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IN this series of papers the behavior of multiple allelic systems in populations

subject to selection, genetic sampling, and mutation is to be systematically
explored. The first paper (LaTTer and NoviTskr 1969) dealt with the effects of
directional selection for a quantitative character in small populations, given an
infinite base population with multiallelic variation similar to that described by
Kimura (1965). Kimura’s model postulates (i) that mutation can give rise to a
very large number of alleles at each locus influencing the expression of the
quantitative trait; (ii) that the genes are additive in effect on the character; and
(iii) that the optimal phenotype is fixed, with fitness decreasing in proportion to
the squared deviation of an individual’s genotypic value from the optimum.
Kimura has shown that with small mutational changes, the allelic effects at a
given locus are normally distributed at equilibrium in a large population. In this
paper computer simulation techniques are used to extend Kimura’s model to
populations of finite size, where the expected number of alleles segregating per
locus is not necessarily large.

Contributions to the theory of centripetal selection have been made by many
authors, including Frsuer (1930), Wricat (1935), HaLpANE (1954), RoBERT-
son (1956), Kosima (1959), Larter (1960), LEwonTiN (1964), Jain and
Arrarp (1965) and Sineu and LEwonTIN (1966). The emphasis of these studies
has been the examination of deterministic equilibria for a variety of genetic
models; in no case have the joint effects of genetic sampling and mutation been
considered.

Kimura and Crow (1964), Ewens (1964), WricaTt (1966) and Kimura
(1968), have discussed the maintenance of isoallelic variants in finite popula-
tions in the absence of selection. The level of heterozygosity in such a population
at equilibrium is expected to be approximately

. 4NVp
YF S T,
where NV is the effective population size and p the mutation rate, the number of
possible allelic states being assumed to be very large (Kimura and Crow 1964).
Ewens (1964), WricaT (1966) and Kimura (1968) have given approximate
! Journal paper No. J-6589, Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 1669.

Supported by National Institute of Health Grant No. GM 13827.
2 On leave from Division of Plant Industry, CSIRO, Canberra, A.C.T., Australia.

Genetics 66: 165-186 September 1970.



166 B. D. H. LATTER

algebraic expressions for the number of alleles expected to be segregating at
equilibrium, showing the number to be a function of both N and Np. Kimura
has also presented a set of computer simulation results for comparison with the
predicted values.

The objectives of the present study are:
(i) to examine the effects of centripetal selection on a multiallelic system in
finite populations;
(ii) to draw comparisons with the infinite population theory of Kimura (1965)
on the one hand, and that developed for neutral isoallelic variation in finite
populations on the other; and
(ii1) to discuss the relevance of the resulis to recent studies of enzyme poly-
morphisms in Drosophila, man, and mice (Smaw 1965; LEwonTIN 1967 ; HARRIS
1969; SELANDER and Yanc 1969.)

SELECTION FOR A FIXED INTERMEDIATE OPTIMUM IN LARGE POPULATIONS

Consider a metric character x with the following probability density function
among juveniles:

(1)
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where Z denotes the mean and ¢?, the phenotypic variance.

The mean reproductive fitness ¢(z) of individuals with phenotypic value z
will be supposed to decrease with deviation from the optimum according to the
relation

o) =exp [ 55 ] @)

oy
where the optimal value of x is taken to be zero, with a relative fitness of unity.
The scale constant o; specifies the rate at which fitness declines with deviation of
z from the optimum. The mean fitness of the population, relative to that of the
optimal phenotype, is then given by

+oo
o=]" @)

- :—fe"p [_ 21—:2 ] ®)

where ¢® = ¢°, + o%. If differences in reproductive fitness are a matter only of
differential survival, the variable x after selection is distributed with mean

o . .. .
z (—-’:)2 and variance ¢%, (ﬂ)2 The deviation of the mean from the optimal
g g

value, and the phenotypic variance of the trait, are therefore reduced by the
same factor (a—p)z. We will call this factor the coefficient of centripetal selection,
- ‘

denoted by

C =% (%t o*)? (4)
with a scale of values ranging from zero (no selection) to unity (absolute selection
of the optimal phenotype alone). The product C%2, where A? is the heritability of
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the metric trait, corresponds operationally to the definition of homeostatic
strength proposed by Rosertson (1956), viz., the proportional return of the
mean in one generation, following a period of directional selection away from
the optimal value.

In a population with mean at the optimum, the coefficient of centripetal selec-
tion is simply related to the parameter I defined by HALpANE (1954) to measure
the intensity of natural selection for the optimum. The expression relating the
two parameters is

I=—1 log. (1-C) (5)
so that C is approximately equal to 2 I at low selection intensities.

