) Y . (1 -Y) Z/R 
A'A' x A'A' YZ [ (1 -Y) ZI 2/R 

Recursion relations connecting genotype frequencies in successive generations. 
NX' = CUX + 
NY'= % P Y + ~ [ ( ~ - c u ) X +  '/z (1--P)Yl [(l-Y)z+ ?h (1--P)YI/R 
NZ' = YZ 4- % PY + [(l-Y)Z 4- '/e (1-P)YI2/R 

pY + [ ( I - - c K ) X  + '/z (I-~)Y]*/R (1.1) 
(1.2) 
(1.3) 

where 
Case I :  no difference in fertility 

Case 2: the average fertility of random mating females reduces to R*, 
R=R*;  N = l  (R* = 1 - cux - pY - YZ). 

R =  1; N =  l-R*(1-R*); (R* = 1 - olx--pY- YZ) 
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TABLE 2 

As in Table 1 but assortment occurs after random mating 
For simplicity the symmetrical case a = y is considered. When a = y > p, and proper partners 

are available only to the fraction f = a(  I-Y) + pY of the assorting AA and AA’ females. 
The remaining ones do not contribute to the following generation. 

Frequencies 
Mating type Random mating Assorting 

AA x AA (1 -a) x2 
AA x AA‘ (2-a+) XY 
AA x A’A’ ( I - a )  2XY 

A A X M  ( 1 - 4 )  y2 
M X A A  (2-a--p) ZY 
A A ’  x AA‘ (I-a) 2 2  

f = a(1-Y) ,+ p Y  N = 1 - (a-+) Y (I-Y) 

( :) y (  2 ’;) (2.1) 
Y 
4 

Nx’=xf+-p+(l-a)x x+- +(I+)- x+- 

Y 
4 

N Z ‘ = Z f + - / 3 +  (1-a) 2 

Assorting continues until all possible pairs of phenotypically alike individuals 
are formed while those remaining do not contribute to the next generation. All 
the AA Iassdng females will be fertilized if and only if aX I X(d+pY+yZ)  
or equivalently a 5 (pY+yZ)/(Y+Z);  corresponding relations apply for the 
other two genotypes. 

We &all confine attention to the simpler symmetrical case in which ~r = y.  We 
find that if a = y > B all AA’ assorting females can pair while proper male 
partners will be available only to a fraction f = a(1-Y) + pY of the assorting 
AA and A’A’ females. The remaining ( N - P )  Y (1- -Y )  females will not contribute 
to the next generation. Verification of the entries of Table 2 should now be clear. 

In the case a = y < ,B analogous pationale and justifications lead to the 
quantities and recursion relations connecting genotype frequencies displayed 
in Table 3.  

Table 4 gives the relevant formulae for the “mass action” case, which accounts 
for the “opportunity of encounter” in a scattered population. The chance of a 
given type of mating is assumed to be proportional to the product of the 
densities of the two kinds of individuals which can perform the mating. In this 
model, as in the next one, no effect of assoment on the timing of mating has 
been explicitly considered. 

Finally we may account for some excess of males by the ‘‘asymmetric model’’ 
(Table 5 ) ,  which assumes that the tendency to assort does not appreciably reduce 
the average fertility of females. The limitations implicit in this model have been 
discussed in the previous paper. 



5 02 S. KARLIN AND F. M. SCUD0 

TABLE 3 

As in Table 2, but for a = y < /3 
In this case f =a( 1-Y) '+ PY is the fraction of heterozygous assorting females for 

which a proper partner is available 

Frequencies 
Assorting Mating type Random mating - 

A A X A A  (I-a) x2 ax 
A A X A A '  (1-a)XY + (1--p) XY 
AA x A'A (1-a) 2 x z  
AA' x AA (1--PI y2  f Y  
AA' x A'A (I-a) ZY + (1-p)  ZY 
A'A x AA' (I-a) 2 2  aZ 
N = 1 - (P-a) Y(1-Y)  where f = ~ ( 1 - Y )  + pY 

