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HIS is the second of two articles (PROUT 1971) describing an experimental 
Tsystem for estimating fitness components in Drosophila. The system is 
principally concerned with the fitness components operating in the adult phase 
of the life cycle where fertility and mating effects can generate complications 
in the pattern of selection. The objective is the estimation of a sufficient set of 
adult components for the purpose of predicting genotype frequencies in a p o p -  
lation. In the first article the experimental system is described in detail and then 
applied to certain fourth chromosome mutants of Drosophila melanogaster. In 
this article the estimates of fitness components are incorporated into recurrence 
equations which are then used to predict the behavior of experimental populations 
segregating for these same mutants. 

MATERIALS AND METHODS 

Drosophila melanogaster fourth chromosome recessive mutants eyeless ( e y t )  and shaven 
(sun) in repulsion linkage constitute the genetic system used to test the method. Because of the 
negligible recombination within fourth chromosomes, the two mutants are treated as segregating 
alleles which complement to produce a wild-type heterozygote. The three genotypes will be 
denoted ee. e/s, ss, for eyeless, heterozygote, and shaven, respectively. 

Five populations were started with e/s  flies. Each population was maintained in a half-pint 
culture bottle containing medium. The eggs laid were allowed to develop at 25°C for  two weeks, 
at the end of which time the adult flies were transferred to a new bottle for 24 hr of egg laying, 
after which the adult flies were removed, and a sample d 100 (ignoring sex) was classified and 
counted. The eggs resulting from the 24 hr of egg laying constituted the beginning of the next 
generation. 

The five populations, designated A through E, were maintained for 25 generations. As will 
be shown presently, all populations quickly established a polymorphic equilibrium. In order to 
provide data for testing the theory, artificial perturbations of the equilibrium were introduced 
twice during the history of the populations, at generation 9 and at generation 21. 

A perturbation was accomplished in the following way: For a given population at the end of 
the 2-week period, instead of transferring the flies as usual, the entire population was etherized 
and all flies were discarded except the females of one of the homozygous phenotypes (eyeless or 
shaven). Then only these females, most of whom had previously mated, were used as founders 
of the next generation by the usual 24 hr of egg laying. The next and subsequent generations 
were treated routinely. 

At generation 9, populations A and B were selected for shaven (against eyeless), D and E 
were selected in favor of eyeless (against shaven), while population C was left unperturbed. At 
generation 21, A and B were selected for eyeless, D and E were selected for shaven, and C was 
left unperturbed. 

Genetics 68:  151-167 May 1971. 
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RESULTS 

The fitness component estimates described in detail in the first article are 
recorded here again in Table 1 .  All components are normalized to the heterozy- 
gote e/s.  Here and elsewhere the three genotypes ee, e /s ,  ss are indexed i = I ,  
2, 3 ,  respectively, for females; and j = I ,  2, 3 for males. Viability measures the 
egg-to-adult survival component. The adult components are termed fecundity 
for females and virility for males and encompass adult survival as well as fertility 
and mating effects. It can be seen that the virility components, Vzj, vary with 
the female partner to which the males are mated. On the other hand it was found 
that fecundity, F i ,  was independent of male partner and so the females are char- 
acterized by one rather than three sets of fitness components. These are the 
fitness components which will be used presently for  predicting the behavior of 
the populations. 

The culture regime for the populations resulted in population sizes between 
200 and 400 individuals. Genotypic composition based on samples of 100 
(usually) are shown in Table 2. The two points at which the populations were 
perturbed, PI and PII, are indicated in the table. The obvious effect of the 
method of perturbing can be readily seen in the absence of that homozygous 

TABLE 1 

Components of fitness estimates 

Females Males 
VIABILITY 

L19 L3$ Lw L3d 

.E65 c.039) 1 .934 C.039) .E39 (.036) 1 .777 (.038) 

ADULT COMPONENTS 

Fecundity Virility 

constant 9 p1 F3 VI1 vi3 i -  

1.037 C.122) 1 .458 (.068) 1 .363 (.074) 1 .039 (.033) 

2 .243 (.042) 1 .122 (.037) 

3 .135 (.036) 1 -.OH (.030) 

I 

L Q ,, L 8 = female and male viabilities, respectively; F ,  adult female components or 
fecundity; Vii = adult male components or virility of males of genotype i when mated to female 
constant parent of genotype i. The genotypes ee, e/s, ss are indexed i = 1,2,3, respectively for 
females, and i = 1,2,3 for males. Standard error in parentheses. 
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TABLE 2 