Selective values under centripetal selection: Suppose the genotypic configura-
tion A;A; at a given locus is present in the population with frequency p;p;. If the
total contribution of the locus to the phenotypic variance is small, we may con-
sider the subpopulation of values of the variable z, for those individuals with
configuration A;A;, to be normally distributed with mean d;; and variance o?,

The contribution of subpopulation A;A; to the succeeding generation is then
proportional to

d?i;
w; = exp [-— 1/20—077—] (6)
4
from equation (3), which we may take to be approximately given by
2, .,
why =11 ¢ L (1)
oy

at low intensities of selection. The mean of these approximate selective values is
wr = 3 pip; w*i;
.7
:1_1/20[532_'_0'29]/0'211 (8)

where ¢?, denotes the total genotypic variance contributed by the A locus. The
expected frequency of allele A; in the progeny of surviving individuals is then

pi= []2 pip; w*i;] / w*

=L =% C (@ + 220 ) / 0%] (9)
where «; =3 p; (di;— %) and x; == p; (di; —Z)2 For the particular case in
7 7
which all allelic effects are additive, i.e.,d;; = T + a; + a;, we have
pPi=Lo 1% C (& + 220+ @+ 1 07) /o%]. (10)

For the purposes of computer simulation, equations (9) and (10) are the most
useful expressions for the changes in allelic frequencies from generation to gen-
eration. For algebraic manipulations, however, a more satisfactory expression is

A pi=pi [% C (6% — 2Zai — i) /o). an
For a model involving additive allelic effects this becomes
Api=pi [% C (% 0% — 22ai — @) /o] (12)

so that the frequency of the allele A, will increase whenever
(Zt+a):<Tpe (Z+ )2 (13)
k
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The predicted change in the mean of the population due to changes in allelic
frequencies at the A locus, under the assumption of additive allelic effects, is
given approximately by

AG=2 _Za,- A Pi

=Clz(—o%) — ; pia*il/d%

from (12). Summing over all segregating loci gives

AZ=—iCh®
where k2 is the heritability of the character, provided the sum of the 2 pid’s
can be neglected, i.e., that there is no overall tendency to directional skewness of
the distributions of allelic values.

Single locus models: Models involving a single locus under centripetal selec-
tion are of particular interest, since they may be used to represent natural selec-
tion for an optimal level of the catalytic activity of a specific enzyme. The fore-
going theory can readily be applied to such models by an appropriate redefinition
of the parameter C. With a single locus contributing all the genetic variance in
the measured variable z, the relative selective value of the genotype A;A; can be
seen from equation (3) to be proportional to

d%;
provided the intensity of selection is low, where o2, denotes the nongenetic var-
iance in the character. Equations (7) to (13) are then valid for the single locus
model, if C is taken throughout to be equal to C = o%, (o2, T 0%) . Equation (14)
will be a valid approximation provided the d;; are small by comparison with o;.

Changes in genotypic variance due to selection: Selection for a fixed inter-
mediate optimum is expected to lead not only to the maintenance of the popula-
tion mean in the vicinity of the optimum, but also to changes in the level of
genotypic variability within the population. For a multiallelic locus with additive
allelic effects, the change in genetic variance from one generation to the next due
to selection is expected to be

A (o%y) = 23Apia* —2[ZApia;]*
where Ap; is given by equation (12). Substitution leads to the general expression
Lt — 280 — ) — Y5 o (22 )]
0p 0p
where p, = ipia”i. For the particular case in which the mean is at the optimum
and the a; are normally distributed, we have z = 0, u; = 0 and u, = 32, so that
A ("'20) =—0%[Y C°'2y/°'2p] (15)
With a single locus model we can equate ¢%,/¢?, to A2, the heritability of the
metric trait, and the total phenotypic variance can be seen to be reduced by a
fraction % Ch*. For a model involving n identical loci, the corresponding
reduction is (1/2n)Ch*, ignoring complications due to departures from gametic
equilibrium.
It is clear from the foregoing that the changes in genotypic variance due to

A (‘729) =
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selection will in general be complex, even for a single locus model, since the
assumption of normality of allelic effects cannot hold strictly for more than one
generation. In particular it is apparent that the changes depend on the number of
loci contributing to the total genotypic variance in the metric trait, direct evi-
dence to this effect having recently been provided by the computer simulation
study of ArLEN and Fraser (1968).

THEORY UNDERLYING THE COMPUTER SIMULATION PROCEDURES

The first objective of this study is a quantitative assessment of the impact of
centripetal selection on a multiallelic locus in finite populations. An understand-
ing of this phenomenon requires the examination of changes in at least four
parameters as selection and random sampling proceed, viz.: (i) the number of
alleles segregating; (ii) the mean level of heterozygosity; (iii) the mean geno-
typic variance contributed by the locus; and (iv) the drift variance, defined as
the variance among means of replicate populations. The second objective is to
describe quantitatively the accumulation of mutational variability in populations
subject to centripetal selection, in terms of the same four parameters.