Y 
4 

NX'=cuX+f-+(I--a)X (3.1) 

Y Y Y 

Y 
4 

NY'= f,+ (1-01) [% (l--Y)+L!XZ]+ (1-8) - 2 (3.2) 

(3.3) NZ'=aZ+f-+ 

TABLE 4 

Recursion formulae for the mass action model 

N = l  -aX(l--X) -PpY(l-Y) - yZ( I -Z )  

TABLE 5 

Recursion formulas for the "asymmetric model" 

N = l  
Y Y Y 

(5.1) 

Y Y NY' = P,+ ( l - -a)X(;+Z)+ (1--p)-+(l-y)Z 2 

NZ'=YZ: +P,+ ( l -Y )Z  + ( l - p ) - ( z + - )  
Y Y 
2 2 (5.3) 

Y 
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RESULTS 

I. Model of Table I: In the first model, where no reduction in fertility occurs 
among the random-mating females (Case 1 in Table 1) it is easily verified that 
the gene frequency, pn = 1 - qn = Xi + Y,J2 = X ,  + Y0/2 = p is invariant over 
time. Using this fact, the analysis of the system (1.1) to (1.3) reduces to the 
study of the single recursion relation 

Let Y ,  = g(,)  ( Y )  where g(,) (.) is the nth iterate of g ( ) . It can be proved, that Yn 

converges at a geometric rate to the unique root in ( O J ) ,  p, of the quadratic 

equation g( Y )  - Y = 0. Obviously P generates a family of equilibria depending 
on the initial gene frequency, po. 

When an appropriate reduction in fertility is assumed for the mndom-mating 
females (Case 2)  gene frequencies are no longer invariant ovev time. At first we 
restrict om discussion to the special clase (Y =y. Symmetry considerations suggest 
that the quantity X - Z is the molst convenient for analysis; its recursion rela- 
iton is 

1 -(I-.) (I--R*) 
1 - R* (I-R*) 

X’ - 2’ = ( X - 2 )  whereR* = I  -aX-/3Y-yz (1.5) 

It follows that the magnitude of these differences decreases when a < p; and 
increases if (Y > 8. 

It is easy to verify that the recursion relations connecting genotype frequencies 
admit a single polymorphic equilibrium 

where is the unique root in (0,l) of the equation 

((Y-/3)”3+ (a-p> (1 -,a+;> 5 Y’ 

The global stability properties of the system (1 .I )-( 1.3) (Case 2) ,  can be ascer- 
tained with the following results: 

i) When a < /3 for any nontrivial initial values, X,, Yo and 2 0 ,  the genotype 
frequencies at the nth generation, X,, Y ,  and 2, converge as n + 00 to the stable 
polymorphic equilibrium (1.6) at a geometric rate. 

ii) When (Y > $? for any nontrivial genotype frequencies satisfying X ,  < 2, 
convergence takes place to the pure A’ state, i.e., X ,  + 0, Y ,  + 0 and 2, +I as 
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n + CO , at a geometric rate; when X ,  > 2, convergence occurs to the pure A state 
also at a geometric rate. Thus the boundary between the domains of attraction 
of the two trivial solutions is the straight line X = 2. Starting from a point on this 
line, X ,  = Z,, convergence takes place to the unstable polymorphic equilibrium 
(1.6). 

iii) When a 2 ~ 3  =y, 2, - XI = 2, - X ,  = C so that 2, - X ,  is invariant over 
time; the associated family of equilibria is completely determined by a and C. 
The complete time-dependent behavior can be worked out in terms of a single 
recursion. 