Observed absolute frequencies in populations A through E of genotypes ee, e/s,  and ss 

Generation E 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1 4  

15 

16 

1 7  

18  

1 9  

20 

21  

22 

.23  

24 

25 

0 

10 

19 

22 

34 

30 

34 

2a 

48 

PI 0 

1 4  

20 

21  

3 1  

27 

40 

43 

37 

34 

29 

36 

PI1 75 

50 

47 

30 

31  

Population A 

- e l s  

100 

35 

53  

54 

44 

57 

46 

56 

44 

34 

64 

66 

58 

47 

55 

48 

42 

47 

49 

62 

51  

25 

44 

45 

57 

53 

ss - 
0 

3 1  

28 

22 

20 

13 

20 

16 

8 

33 

22 

1 4  

2 1  

22 

18  

12 

15 

16 

1 4  

9 

13  

0 

6 

8 

13  

16 

Total Pe - -  
100 

76 

100 

98 

98 

100 

100 

100 

100 

67 

100 

100 

100 

100 

100 

100 

100 

100 

97 

100 

100 

100 

100 

100 

100 

100 

.50 

.36 

.46 

.50 

.57 

.59 

.57 

.56 

.70 

.25 

.46 

.53 

.50 

.55 

.55 

.64 

.64 

.61 

.60 

.60 

.62 

.88 

.72 

.70 

.59 

.58 

ee 

0 

11 

29 

24  

24 

9 

27 

26 

33 

PI  0 

16 

23 

36 

23 

33 

33 

37 

20 

3 1  

28 

28 

PI1 49 

50 

36 

24 

24 

- 
Population B 

els ss 

100 0 

62 14 

52 1 9  

57 24 

5 2  24 

1 8  9 

44 29 

60 1 4  

54 13  

74 26 

55 29 

54 23 

46 18  

50 27 

57 10 

52 15  

53 10 

65 15 

54 15 

60 12  

56 16 

5 1  0 

42 8 

45 19 

53 23 

59 17 

- -  Total 

100 

87 

100 

105 

100 

36 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

Pe 

.50 

.48 

.55 

.50 

.50 

.50 

.49 

.56 

.60 

.37 

.44 

.50 

.59 

.48 

.62 

.59 

.64 

.53 

- 

.sa 

.58 

.56 

.75 

.71 

.59 

.51 

.51 

class which is opposite to the homozygous mothers which founded the perturbed 
generations (9 and 21). 

The allele frequencies of eyeless are shown in Figure 1. The mean of all five 
populations is shown except for perturbed points and several subsequent genera- 
tions where individual populations are shown. This figure displays the following 
general characteristics of the system: First, it is clear that the perturbations were 
effective. Secondly, it is clear that there is an equilibrium which favors eyeless 
somewhat over shaven. And finally, the equilibrium appears to be very stable 
judging by the rapid return of the perturbed populations. 
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TABLE %Continued 