The only satisfactory technique for such a comprehensive study is that of
computer simulation, aided wherever possible by algebraic treatment. We will
begin by elaborating the theory given in the previous section to take account of
the effects of finite population size, thereby providing a frame of reference for
the numerical results obtained by computer simulation. The theory necessary
for the simulation of mutation in finite populations under centripetal selection
will then be presented, and an approximate formula derived for the equilibrium
genotypic variance.

Changes in variance in finite populations: The theory presented in the preced-
ing section involves no restrictions as to the number of loci contributing to vari-
ation in the quantitative trait under selection. However, for multilocus models
the genotypic variance due to the A locus, 2, was assumed to be small relative
to the total variance, ¢?,, and the coefficient of centripetal selection, C, was
assumed to be sufficiently small for equation (7) to be a satisfactory approxima-
tion. With single locus models only the latter restriction is necessary.

An approximate expression can be given for the expected total change in %
in finite populations, following ¢ generations of weak centripetal selection and
random sampling in a population with mean initially at the optimal value. The
expected change in genetic variance in one generation is approximately

sy =—o [5o(2) +55] (16)

for low intensities of selection. We are here making use of the fact that the
decline in heterozygosity due to random sampling is expected to be a fraction
1/2N per generation (Kimura 1955): for a locus with additive allelic effects
the genetic variance is expected to decline by the same fraction (LaTTER and
NovriTski 1969).
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Equations (15) and (16) are based on the assumption of normality of the
distribution of allelic effects ;. If this requirement is satisfied in the initial
population, and changes in the moments p, and p, with time are negligible,
we may derive an approximate formula for the magnitude of ¢%, as a function
of 2, viz.,

-t

-t
o = (g°0%)e™ [1+ NCgt (1 —e )] (17)

where g? denotes the initial value of ¢?,/0?,. If time is measured in units of /N,
we may then expect the rate of decline in genetic variance to be dependent
primarily on the value of the parameter combination NCg>.

Variability due to mutation: The following model is to be used exclusively in
this paper to simulate the production of new genetic variation in a population
due to mutational changes. Following Kimura and Crow (1964) and Ewens
(1964), it will be assumed that the number of allelic states at the locus is suffi-
ciently large for each new mutant to represent a novel allele. We will consider
only loci with additive allelic effects on the metric trait under selection, the
existing alleles A; having frequencies p;, i1 =1, 2, ..., n, and effects a;, coded so
that p;a; = 0.

Denote the probability of a mutational event by u, assumed to be the same for
all alleles A;. Then if %, ¢%,* denote the additive genetic variance due to the A
locus before, and after, respectively, the occurrence of mutation in any specified
generation, we have

oty = 2[Zpia*i]
and

ot = 2[Fpi(1 — p)a*i + Zppi (@% + o%n)]
= g2 + 2uo?, (18)

where the changes in allelic effect 8a; due to mutation are independent of a;,
and have expectation zero and variance o2, If the allelic effects a; are normally
distributed, equations (16) and (18) may be combined for a population with
mean at the optimum to give the following rough approximation for a finite
population:

A(e?) = — 0% |:1/2 C(:—Z:—) +§}V—]+ 2uo?y (19)

where it is assumed for simplicity that the sequence of events in each generation
is (i) measurement, (ii) selection, (iii) random sampling, and (iv) mutation.

The equilibrium variance due to this locus, 4%, is then expected to be given
by the relationship

1
S~ ANCE [\/1 + (4NC*) (4Np) —1 ] (20)

where C* = Co%,/0?,
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provided the distribution of allelic effects remains close to normal throughout
the approach to equilibrium. This can be expected to be a valid assumption only
for small values of C*, i.e., for weak selection. For C* = 0 or (4NC*) (4NVp)
small by comparison with unity, equation (20) becomes

8%, = 4Npo®, (21)

As N tends to infinity, equation (20) becomes identical with the solution given
by Kimura (1965) for a population with mean at the optimum, viz.,

ANp  _~\/»
\/4NC* Ve 22)

CENTRIPETAL SELECTION IN THE ABSENCE OF MUTATION

In this section we present numerical results for single locus models of centri-
petal selection in populations of effective size IV, in the absence of mutation, for
a range of values of the parameter combination NCg?. In each population a
series of 2V alleles is supposed to be segregating initially, each with frequency
pi = 1/2N, and allelic effects a; are sampled at random from a normal distribu-
tion with mean at the optimum (zero) and variance 4g% A separate sample of
a; values is chosen for each replicate run. The regimes concerned are listed in
Table 1.