A complete analysis in the general case is not feasible; however the local stabil- 
ity structure of the trivial equilibria probably reflects an accurate qualitative 
picture of the global properties of the system (1.1 ) - (1.3) , (Case 2). It turns out 
that the pure A state ( X  = 1, Y = 2 = 0) is stable if 

(1 -a(l--cu)}2- (1 -a(l-a)} {y+-+  P (l-a:)(l-J3)} 2 

(1.8) 

When a! = y a limle algebra reveals that this inequality is equivalent to a > p ,  as 
it should be. Similarly, the pure A’ state will be locally stable if 

+++y(l-a)(l-J3) -- P (1-4 (1-y) > o  
2 

J3 (1 - Y ( l - Y ~ } ‘ -  (1 -Y(l-Y)} {-cu+T (1-y) (1-8)) 

(1.9) .rp P + T + a ( l - y )  (1-8) -- 2 (1-a)(l-y) > o  
Thus the following stability situations can occur in the general case: 

i) If both (1 .8) and (1.9) ‘are strictly satisfied an interior unstable polymorph- 
ism exists and either A or A’ will be fixed according to the initial frequencies. 

ii) If the reverse of both inequalities ( 1 .8) and (1.9) is strictly satisfied, then 
for any nontrivial initial frequencies convergence will take place to a stable poly- 
morphic solution. 

iii) If (1.8) is strictly satisfied and the opposite inequality of (1.9) holds, then 
no interior polymorphism exists and for any nontrivial initial set of frequencies 
convergence towards fixation of A will take place. 

iv) If the opposite of (1 .8) is strictly satisfied and (1.9) holds, then no interior 
equilibrium exists and only the pure A’ ‘state is stable. 
11. Model of Tables 2 and 3: Consider now the model for permanent bonding, 
when nonassorting females mate first. Two situations need to be distinguished 
according to whether the number of AA’ assorting females exceeds the desired 
number of available males or vice versa. In the latter case (a: = y < 8, Table 3 )  , 
manipulation of the recursion relations yields 

8-ff y 1 -- 
2 X’ - 2’ = ( X - 2 )  l-(P-a) Y(1-Y) 
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which implies that X - 2  is strictly increasing in magnitude if and only if Y < x. 
But 

Y Y Y 
y {a+(p-a)Y} + ( 1 7 % )  {F ( I -Y)  + 2x21 + ( I - P )  

and therefore, since 4x2 5 (1 -Y) 2, we have 

Y I-Y Y 
2 2 

Y' 5 = f(Y) 1 - ( p a )  Y ( l - Y )  

-jj { a +  ( p a )  Y }  + (I-a) -+ (1-p) - 

for all Y in (0 , l ) .  In this interval, f ( Y )  is monotonically increasing. I t  follows 
that the frequency of heterozygotes after n generations, Y,, satisfies 

Y,  5 f ( , )  (Yo) 

From the general theory of iteration of functions it oan be inferred that f ( l z )  ( Y )  

converges, as n + ca , to the unique solution I: in (0, I of .the equation 

(2.6) 
( p a )  Y3--  3 (&?-a) Y 2 f  ( 1  - a + q  Y - T = o  1-a 

2 2 

Direct examination of this equation verifies that P < 1/2; therefore, for n suffi- 
ciently large we will have Y ,  < 1/2 which implies that ultimately IX, - Z,J will 
be continualIy increasing. 

Thus for a = y < p fixations are the only stable equilibria and the domains 
of attraction of the trivial equilibria are separated by the straight line X = 2. 
More precisely, 

i) IfX,>Z,ihenX,+ l,Y,+ O'andZ,+ Oasn+ ca; 
ifX,>Z,thenX,+ O,Y,+ OandZ,+ I a s n -  a; 

The approach of Y ,  to 0 is geometrically fast at the rate 1 - p/2; convergence of 
X ,  and 2, to their limits occurs at a faster rate. 