Population C Population D 

Generation 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

11 

12 

13 

1 4  

1 5  

16 

17 

1 8  

19  

20 

2 1  

22 

23 

24 

25 

ee 

0 

12 

16 

38 

26 

32 

42 

31 

60 

30 

28 

37 

31 

33 

25 

26 

23 

25 

23 

20 

3 1  

39 

37 

28 

36 

35 

- - el8 

100 

44 

68  

78 

50 

48 

43 

5 1  

36 

54 

54  

52 

52 

50 

60 

57 

63 

56 

59 

57 

59 

50 

48 

6 1  

49 

47 

88 - 
0 

17 

16 

2 1  

24 

20 

15 

1 8  

4 

16 

18 

11 

17 

17 

15 

17 

14 

19 

18 

10 

10 

11 

15 

11 

15 

18 

100 

73 

100 

13 7 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

87 

100 

100 

100 

100 

100 

100 

.50 

.47 

.so 

.57 

.51 

.56 

.64 

.57 

.78 

.57 

.55 

.63 

.57 

.58 

.55 

.55 

.55 

.53 

.53 

.56 

.61 

.64 

.61 

.59 

.61 

.59 

ee 

0 

1 8  

34 

49 

35 

25 

45 

47 

52 

PI 62 

4 1  

43 

32 

38  

27 

38 

30 

32 

34 

22 

25 

PI1 0 

13 

16 

26 

22 

- els ss 

100 0 

46 1 8  

5 1  1 5  

43 8 

50 15 

59 16 

45 10 

4 1  1 2  

42 6 

38 0 

5 0  9 

42 15 

56 12 

48 1 4  

57 16 

5 1  11 

53 17 

57 11 

56 10 

57 2 1  

54 2 1  

53 47 

4 1  46 

49 35 

59 15 

65 13 

_ _  Total 

100 

82 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

Pc 

.so 

.50 

.56 

.71 

.60 

.55 

.68 

.68 

.73 

.81 

.66 

.64 

.60 

.62 

.56 

.64 

.57 

.54 

. 62  

.51 

.52 

.27 

.27 

.41 

.56 

.55 

- 

THEORY 

It is now necessary to incorporate the fitness component estimates of Table 1 
into a model which will provide the recurrence relationship between genotype 
frequencies of successive generations. 

Table 3 schematically presents the major steps in the derivation, and equations 
( I ) ,  below, are the final resulting recurrence equations. 

As indicated in Table 3, it is convenient to divide the process whereby an egg 
of one generation produces an egg in the next generation into two phases-a 
survival phase and a mating phase. 
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TABLE %Continued 

Population E 

155 

Generation ge 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0 

20 

23 

22 

38 

43 

39 

50 

28 

PI 60 

52 

37 

44 

38 

31 

36 

36 

31 

34 

23 

23 

PI1 0 

9 

19 

24 

26 

- e l s  

100 

48 

60 

57 

49 

35 

50 

36 

58 

40 

42 

52 

45 

56 

59 

51 

53 

61 

55 

60 

69 

54 

13 

60 

58 

61 

ss - 
0 

15 

17 

24 

13 

22 

11 

14 

14 

0 

6 

11 

8 

6 

10 

13 

11 

8 

11 

17 

8 

46 

18 

21 

18 

13 

Total Pe - -  
100 

83 

100 

103 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

.50 

.53 

.53 

.49 

.63 

.61 

.64 

.66 

.56 

.80 

.73 

.63 

.67 

.66 

.61 

.62 

.63 

.62 

.62 

.53 

.59 

.27 

.41 

.49 

.53 

.57 

P, 
PI, PI1 

relative frequency of the allele, eyeless. 
the first and second perturbations, respectively. 

The survival phase is sex dependent not only because actual survival or via- 
bility is sex dependent, but also because on the female side, the fecundity com- 
ponents are evidently independent of male partner, and so may be treated as 
though they were measures of survival. 

These surviving female and male genotypes, qi and pi,  then enter the mating 
phase to produce mated pairs which are shown in expanded form at the bottom 
of Table 3. It can be seen that the virility parameters, Vij, are simply used in 
weighting and normalizing the male proportions, pi ,  according to each type of 
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I 
1 4  8 8 {# 12 t i  11 18 20 22 24 

G e n e  r a t  i o n  

FIGURE 1.-History of the experiment. as shown by eyeless allele frequency, P,. Except for 
the perturbed generations 9-13 and 21-25, only the means of the five populations are shown. 
The dashed lines (----) represent the theoretical predictions. 

female partner, i. (The assumptions involved in this step will be examined 
presently.) 

The following recurrence equations are obtained by generating Mendelian 
expectations from each cell of the table of mated pairs and grouping according 
to genotype. 

GI' = X-1@1X1 (QIYil+i/2Q2) P,-l+%Q2 ( Q I Y 2 1 + 1 / 2 Q 2 )  R - 1 1  

Q2' = X-l{QIx1 (Q,Y1,+ 1/2 Q2 Ti-+ 1/2 Q 2 + Q J X J  (61 YJ1 + vi! Qz) F3-I 1 
Q< = X-~{Q&(Q,Y,,+1/2Q2) F3-*+1/2Q2 ( Q L + % c j z )  C'} 

x =:xiqi 
yij= LdjVij 

(1-1) 

( 1 -2) 

(1-3) 

where Q;' frequency of genotype i among fertilized eggs of the next generation 
Xi =L,,F: 

Yi ==: Yij Fj 

The new parimeters Xi and Yij simply represent the collapse of survival (via- 
bility) with adult parameters as indicated. 

The way in which the virility parameters Vij are incorporated requires some 
justification. . 