The computer simulation procedure involves two steps each generation: (i) a
transformation of the vector of allelic frequencies, making use of equation (10),
to simulate the effects of centripetal selection; and (ii) random sampling from
a multinomial distribution with parameters 2N; p/;, i = 1, 2, . . . n, where n
denotes the number of alleles segregating, and the p’; denote the transformed
allelic frequencies.

The statistics for regimes without selection are summarized in Table 2. Over
the range of population sizes from N = 10-100, the mean number of alleles
segregating after NV, 2N, and 3V generations can be seen to depend on the value
of N, since the initial number of alleles is directly proportional to V. However,
after 3/V generations the differences in allele number among the regimes are
small. The levels of heterozygosity, additive genetic variance and drift variance
are in agreement throughout the table with expectationsof 1 —F=[1—(1/2N)]?,
(1 — F)g? and 2 Fg?, respectively. This provides a check on many aspects of the
computer program.

Table 3 sets out corresponding data for those regimes involving centripetal
selection in addition to random sampling, the order in the table being that of
increasing values of NCg? from 0.5 to 20.0. Three important conclusions can be
drawn from the data of Tables 2 and 3:

1. Comparisons of regimes with the same value of NCg?, but differing in the
individual component parameters, support the view that population behavior
is largely determined by the value of NCg®. Of 36 such differences throughout
Table 3, only one is statistically significant at the .05 level, and a second com-
parison is on the borderline.
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TABLE 1

Regimes involved in the study of elimination of allelic variation
by centripetal selection in the absence of mutation

Designation Population Coefficient of Initial genetic Value of
of regime* size (N) selection (C) variance (gz)f EEEZ
D(10) 10 0.00 1.0 0.0
D(20) 20 0.00 1.0 0.0
D(50) 50 0.00 1.0 0.0
D(100) 100 0.00 1.0 0.0
DS(10,0.5) 10 0.10 0.5 0.5
DS(20,1.0)a 20 0.50 0.1 1.0
DS(20,1.0)b 20 0.05 1.0 1.0
DS (50,5.0) 50 0.10 1.0 5.0
DS(100,5.0) 100 0.50 0.1 5.0
DS (50,10.0) 50 0.20 1.0 10.0
DS(100,10.0) 100 0.10 1.0 10.0
D5(100,20.0) 100 0.20 1.0 20.0

*D(NV) denotes a regime of genetic drift alone, with effective population size N; DS (N,z)
denotes a regime involving drift and centripetal selection, with population size N and z — NCg=.
1 Expressed as a fraction of the initial phenotypic variance.

2. Figure 1 illustrates the response to increases in the value of NCg? shown by
the four observed statistics, viz., mean number of alleles segregating, mean
heterozygosity, mean genetic variance within populations, and the variance
among means of replicate populations, i.e., drift variance. Observations for
regimes with the same value of NCg? have been averaged in preparing the figure
from Tables 2 and 3. Only the data following 2V generations of selection are
illustrated, but the comparisons are similar at any point throughout the 3N
generations of selection which have been studied.

At values of NCg? > 1.0, centripetal selection can be seen to lead to a reduction
of well over 50% in the drift variance after 2V generations, and the genetic
variance due to segregation within the populations is comparably reduced with
NCg*> > 5.0. However, both the number of alleles segregating and the mean
level of heterozygosity are scarcely affected by regimes with values of NCg? up
to 20.0. Observations of mean levels of heterozygosity, or of numbers of alleles
segregating, are therefore unlikely to be sensitive indicators of the selective
forces operating in a finite population.



173

CENTRIPETAL SELECTION AND ISOALLELIC VARIATION

"9oUBLIEA

oneuss [enwur oy jo suonpiodoud se passaadxe aouetres :suortendod sqedtider jo sueewl Suowre JVURLIEA I} Se porepude) |