5) If X ,  = 2, then Y,+ 4 and X ,  = 2, -+ (1-k)/2 at the geometric rate 

In the case a = 7 > (Table 2)  the analysis is analogous to that of the model 

i) 

i rh  I. 
associated with Table 3;  the conclusions are as follows: 

If X, > 2, then X, + 1, Y,  + 0 and 2, -+ 0 as n 9 00 ; 
i fX,>Z,~enX,+O,Y,+OandZ,-+  Iasn-ca ;  

convergence of Y ,  being geometrically fast at %he rate 1 - a/2. 

solution in (0,l)  of theequation 
ii) If X ,  = 2, then Y ,  + ?*, X ,  = 2, -+ (1-?*)/2 where ?* i s  the unique 

I-a 
2 (a-&?) Y3- (.-/I) YZ+ (1-+) Y--- - 0  

and it is again easy to verify that ?* < 1/2. 
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Thus, in contrast to the first model, the present model yields the same qualitative 
result as in the case of partial assortative mating for dominant traits: an unstable 
polymorphism exists independently of the relative magnitude of a = y f 8. A 
local analysis for the stability of the nontrivial solutions in the general case a f y 
leads to inequalities on the parameters which determine the existence of the 
unique unstable polymorphism. 

For ease of exposition in the mass action model of Table 4, we restrict ourselves 
to the special case =y. We find the unique interior equilibrium 

(4.4) 

where ? can be computed as the unique solution in (0,l) of the equation 

(2@+a) Y3 - 3PYZ + (Pf2-2a)Y - ( 1 7 )  = 0 (4.5) 

It can be shown that, regardless of the comparative magnitudes of a and p ,  the 
equilibrium (4.4) is always locally unstable. If X ,  > Z,, fixation of the pure A 
state takes place at a geometric rate; if X ,  < 2, convergence to A' occurs at a 
geometric rate. 

The analysis of the asymmetric model in Table 5 can be carried out in the 
general case. There results at most one nontrivial equilibrium, given by 

A ( L f y - a )  (y-P) (2--a+) A (LSy-CL) ( L f a - y )  (2-a-y) X =  , Y =  
L(L(4 -a -y )  - (y-a)Z} L{L  (4-a-y )-(I-") zl 

A (L+a-y) (a-8) (2-Y-P) Z =  L(L(4 -a -y )  - ( y -a )Z}  (5.4) 

where 
L = (1-a) ( Y - P )  + (1-u) (.-PI (5 .5 )  

( L S y - a )  ( L f a - y )  > 0 (5 .6 )  

The point (5 .4)  is an admissible set of frequencies if and only if 

The stability behavior of the system can be summarized as follows: 
i) The pure A state is locally stable if and only if 

L f a - y  > 0. 

L f y - a  > 0. 

ii) The pure A' state is locally stable if and only if 

iii) The polymorphic equilibrium is valid if (5.6) is satisfied and is stable if 
and only i f  

L f y - a  < 0 and L f a - y  < 0 , 
convergence taking place at a geometric rate; it is unstable if these inequalities 
are strictly reversed. 

Some particularizations of this model are w o l d  mentioning: 
i) If y < p < a then necessarily L + 01 - y > 0 and L + y - a < 0 and it 
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follows that fixation of A is the only stable condition; if y > ,8 > a, then there is 
fixation in A’. 

ii) In the symmetric case a = y  < B  the interior equilibrium simplifies to 
X = 2 = 1/2 (2--a), Y = ( 1 -a) / ( 2-a) which is independent of Ip and globally 
stable, convergence taking place again at a geometric rate. 

iii) Whencu=y > ~ t h e e q u i l i b r i m k = k =  1/2(2--(u), P= (1-a)/(2-a) 
is unstable and the domains of ‘amaction of the fixations are separated by the 
straight line X = 2. 