In the first article it was shown that the virility parameters could be interpreted 
in terms of a simple collision model of mating behavior: If a mixture qI of virgin 
females is placed with a mixture of males p l ,  then after time t ,  the proportion 
of mated females q.jt is given by 

(2) 
- 4i Piaai (1 - e-rzi;,t) Q i j t  - - 

W i  

where C = fraction of virgin females which encounter males in unit time; 
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TABLE 3 

Schematic presentation of notation and some relationships necessary for construction of 
recurrence equations (1) 

Fertil ization genotype 
frequencies by ssx. 

j 
When i - j ,  Q, = P 

Viability parameters 

Fecundity parameters 

Genotype frequencies 
a t  s tart  of mating 

Mating parameters 

Mated pairs 

Females 92 

Males -7 
q2p3v23 

v3 

ai; = conditional probability of mating, given an encounter; 
t time from the start; 
E. = a.. z - 23 Pr.  i 

And when all females have mated ( t + w )  

The mating parameter aij can be normalized to the male heterozygote (j=2) 
for each female, i 

- q i p j  Aii - - 
q i j ( t +  m )  Wi 
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where 

T. PROUT 

- W i = x A . .  33Pl . 

ai j A . . = -  
2Y ai, 

The substitution of the measured virility components Vij for Aij, as has been 
done in Table 3, assumes the following to be true: 

1. All of the surviving females are mated. Also, the above collision model of 
mating behavior strictly assumes that each female mates just once. However, 
this is equivalent to allowing for multiple matings (involving the parameter aii 
in each one) so long as a female’s fecundity is independent of the number of 
matings. 

2. The females have the same pattern of male preference when in the presence 
of females of different genotypes as they do in the virility experiments where 
they are in the presence of other females of their own genotype only (see first 
article). 

3. The different male genotypes have no differential effect on female egg 
laying. The estimation of the virility components, Vij, was based on the relative 
contribution of different male genotypes to the progeny when mated to a given 
female genotype, i. If the males differentially diminish or enhance female egg 
laying by a factor Mi (see first article), this effect is confounded with the factor 
Aij so that, as measured, 

V . .  A . .  M .  23 2 3  3 

However, for the construction of the recurrence equation it is necessary to assume 
that all fecundity differences are determined by the female genotype, measured 
by Fi ,  and that therefore Mi = 1 for all j .  This assumption is further illustrated 
by the fact that the rows of the mating table in Table 3 sum to 46, since all of the 
fecundity effects have already been accounted for by Fi. That this assumption 
must be made in order to write the recurrence equation constitutes proof that 
if MjZ1, then the values of this component must be known explicitly. 

The populations to which the model will be applied accumulate adults for 
four days and so this model of mating can be regarded as applying to each cohort 
of newly hatched females. An obvious defect is that the model does not take into 
account differential development time. 

Before equations (1) can be applied to the data, two modifications are neces- 
sary. First, genotype frequencies were actually determined on partially selected 
stages, namely after the operation of viability within each generation. This is a 
common situation in selection experiments and simply requires that the recur- 
rence equation to be fitted to the data must be advanced up to the stage of obser- 
vation (PROUT 1969). This means that both the female and male viability com- 
ponents which are collapsed in equations (1) must, in fact, be resolved again 
explicitly. The second modification arises from the fact that the population data 
of this experiment were collected without regard to sex which means that the 
viability components must be averaged between the sexes, as follows: 



POPULATION PREDICTION 159 

L, = % ( L I P  + Lla )  = .852 
L, = % (L,? + L,,) = .856 

This should introduce only a very small error in this case since the viability 
effects are very small and so also is their sex dependence. When these two 
corrections are applied to equations ( 1  ) , and the component values of Table 1 
are substituted, the following working equations result: 

ql’ = .852T-I ( 1  .037ql ( .36391f .5q , )~1-1 f .5q2  ( .243q1+.5q,)72-1) 
4,’ = T-’(1.037q1 (.039q,+.5q,)~~-~+.5q,+.458q~(.135q,+.5q, jVg-l) (4) 

qs’ = .856T-l( .458q,+.5q,v,-1+.5q, ( .122q3f.5qr)v2-1) 
where qi, qi’ = partially selected (observed) frequencies in successive genera- 

tions, respectively; 
T = normalizing factor such that 
V ,  = .363q1 4- qp 4- .039q3 
V ,  = .243q, -k 4% -k .122qs 
V ,  = .135q1 + q2, 

qi’ = 1 ; 
- 

- 

- 
assuming V,, = 0. 