*] 9]qe ], ur se pajeulisap sewniday ,

81" ¥ €9°T %0° ¥ 220 0" ¥ €20 G0° ¥ 9L°T : ‘ %z sor 1 (oom)a

61 ¥ 8%'1 €0° ¥ LT1°0 20® ¥ 02°0 §0* ¥ 89°T ‘ ’ * T LT 00T 78 (0$)a

LT° ¥ 85°T €0" ¥ 12°0 20 ¥ 12°0 S0 ¥ L9°T : * ot ¥t 98 06 (oz)a

9T ¥ ¥9°T €0* ¥ 22'0 T0° ¥ 61°0 %0 ¥ 09°T * * ’ ‘€T €6 %6 (ona NE

61" F TH'T G0° ¥ 6€°0 10° 7 8¢'0 90° ¥ 8€°'¢ : © € ST 79 96 ¥z (oom)a

81° ¥ 0¢°'T %0 F 1€°0 10" * 9¢€°0 S0* ¥ 92°C * o TT 95 90T L2 (09)a

y1* ¥ L2°T €0° ¥ SE°0 20" ¥ S€'0 60" ¥ 22°C ° ** 8 65 0T 1¢ (02)a

SI* ¥ T€°1 %0* ¥ LE°0 70" ¥ 7¢°0 §0° ¥ 20°¢C ‘ *C S v ZOT6Y o1)a NC

80° ¥ [8°0 §0* ¥ 09°0 T0° # 29°0 80* ¥ 82'Y% S €2 IS TL ¥ 9 ° (oo1)a@

S0° ¥ 0L°0 %0* ¥ 6§50 T0° ¥ 19°0 80* ¥ ¢C°¥ ¢ Lz 05 €9 6% 6 ° (0s)a

£0* ¥ 18°0 S0° + 95°0 70 ¥ 65°0 L0 ¥ 06°€E %L Oy 8L 6% 8T 1 (oz)a

L0* ¥ 9L°0 0" ¥ £9°0 10° ¥ 65°0 L0° F 69°€ T 8 (Z 6L €9 T2 T (ot)a N
(%) Go) ® (Fuy ueay 4 9 s v € T 1

49DUBTIABA JDUBTIBA £37808 uoyINqTIISTp Louonbaxg R suoy3eIouad
33134 oT39uan) —-Azoxe1sy suotpierndod ajeoyidex uy Suyielealss sofelle 30 ‘ON 3o *ON

ynm paravys uoyvindod yova :5a1po1]da4 (g UO paSDq ‘UOIDINUL 4O

Nz/I = 'd sa1ousnboa.f 1v sapa1p Ng

©01109)35 fo 2ouasqy ay3 u1 Sunyduvs 2119us8 fo suoyvLEusF N§ Pup ‘N ‘N 42HD sousuvls peaissqQ

¢ d1dV.L

3. The frequency distributions of number of alleles segregating in replicate
populations under centripetal selection (Table 3) are not detectably different in

this study from those under genetic sampling alone (Table 2). It is well known

that stable equilibria are possible under centripetal selection in large populations
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ever the heterozygote is closer in genotypic value to the optimum than either of

1gurat.

th a single locus segregating, the two-allele confi

WI

the two homozygous genotypes (RoserTson 1956). We can infer from the

results presented here that this phenomenon has not led to any appreciable
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Ficure 1.—The sensitivity of four population parameters to differences in the value of NCg2,
based on the data of Tables 2 and 3 for 2/V generations of selection in the absence of mutation. N
denotes breeding population size, C is the coefficient of centripetal selection, and g2 the initial
contribution of the locus to the total phenotypic variance.

retention of allelic variation with NCg? < 20, given initially a set of multiple
alleles with effects normally distributed about the optimum.

It is of some interest to check on the accuracy of equation (17) in predicting
changes in the level of genetic variance due to alleles with initially normally
distributed effects. Table 4 shows the predicted and observed values after /V gen-

TABLE 4

Comparison of observed levels of genetic variance within populations with those predicted by
equation (17). The data refer to a period of N generations of centripetal selection in
the absence of mutation, there being initially 2N alleles with effects
normally distributed about the optimum

Value of Genetic variance Predicted
NCg? observed* variance*
0.5 0.55 = .04 0.51
1.0 0.46 3 .02 0.44
5.0 0.22 £ .02 0.20
10.0 0.15 + .01 0.12

20.0 0.07 = .01 0.07

* Expressed as a fraction of the initial genetic variance, g2.
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erations of selection. For the range of values of NCg? tested, the predicted values
somewhat underestimate the residual genetic variability, since equation (17)
ignores changes with time in the measure of kurtosis of the distribution of allelic
effects. After 2V and 3N generations of selection in the absence of mutation, the
predicted values are quite appreciably less than those observed.

POPULATIONS IN MUTATION-SELECTION EQUILIBRIUM

Our objective in this final section is the simulation of essentially equilibrium
populations under centripetal selection, genetic sampling and mutation, dealing
only with single locus models. The expected number of mutant alleles per gen-
eration is 2/Vp, and the actual number has been determined each generation as
a random Poisson variate with the same expectation. The mutational events
have been allocated at random to the existing alleles, with probabilities equal
to the allelic frequencies after selection and genetic sampling. The effect of a
new mutant has been determined as a; + 8a;, where a; is that of the parent
allele concerned, and 8a; is a random normal value with zero mean and variance
o’m. Selection and random sampling have been simulated in the manner indicated
in the previous section. The program has been checked to establish that new
mutants are introduced into the population according to Poisson expectations,
and that the mean probabilities of extinction for neutral mutations (C = 0.0) are
those predicted by existing theory (Table 5).