VARIOUS EXTENSIONS 

As mentioned before the general case of assortment without complete domi- 
nance could be specified by 6 parameters and then the analysis becomes exceed- 
ingly cumbersome. Other meaningful specifications in terms of three parameters 
are possible. One such is obtained by assuming “sex symmetry” in the choice as in 
the following table: 

9 9  AA AA‘ A’A‘ 
88 
AA 1 1-8 1 -E 

AA’ 1-8 1 1-7 
A‘A‘ 1 - E  1-7 1 

where, as usual, 0 5 8 < 1, 0 5 E < 1, 0 5 7 < 1. Plainly stated, AA’ females 
“dislike” AA males as much as AA females dislike AA’ males, and this is meas- 
ured by a fraction 6 of females tending to avoid such matings. 

The relevant formulae for the mass action model are given in Table 7. Com- 
parison with Table 4 shows that the two systems differ only in the definition of 
the parameters. Thus 6 is converted into 4 by the substitution 

26=a+P,  2 ~ = a + y  and 2 7 = @ + y .  
We shall now formulate another class of models applying to animal populations 

in which &e duration of courtship is sufficiently long and Where &e begmning of 
courtship is well synchronized. 

As a rough representation of such mating systems we can as sme  that a first 
round of “encounters” occurs simultaneously and at random. Then a fraction of 
females will tenninate the courts1Kip with males olf different phenotype at some 
stage before copulation. (A similar situation has been observed in some gulls 
(GRIFFITH SMITS 1967) .) With the gene interaction intraduced above, this will 
occur for a proportion of X (6Y 4- EZ)  AA females, Y ( 8 X  + 7 2 )  AA’ females and 
Z (  E X  4- 7Y)  A’A’ females. A class of models arises by miaking assumptions on the 
types of mating and the average fertility of such females. 

Assuming, for instance, that the ”mining females will be fertilized by males 
of the same genotype, with no loss in fertility, we derive the entries in Table 6. 

Inspection of the recursion relations reveals that the quantity X - 2  is invariant 
over time, i.e., X,--2, = X,-Z, C,  as for the first model in the special case, 
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TABLE 6 

Model for a population in which part of the pairs, formed at random, break of7 before copulation 
Asymmetric Case 

Frequencies of 

Mating Types Modified Random Mating Assortative Mating 

A A x A A  X 2  X ( 8 Y  + EZ) 
A A X A A  2(1--6)XY 
A A X A A  2(1-€)XZ 

AA'XAA' Y2 Y (ax + 
AA' x AA' 2(  1--11) YZ 
A'A' x AA' 2 2  Z(FX + SY) 

a = /? = y. Using &is relation the system d u c e s  to a single recursion relation 

(I-&) = u ( Y ) .  
8 f q - 2 E  6 1-P 

yf Y2- {T (1+C) + + (1%) - E }  Y + ___ 4 2 

Iteration yields that Y ,  = U ( , )  ( Y o )  converges to the unique root in ( O , l ) ,  ?, of 
the equation u ( Y )  - Y = 0. This root depends on the initial frequencies only 
through C, thereby generating a family of equilibria. Although gene frequencies 
are not invariant over time, the equilibria span a curve of neutral type. This case 
is thus of little evolutionary consequence. 

A simple alternative to the assumption that all assorting females mate with the 
preferred phenotype, with no loss in fertility, would be that they do nut contribute 
at ell to the next generation. This gives the "mass action" model in Table 7 which 
is formally the same as the mass action model of Table 4. 

TABLE 7 

Mass action model in the case of a generic "sex symmetrical" interaction 

N X ' =  ( x + ; ) 2 - S x Y  

NY' = 2 ( X  + f )  (f + z) - zExz - S X Y  - ,,YZ 

(7.1) 

(7.2) 

(7.3) N Z ' = (  2 + f)' - 7)YZ 
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DISCUSSION AND CONCLUSIONS 

In this paper we deduced some of &e consequences of partial assomtive mating 
based on the phenotypes of an autosomal pair where gene interactions other than 
complete dominance are involved. This case would entail, in the most general 
formulation, six parameters. A simplified version with three parameters is ob- 
tained by assuming that the females (males) of a genotype equally dislike those 
of a different genotype. The analogs of the models previously studied for the 
case of dolminance have been examined. We underscore the principal conclusions 
with special emphasis on contrasting the results for the no dominance and domi- 
nance analogs of all the models. 