ANALYSIS O F  DATA 

The theory just developed will now be applied to the population data. This 
analysis will be carried out in two parts: first the equilibrium generations will 
be examined, and, second, the path of return to equilibrium by the perturbed 
generations will be examined. 

1. Equilibrium: The theoretical equilibrium frequencies were obtained by 
simply iterating equations ( 4 )  until genotype frequencies stopped changing. 
(Because of the powerful overdominance in the virility components, it was 
assumed that the single equilibrium point was globally stable.) The results of 
such iteration give the following theoretical equilibrium values: 

Genotype frequencies Gene frequencies 

.351 .506 .143 .604 .396 
It is interesting to note that the Hardy-Weinberg frequencies for these gene 

frequencies are (.365, .478, .157) for (ee, e/s, ss, respectively), and that these are 
not drastically different from those given by the theory in which, of course, 
powerful selection is taking place. 

In order to compare this equilibrium prediction with the population data, it 
was arbitrarily decided that equilibrium was achieved in generation 5 after the 
start of the experiment, as well as the 5th generation after a perturbation. Thus 
the following generations were used for comparison with the theoretical equi- 
librium: generations 5-8 and 14-20 for populations A,B,D, and E; and genera- 
tions 5-25 for the unperturbed population C. 

In Table 4 the totals are given for each genotype over these generations for 
each population. Also shown, on the right, are the results of a chi-square test for 
homogeneity as well as a chi-square testing the totals against the theory. It can 
be seen that all but population A showed significant heterogeneity, a result not 

ee 4 s  ss e S 
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TABLE 4 

Equilibrium generation totals 

Population ee e/s ss Total 

A 386 557 154 1097 
B 305 573 158 1036 
C 672 1106 309 2087 
D 377 572 151 1100 
E 374 587 139 1100 

Grand totals 2114 3395 911 61.20 

28.9 20 .06 2 
32.8' U) 14.7** 2 
79.9'8 40 7.78 2 
53.1'8 2a .9 2 
51.7** 20 4.2 2 

Proportion in Grand Total 
Theoretical 

Heterogeneity among Population Totals 
Comparison between grand total and Theory 

,329 ,529 .I42 
.351 .506 .143 
xz = 12.2 d f = 8  
x 2  = 15.6** df = 2 

x 2 , ,  G chi-square for heterogeneity among generations; xZth chi-square for comparison 
degrees of freedom; * = significant at 5% level; ** = significant between total and theory; df 

at 1% level. 

unexpected for this type of experiment. Three of the five populations showed 
good agreement with theory (A, D, and E), and only population B showed a 
strong departure. The grand totals, over all the populations, are shown. A test for 
homogeneity among the totals over the five populations gave a x 2  = 12.2 which, 
with 8 degrees of freedom, is not significant, but the grand totals showed a signifi- 
cant departure from theory: x2 = 15.3 with 2 degrees of freedom. 

Finally in Table 4, the grand totals are expressed as decimal fractions for com- 
parison with the predicted equilibrium. There it can be seen that actually the 
discrepancy between the two is not very great. One means of evaluating this 
discrepancy is to determine how large a change in the parameters of the theo- 
retical equation is required to produce the actual equilibrium observed. There are 
ten such parameters. However, it is a reasonable guess that the viability param- 
eters, L, and L,, might be different under the population conditions (higher 
larval densities) as opposed to the conditions under which they were estimated 
(lower larval densities). Whether this is true or not, it is still interesting to note 
that if L, = .797 and L, = .800, then the theoretical equation, with the adult 
parameters as before, would give the observed equilibrium frequencies noted for 
the grand totals in Table 4. This small downward adjustment of viabilities as 
compared with the former estimates ( L ,  = 352, L, = 3 5 6 )  would account for 
the discrepancy between observed and predicted equilibrium. 

This procedure amounts to using the population equilibrium data to estimate 
viabilities, and since the grand totals possess only two degrees of freedom, both 
were used to estimate the two viabilities and none are left for a test of goodness 
of fit. However, the perturbed generations provide additional degrees of free- 
dom, and these new estimates of viability will be discussed again in connection 
with the analysis in the following section. 
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2. The perturbed generations: The starting point fo r  each perturbation was 
produced by the progeny of nonvirgin homozygous females, as explained earlier. 
This progeny generation was sampled in the same manner as other generations, 
so that the true starting point was unknown except to the extent that one homozy- 
gous class was missing. Therefore, in each case, maximum likelihood estimates 
of the starting points were obtained. The likelihood function was constructed by 
choosing a starting point and using this as generation zero in equations (4), 
which were then used to produce four succeeding generations. The values for five 
generations (including generation 0) were then regarded as the true population 
values of which the observed data (including generation 0) were samples. The 
likelihood function obtained from this relationship was then maximized with 
respect to the starting point value. 