The regimes of Table 6 have been chosen to represent a series of populations
with values of N, the breeding population size, ranging from 100 to 1,000, with

TABLE 5

Observed and expected numbers of new muiants per generation, and the probabilities of
extinction observed for neutral mutations: N = 500, 2Np = 1

No. of Frequency Probability of extinction
mutants Observed Poisson Generation Observed® Theoretical¥®
0 366 368 1 0.353 0.368
1 339 368 3 0.601 0.626
2 203 184 7 0.784 0.790
3 73 61 15 0.894 0.887
4 14 15 31 0.947 0.941
>5 5 4 63 0.975 0.970
1,000 1,000

* Observed probabilities based on 1000 observations; theoretical probabilities following Fisuer
(1922).
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the parameter combinations NC* and Np held constant. All populations began
with a single allele of optimal or suboptimal effect, and a period of at least 10N
generations was allowed for mutational variability to accumulate under centri-
petal selection before the survey period began. The “equilibrium” populations
have been characterized in terms of the four parameters studied in the previous
section, viz., the number of alleles segregating, n,; the level of heterozygosity,
H; the within-population variance, ¢%;; and the drift variance, z?, estimated as
the mean squared deviation of the population mean from the optimum. The
total genetic load has also been estimated by the formula given in the footnote
to Table 6.

The average number of alleles segregating in these populations is virtually
identical in each case with the number predicted by Wricrt (1966) for multiple
alleles without selection, i.e.,

_ 4N (4Np + 4No) 1)
”“—(1+Uv% [1_1£‘(4N,;)F(114Nv) (QV) ] (23)

where 4Nv has been taken to be 0.0001 for purposes of calculation. In the
present instance, with 4N == 1.0, a simpler prediction equation is

ng, = log. (2N) (for 4Nu = 1.0)

as given by Ewens (1964) and Kimura (1968). The predicted values of n, for
populations of the same size as those in Table 6 are 5.30, 6.21, 6.91, and 7.60,
respectively. We must therefore conclude that the mean number of alleles
segregating in these equilibrium populations is little affected by the centripetal
selection imposed (Figure 1).

The observed mean values of H, ¢%, and z2 in Table 6 do not change significantly
as population size is increased with NC* and Ny constant, the overall mean values
being H = 0.419 = .015, ¢%, = 0.287 + .043 and 7> = 0.195 = .022. The corre-
sponding predicted values of H and ¢?, for isoallelic variation in the absence of
selection are 0.500 (Crow and Kimura 1964) and 1.000 (equation (21)). Both
parameters are therefore significantly reduced by centripetal selection, but the
reduction in variance is appreciably greater than that in heterozygosity. These
simulated “equilibrium” populations therefore reinforce the conclusions of the
previous section as regards the differential sensitivity of n,, H, and ¢% to centri-
petal selection. '

The statistics of Table 7 describe the impact of centripetal selection on the
simulated populations in more detail. The single locus model we are exploring
Inevitably gives rise to pairs of alleles for which the heterozygote is superior in
fitness to the two homozygous genotypes concerned (RoBeErTsoN 1956). Our aim
is to determine the importance of this phenomenon in maintaining segregation
over appreciable periods of time: the statistics for heterotic polymorphisms in
Table 7 have therefore been restricted arbitrarily to those which persisted in the
population for at least /V generations.

The mean selective advantage of the heterozygote in these polymorphisms
can be seen to be inversely related to IV, as was to be expected (Kimura 1968).
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On an evolutionary time scale, the parameter of greatest interest is the rate
of amino acid replacement in the protein corresponding to the predominant

and Vg, though the available data are as yet too few to test the statement crit-
y.

1Ca
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allele, expected to be Nu over a period of IV generations for isoallelic variation
in the absence of selection (Kimura 1969). The parameter p here refers to the
rate of spontaneous mutation leading to single amino acid changes in the protein
concerned. The rate of amino acid replacement in the simulated populations has
been calculated from the number of mutational changes differentiating the final
predominant allele from that in the initial population. The observed values appear
from the limited data of Table 7 to be independent of V for given values of VC*
and NV, averaging less than 0.12 replacements per N generations. The value of
Ny for these regimes is 0.25. In populations of breeding size N = 5000, therefore,
with a mutation rate of 5 X 105, we would expect an intensity of centripetal
selection of C* = 5 X 10~* to be sufficient to at least halve the rate of amino acid
replacement in the course of evolution.

Allelic variation in natural populations: Surveys of naturally occurring elec-
trophoretic variability in Drosophila pseudoobscura consistently show approxi-
mately one-third of loci to be polymorphic, with mean levels of heterozygosity
close to 0.12 (LewonTin and Hussy 1966; Prakasa, LEwonTiN and Huesy
1968). The data of O’Brien and MacIntyre (1969) indicate somewhat higher
values in D. melanogaster, and appreciably less variability in D. simulans.
Harris (1969) has summarized the results of human population surveys for
electrophoretic variants in 20 randomly chosen enzymes, showing one-third of
the loci to be polymorphic in European and African populations, with a mean
level of heterozygosity of 0.072. For blood group loci in the English population,
the mean frequency of heterozygosis has been shown by Lewontin (1967) to
be close to 0.15.