We discuss first the two models for permanent bonding in animals having a 
1 :I sex ratio at miaturity. As in &e case of dominance, when individuals practic- 
ing assortment mate prior to those mating at random we obtain a neutral family 
of equilibria if the relative fertility of the random-mating females is not affected. 
However, if fertility is affected by the timing of matings the resulting ultimate 
changes of genotype frequencies do not exclusively produce one or the other 
fixation as in the case of dominance. In fact, if the intensity of assorting in the 
heterozygote is large enough compared to the tendency for assortment in both 
homozygotes, a stable polymorphism will result. When both homozygotes assort 
with the same intensity, the condition for polymorphic stability is simply that of 
a larger assortment intensity in the heterozygote. This result is analogous to 
overdominance in the case of natural selection. 

Consider the second alternative for permanent bonding, i.e., assorting occurs 
after random mating and all “mismatched” females do not contribute to the next 
generation. Now the results are qualitatively much the same as for dominance; 
either one of the fixations is the only stable situation or Ian unstable polymorphism 
exists and both fixations are stable. Thus, timing is more crucial in the case of 
no dominance than in that of dominance. 

When assortment affects only the chance of encounter in a scattered population 
(mass action moldel) we get the same qualitative result as in the case of domi- 
nance, i.e., always an unstable polymorphism. The asymmetric model, account- 
ing for some excess of males, has the same properties as the first case of permanent 
pairs; a stable polymorphism will result if the assorting intensity in heterozygotes 
is large enough compared to the assorting intensity in both homozygotes. 

We can conclude that, barring very unlikely circumstances (like exact equality 
of all assorting parameters, etc.) assorting for traits without dominance will pro- 
duce, as for  dominant ones, some significant evolutionary effects. The type of POS- 
sible equilibria differs from the dominant case in that stable polymorphisms can be 
established. A further analogy of assortment with natural selection is that fixation 
(initial increase) of dorlninant alleles occurs at an algebraic rate, while in the 
absence of dominance a geometric rate is the rule. 

We also discussed Ian alternative formulation of a model of assortment with 
three parameters by assuming “sex symmetry” in the choice. This leads to 
approximately the same conclusion as for the previous case. 
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A new class of models arises by assuming that la first attempt at pairing, lasting 
for some time, occurs at random. A fraction of the females will reject partners of 
unlike phenotype at some later stages of courtship, prior to copulation. Specific 
models will h e n  result by making assumptions on the type of mating and the 
f e d i t y  of the remaining females. When they are applied to the “sex symmetric77 
case they give a neutral solution in the asymmetric case. 

We are indebted to Mr. M. FELDMAN for several constructive suggestions on the manuscript. 
We also owe a number of improvements in the manuscript to Dr. C. MATESSI and Mr. S. JAYAKAR, 
to Professors J. CROW and M. LERNER. Research was supported in part under Grant NIH 10462 
and Contract N0014-67-A-0112-0015 at Stanford University, Stanford, California. 

SUMMARY 

The models of the preceding paper are examined in the context of assortment for 
an autosmal pair of genes without dominance. While the most general formula- 
tion would involve six parameters, two specifioations involving only three para- 
meters have been considered. In striking contrast to the case of dominance, for 
some circumstances of the parameters and depending on the meahanism of fertili- 
zation, stable polymorphisms can result even for autosomal traits. The effect of 
assortment in these cases is somewhat similar to that of overdominance in the case 
of natural selection.-Another class of models is studied where we assume that a 
first attempt to pair wcurs at r andm and then some of the pairing between indi- 
viduals of different phenotypes disassociates at a later stage prior to copulation. 
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