Graphical presentation of the results of this fitting procedure are shown in 
Figures 1 and 2. In Figure 1, showing the history of the populations expressed as 
the eyeless allele frequencies, the dashed lines show the theoretical allele fre- 
quencies obtained from equations (4). However, since Hardy-Weinberg frequen- 
cies are not necessarily expected, the full description of each generation requires 
two dimensions. In  Figure 2, a-f, the paths of population points are presented 
by expressing the shaven homozygote q9 as a function of the eyeless homozy- 
gote 4,. Figures 2a-2d each show two of the perturbed generations with the 
theoretical and actual paths. In  Figure 2e the equilibrium generations are shown 
as unconnected points together with the theoretical path to equilibrium from 
the beginning of the experiment. Finally, Figure 2f shows several theoretical 
paths together with the Hardy-Weinberg parabola, 

In  this last figure it can be seen that this system very rapidly approaches an 
equilibrium path which closely parallels the Hardy-Weinberg parabola as the 
population rapidly moves toward the equilibrium point. 

In Table 5 the first three columns show for each perturbation the estimated 
starting points and immediately below these their observed sample values. The 
fourth column gives the chi-squares testing goodness of fit. The eight degrees of 
freedom for these chi-squares are obtained as follows: Including the starting point 
there are five generations. The starting generation has only two classes giving 
one degree of freedom, while the remaining four generations have three classes 
giving two degrees of freedom each. From these 9 degrees of freedom one is deduct- 
ed for estimating the starting point. The first set of four perturbations indicates a 
good fit. The first population, A, gave a significant chi-square; but since the first 
four perturbations were done at the same time, the sum of four chi-squares can be 
considered, and this x' is not statistically significant. On the other hand the second 
set of perturbations shows a poor fit. The fifth and sixth columns of Table 5 are 
the results of the same kind of analysis except that the viabilities L, = ,797 and 
L, = 300, obtained from the equilibrium data, were used. The fifth column 
shows the estimated heterozygote starting frequency, and the sixth column has 
the resulting x2. The same pattern is revealed as before between the first and 
second perturbation experiments. The effect of using the lower viabilities was to 

q 9 = 1 - 2 & + q *  
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a 

I \ 

FIGURE 2.-a through d: Theoretical (----) and observed (-) paths of perturbed popu- 
lation points. The coordinates of a point are the two homozygote frequencies Q,  and Q,  for 
shaven and eyeless, respectively. The particular populations A, B, D, E are indicated. Graphs 
a and b represent the first perturbation and c and d the second. x = theoretical equilibrium 
point. Graph e shows the observed equilibrium points (unconnected) and the theoretical path 
(-) from the start of the experiment. Graph f shows several theoretical paths (-) and the 
Hardy-Weinberg parabola (----) . 

reduce most of the 8 chi-squares, thus indicating agreement between the per- 
turbation and equilibrium data on the suggestion that viabilities were lower in 
the populations than in the viability experiments. 
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TABLE 5 

Chi-squares and mximum likelihood estimates resulting from fitting equations ( 4 )  
to perturbed generations 

Column: 

Population 

A MLE 
OBS 

B MLE 
OBS 

D MLE 
OBS 

E MLE 
OBS 

D MLE 
OBS 

E MLE 
OBS 

A MLE 
OBS 

B MLE 
OBS 

starting 
frequencies 

ea e/s ss 

0 .52 .48 
0 .51 .49 
0 .73 .27 
0 .74 .26 
.55 .% 0 
.62 .38 0 
.60 .40 0 
.60 .m 0 

0 .47 .53 
0 .53 .47 
0 .53 .47 
0 .54 .46 
.66 .34 0 
.75 .25 0 
.46 .54 0 
.49 .51 0 

FIRST PERTURBATION 

(4) (5) (6) 
L, = .797 
L, = ,800 

Start 
xz (df) e/s xz (df) 

17* (8) .53 14 (8) 

7 (8) .73 8 (8) 

9 (8) .44 8 (8) 

8 (8) .38 8 (8) 

4- K-@q 
SECOND PERTURBATION 

27**(8) .48 27**(8) 

21**(8) .53 16* (8) 

14 (8) .33 10 (8) 

28**(8) .53 25**(8) 

91**0 79** (32) 

(7) 

Start 
4 s  
.53 

.74 

.42 

.41 

.51 

.54 

.27 

.46 

(8) (9) 

MF. 