100

0
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-0-91 -0-l2| +0-67

) I T

RELATIVE FITNESS (%)
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Ficure 2.—Selective advantage of the heterozygote for a pair of alleles with additive effects
on the scale of enzyme activity. Numerical values refer to a polymorphism arising in the regime
of Table 8, with a mean heterozygote superiority in fitness of 0.319. Units of enzyme activity
are defined by reference to the magnitude of the mutational variance, o2,, = 1.0, and expressed
as deviations from the optimum.
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These observed levels of polymorphism and heterozygosity can readily be
duplicated by simulation based on the single locus model which has been studied
in this paper. The model in its simplest form assumes additive allelic effects, a
heterozygote having a level of activity equal to the mean of the activities of the
corresponding homozygotes (Figure 2). The rate of decline in fitness with devia-
tion from optimal activity is specified by the magnitude of the parameter C*
(Table 6), and the rate of mutation to novel alleles is denoted by . The data of
Table 8 indicate that values of NC* = 5.0, and Nu = 0.05, lead to an estimated
mean level of heterozygosity of 0.122 # .016, and an overall probability of
polymorphism of 0.300 + .026 at equilibrium.

These two statistics are accurately estimated, and come very close to the ob-
served values in populations of Drosophila and man. The expected number of al-
leles segregating in a population of size 500 is 2.32 based on equation (23), in
excellent agreement with the value of 2.16 = .09 in Table 8. The level of hetero-
zygosity observed is roughly 759, of that expected for completely neutral isoallelic
variants.

The stability of the polymorphisms arising by mutation under this regime can
also be gauged from the statistics in Table 8. Approximately 509% of the poly-
morphisms detected in a contemporary population would be expected to be
heterotic on the basis of this model, with a duration of roughly 2.5-5.0 /V genera-
tions in the life of the population. With a breeding population size of 500, the
mean superiority in fitness of the heterozygotes in these heterotic polymorphisms
is predicted to be 0.25 + .089.

DISCUSSION

The behavior of simulated populations under selection for a fixed optimal level
of gene activity, with continual spontaneous mutation to novel alleles, has been
interpreted in this study largely in terms of the parameters Ny and NC*, where
C* = Co?%,/a?,. These arise in the derivation of an algebraic expression for the
equilibrium genetic variance in a population of breeding size NV, with mutation
rate u, coefficient of centripetal selection C and mutational variance ¢*, (equa-
tion (20)). Extensive tests of the effects of centripetal selection in finite popula-
tions in the absence of mutation have shown that the parameter NC accounts for
observed changes in both genetic variance within populations (o¢%), and the
variance of replicate population means (Z?). Variation in NV for constant NC has
been shown to be without detectable effect on these statistics (Table 3). The more
limited data for populations in equilibrium under a regime of centripetal selection
and mutation, where NV has been varied with Nu and NC* held constant, point
to the same conclusion (Table 6). Both sets of data clearly show the relative in-
sensitivity to centripetal selection of the mean number of alleles segregating, 1.,
and to a lesser extent mean heterozygosity, H, by comparison with the two vari-
ance parameters o%, and z? (Figure 1).

Equation (23) can therefore be used to predict the mean number of alleles
segregating in equilibrium populations at intensities of centripetal selection such
as those involved in the simulation experiments reported in this paper. The data
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of Tables 6 and 7 indicate that the formula predicting the mean level of hetero-

4Np/(1 + 4Ny), provides a
entripetal selection. The compari-
tion of equation (20) can be treated as

he case of neutral isoalleles, viz., H

zygosity I t

useful upper limit to the level expected under c
sons of Table 9 also suggest that the solu
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der centripetal selection and mutation, being considerably more useful than either
the prediction for an infinite population (equation (22)), or that for neutral

tic variance In an equl

an upper limit for the average gene

bles us to calculate a probable upper

(equation (21)). This ena

genetic variation



184 B. D. H. LATTER
limit to the inbred load, L,, in such an equilibrium population, expected to be
L; =14C* ¢%?, (for 0%, = 1.0) (24)

It should be noted that equations (20) and (24) imply that the inbred load in a
small population at equilibrium will be less than that in a large population with
the same value of C* and p. Preliminary simulation results (LATTER, unpub-
lished) bear out this prediction. However, the total load, L = 15 C* (22 + %),
is greater in the small populations than in the large, due to the increased drift in
the population mean away from the optimal level of activity. Kimura, MarU-
vama and Crow (1963) have shown the mutational load in small populations to
be usually greater than that in a large population, using a conventional two-
allele model with forward and back mutation rates.