L, L, 
5 7  .68 

.85 .99 

.80 .95 

.83 .64 

Viabilities 

.75 .97 

.59 .56 

.68 .88 

.71 1.11 

~~ ~~~~ 

Columns (1)-(3) give the observed (OBS) and maximum likelihood estimate (MLE) of the 
starting frequencies; Columns (5) and (6) give the maximum likelihood estimate of the hetero- 
zygote starting frequency and resulting chi-square, assuming viabilities L, = .797 and L, = .800. 
Columns (7)-( IO) give the maximum likelihood estimates of heterozygote starting frequency, 
the two viabilities L, and L,, and the resulting chi-square. 

Because of the highly significant chi-squares in the second perturbation experi- 
ment, an improved fit was attempted by obtaining maximum likelihood esti- 
mates of not only the starting point but also the two viabilities for each individual 
population. The final four columns of Table 5 show the results of this investiga- 
tion. The estimates of the starting point and individual viabilities are shown and 
finally the resulting chi-squares, whose degrees of freedom are reduced to 6 due 
to the estimation of the two viability parameters. This last procedure resulted in 
a considerably better fit in the second perturbation experiment. Only one of the 
chi-squares remains significant, and the total of the four chi-squares is just barely 
significant at the 5% level. 

This result suggests that there may have been some differentiation of the popu- 
lations with respect to viability toward the end of their history. However, no 
correlation could be found between the estimated viabilities for individual popula- 
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tions when in equilibrium (not shown) and the viabilities estimated for the same 
population after the final perturbation. Because of this lack of correlation, be- 
cause of the small sample sizes in each generation (loo),  and because components 
other than viability could be causing the discrepancies, it was decided that a seri- 
ous investigation of population differentiation was not warranted. 

DISCUSSION 

The principal conclusion is that this method of estimating fitness components, 
discussed in detail in the first article, is capable of producing reasonably good 
population prediction. One probable reason for this success is that it was possible 
to estimate the fitness components under conditions fairly similar to those of the 
rather simple population regime. However the conditions were not identical. In 
the population, during the 4 days of hatching (days 10-14), an age structure 
developed; while the component experiments were done with one age class. In  the 
population, mating was carried out in a genotypic mixture of both sexes; whereas 
the virility components were estimated using one female genotype at a time. 
Finally, in the population there was greater larval crowding, which fact provided 
some justification for new viability estimates from the population itself. 

Nevertheless, the reasonably good population fits suggest that one may have a 
certain degree of confidence that this method of estimating fitness components 
can provide information concerning a relatively intricate mode of selection occur- 
ring in a population whose ecology is somewhat more complicated than conditions 
of the component experiments. 

It is interesting to note how little information would be gained in this particu- 
lar case from a study of the viability component alone or by a “field test” for 
agreement with Hardy-Weinberg proportions. I have emphasized the weakness 
of these tests for selection elsewhere (PROUT 1969) and here the point is illustrat- 
ed by a system with powerful selection in the adult components, but because of 
the relatively weak viability effect, the population point moves and settles down 
always close to the Hardy-Weinberg parabola (Figure 2f). 

It is possible in this particular case that a simpler model of selection would fit 
the data equally well and that a proper analysis of the population data alone 
(ANDERSON 1969; WILSON 1968) would be sufficient, thus rendering component 
experiments unnecessary. A study of this question was not done partly because 
the small scale of the population data did not seem to warrant it, but mainly be- 
cause the emphasis of these two articles is on the methodological principle of 
performing component experiments in such a way that the measures of com- 
ponent effects are designed for incorporation into recurrence equations for popu- 
lation prediction. It is for this purpose that the recurrence equations (1 ) and (4) 
are displayed and used for prediction with the full level of complexity that the 
component experiments indicated. 

Also this shaven-eyeless system may be regarded as a living case which begins 
to approach the kind of selection which, for all practical purposes, is inaccessible 
through analysis of population data alone (PROUT 1969). If the virility inter- 
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actions were stronger, this plus the powerful sex dependence in the adult phase 
would produce frequency dependence of fitnesses and generally poor fits in any 
sort of curve-fitting procedure performed on the data of large-scale population 
experiments. 

The model, equations (1) , used for prediction in these experiments is a rather 
general one allowing for nonrandom mating. It may be of some interest to ex- 
amine the relationship between this model and other nonrandom mating models 
which have appeared in the literature. There appears to be two types of such 
models: those in which it is assumed all surviving females are mated, and those 
which assume equal likelihood of mating by the two sexes. 

The first type, to which the model of this study belongs, has been termed 
“asymmetrical” by WATTERSON (1959) or “limited selection” by SPIETH (1970), 
and special cases of this model have been used for theoretical studies of negative 
assortative mating and incompatibility systems by the above authors and others 
(see review by KARLIN 1969). 

The second type of model has been termed “symmetrical” (WATTERSON 1959) 
or “mass action” (KARLIN 1969) and special cases of this model have been ex- 
amined by BODMER ( 1965), CANNING (1 969), PROUT (1 969), KEMPTHORNE and 
POLLAK (1970) and LEWONTIN, KIRK and CROW (1968). In its most general form 
this latter model simply attaches a single parameter, Wij, to random pairs of un- 
selected females di and males Pj ,  thus 

The next generation is produced by applying Mendelian expectations to the above 
expression. An appealing aspect of this symmetrical model is that all aspects of 
selection and mating are encompassed by the eight Wij parameters (assuming 
normalization). On the other hand, equations (1  ) , representing the asymmetrical 
model, do not permit the collapse of the two female parameters, X i  with the six 
male parameters, Y i j .  Thus the two models have the same number of parameters 
but are not formally equivalent. 

I t  is interesting to note that equation ( 2 ) ,  describing mating behavior as a re- 
peated collision or “mass action” process, can be used to link the two models, 
because when t = lJc,  then by assuming 

q i j t  qipjaij 
which leads to the symmetrical model; and when t - +  CO, equation (2) gives 
equation (3) which leads to the asymmetrical model. 

Which of the two models is appropriate (if either) depends, of course, on the 
mating biology of the species in question. As WORKMAN (1964) has pointed out, 
the asymmetrical model might best apply to short-lived insects which store sperm, 
such as Drosophila, and to plants where there is excess of pollen so that seed set is 
determined by the seed parent only (Fi, in the present notation). Whereas the 
symmetrical model would better describe monogamous species, or organisms 
where each mating leads to the production of a brood, after which both male and 
female become generally available again to produce another brood etc., as perhaps 
in mammals and other vertebrates. 

In  fact, it is conceivable that a systematic Study of the varieties of mating 

Q P j  Wi j 

r 1 - wi, equation (2) becomes 
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biology would be rewarded by the generalization that for most of them, either 
the symmetrical or the asymmetrical model is a sufficient description for purposes 
of population prediction. 

Finally, there is the question of robustness. It could be that although these two 
models are formally different, they are fairly robust with respect to either each 
other or simpler models, not only for the purposes of theoretical study in the 
sense of LEVINS (1966) but also for the purpose of fitting experimental data. 
Here too, further study is required. 

The writer wishes to acknowledge the invaluable assistance of Dr. DAVID GIBO and Mrs. 
JOAN MCFARLANE. This work was supported by the National Institutes of Health grant GM-06174. 

SUMMARY 

This is the second of two articles on the estimation of fitness components and 
the use of such estimates to predict population genotype frequencies. In  the first 
article an experimental system was described for estimating a set of fitness com- 
ponents sufficient for population prediction. The system was applied to certain 
fourth chromosome mutants in Drosophila melanogaster revealing that these 
mutants affected all components: viability, fertility, and mating behavior. In  this 
article these components were incorporated into recurrence equations for predict- 
ing population genotype frequencies. These equations were tested on experi- 
mental populations segregating for these mutants. Several opportunities for test 
were provided by artificial perturbations of the equilibrium these populations 
tended to seek. Reasonably good fits were obtained by a chi-square criterion.- 
The recurrence equations used for prediction entail a repeated collision model of 
mating behavior such that eventually all females are mated, but not randomly so. 
This asymmetrical model is compared with other symmetrical models which 
have appeared in the literature and which take into account nonrandom mating. 
It is suggested that either this model or the “mass action” model might constitute 
sufficient descriptions of a great variety of different mating biologies. 
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