It has been demonstrated in the final section of this paper that equilibrium
computer populations with V=500, NC* =5 and Nu = 0.05 come remarkably
close to simulating the pattern of allelic variation in natural populations of man
and Drosophila, recently discovered by electrophoretic techniques. The most ex-
tensive data are those of Praxasa, LEwonTiN and Hussy (1969) for D. pseudo-
obscura, showing an average level of heterozygosity of 129 in North American
populations of the species, with an average of 429, of loci showing polymorphism.
If the two loci associated with inversions in the third chromosome are excluded,
the figures become 119, and 369, respectively (cf. Table 8). We may interpret
the single locus model of centripetal selection used in this paper in terms of nat-
ural selection for an optimal level of the catalytic activity of a given enzyme, with
spontaneous mutation to alleles of above and below optimal activity. Such a model
is almost certainly too simple, and variations on the same theme remain to be
explored, particularly those involving (i) low levels of migration between neigh-
boring populations; and (ii) selection for optima which change from generation
to generation in a random or cyclic fashion.

There are two properties of the mutation-centripetal selection model which
make it particularly relevant to the survey data on electrophoretic variants which
are now being collected in man, Drosophila and mice. On the one hand, we have
seen that heterotic polymorphisms are found in the populations of Table 8 with
a probability of the order of (.15, accounting for roughly half of the polymor-
phisms observed. These heterotic polymorphisms are maintained over something
like 2.5-5.0 N generations on the average, by a mean heterozygote advantage of
approximately 0.259%. Separated populations may therefore be expected to main-
tain a stable pattern of allelic frequencies at many loci over considerable periods
of time, and a small degree of migration between such populations would rein-
force this tendency to stability. More accurate estimates of these parameters must
be provided by future simulation experiments, together with a more thorough
exploration of the process of population differentiation.

The second important feature of the model is that it appears to provide an an-
swer to the dilemma posed by Sven, REep and Bopmer (1967), concerning the
expected drop in fitness on inbreeding in a natural population. They point out
that if large numbers of loci are maintained as heterotic polymorphisms, the de-
cline in fitness with inbreeding should be extremely rapid. With a multiallelic
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model involving centripetal selection and mutation, we have seen that the regime
of Table 8 leads to a probability of approximately one-third that a given locus
will be found to be polymorphic at any point in time. Of these, roughly one-half
are expected to be heterotic, and the mean inbred load per locus can be estimated
from equation (24) to be L, ==2.40 X 10~* + 0.85 X 10 If we take the rate of
inbreeding depression in Drosophila to be (—2.88 = 0.16) F, as calculated from
Table 3 of LarTer and RoBerTson (1962) for the Kaduna cage population of
D. melanogaster, the number of loci concerned can be estimated to be 12,000 +
4,300. If the estimate if inbreeding depression is based only on the fitness of
surviving inbred lines in LatTer and RoBERTsoN’s experiment, the figure be-
comes (— 2.30 = 0.13) F, and the estimated number of loci is 9,600 = 3,400.

The studies of O’Brien and MacINTYrE (1969) suggest that the Kaduna cage
population is no less polymorphic than natural populations of D. melanogaster,
but the average level of heterozygosity in this species may be higher than that in
D. pseudoobscura. The number of loci suggested by our simple calculation is
therefore likely to be an overestimate, and is as yet imprecise. The figure never-
theless appears to be of the right order, as judged by current estimates of the num-
ber of loci in Drosophila (LewonTiN and Hussy 1966), and indicates that further
exploration of the model is warranted.

SUMMARY

The maintenance of isoallelic variation under centripetal selection in finite
populations has been studied by means of computer simulation. A single locus
model of natural celection for an optimal level of gene activity has been used, with
continual mutation to alleles of above or below optimal activity, not previously
represented in the population.———The mean number of alleles segregating at the
locus, and the mean level of heterozygosity, have been shown to be far less sensi-
tive to centripetal selection than parameters measuring genetic variability be-
tween and within populations. The variance parameters in equilibrium popula-
tions have been shown to depend primarily on the values of the parameter
combinations NC and Np, where NV denotes breeding population size, C is the
coefficient of centripetal selection defined in this paper, and p is the rate of mu-
tation to novel alleles. A prediction equation involving NC and Np has been de-
rived which gives an upper limit to the expected genetic variance within popu-
lations, and consequently the inbred load involved. Populations in mutation-
selection equilibrium have been analyzed to determine the mean levels of hetero-
zygosity, and the duration and frequency of heterotic polymorphisms. The com-
puter results have been compared with experimental data on the frequencies of
electrophoretic enzyme variants in natural populations of Drosophila pseudoob-
scura and man, and with an estimate of the inbred load measured under competi-
tive conditions in D. melanogaster.
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