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H A R R I S  (1964) provided a parameterization of nine probabilities for the 
fifteen states of identity of allelic genes of inbred relatives, and with these 

developed the joint frequencies and covariances of the relatives. He also showed 
how to find the probabilities when one relative is not an ancestor of the other. 
At about the same time (1965) GILLOIS organized various probability functions 
for the states of identity and, although not involving explicit expressions of the 
joint frequencies, found the covariances of inbred relatives, which he later (1966) 
extended to multiple alleles. DENNISTON (1967) produced a system of path 
counting for arriving at the probabilities, and extended his system to include 
two linked loci. 

In this work all two-, three- and four-gene probability functions for a single 
locus are interrelated for all situations, me, two, three, or four individuals in 
which the gene states of identity can arise. The probability functions in con- 
junction with gene frequencies provide the joint genotypic frequencies. An 
algorithm is developed for the systematic computation of all the probability 
functions from pedigrees. For regular systems of mating the algorithm need be 
applied only once between successive generations and is illustrated for full sib 
mating and a finite monoecious population. 

As mentioned before, the probability functions were used to find the co- 
variances of inbred relatives. They can be used to compute exact probabilities of 
fixation and the time to fixation in finite populations, but which requires an 
extension of the set of functions to the order of the number of genes in the popu- 
lation. Most important, however, they provide models for the analyses of gene 
frequencies, models which clearly define parameters that are estimable and 
hypotheses that are testable. These models may be applied to the analyses of 
frequencies of individuals and groupings of individuals for which the pedigree 
relationships are known or, more important, for which the relationships are 
unknown-the usual situation in natural populations. 

STATES O F  IDENTITY BY DESCENT 

The inbreeding coefficient, F, and coancestry, 8, are probability statements 
about pairs of alleles being identical by descent; F for the pair of alleles of an 
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individual and 8 for a random pair of alleles, one from each of two individuals. 
Moving to the next step of three genes, for any three alleles, a, b and c, there are 
five states of identity by descent. These states and corresponding probabilities are 

Prob Genes Identical 

yab  a r b  
Yac a r c  
y b c  b = c  
Yo None 

Yabc a E b - c  

These probabilities sum to one so that one must reckon with only four which can 
be further reduced to one by bringing in the probabilities for gene-pair states. 
The probabilities for pairs of genes being identical by descent can be found by 
adding the probabilities over the appropriate states: 

Oab = P(a 
ea, = P(a 

b) = Yabc f "ab 

C )  = yabc + y a c  

C) = Yabc f y b c  . 6bc  = P (b 
NOW, if a, b, and c are random alleles from individuals X, Y, and Z, respectively, 
then 

YXYZ = y a b o  OXY = Bab, OXZ = oat, Bye = &, 
and the three gene-pair probabilities are just the three coancestries for the three 
pairings of the individuals. Therefore, yxyz is required in addition to the co- 
ancestries to find the probabilities fo r  all of the three-gene states: 

- - 
y a b  = OXY - YXYZ, y a c  - 0XZ - YXYZ, y b c  - e Y Z  - YXYZ 

yo = 1 - 8 ~ ~  - uxz - eyz + 2yxYz. 
If the two genes a and b are contained by X, and the other, c, is a random allele 
from Y, then 

y;;y - yabc,  Fg Bab, 2 8 x Y  = B,, + Obc. 

In this case no distinction is necessary between Oac and 8bc .  In any application, 
the average, which is just the coancestry between X and Y, suffices. The other 
gene-pair state is for the genes of X, and the probability is the inbreeding 
coefficient. Note that y;iu is a probability of three genes being identical by descent, 
and the notation indicates that the probability is for the two genes of X and a 
one from Y. 

- 

Turning now to four-gene states of identity, there are 15 states (GILLOIS 1965). 
These and their corresponding probabilities for alleles a, b, c, and d are 

Prob 
8abcd 

8abc 

sabd 

s a c d  

8hcd 

8ab.cd 

8ac.bd 

sad.bc 

Prob 
6 ab 

s a c  

8 ad 

s b c  

8 bd 

8 cd 

8 0  

Genes Identical 
a = b  
a = c  
a = d  
b = c  
b = d  
c = d  
None 
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These fall into the categories of four-gene, three-gene, two-gene-pair, gene-pair 
and none, but all are for four-gene states identiiy by descerzt .Summarizing these 
in terms of three-gene and gene-pair probabilities, 

Yabc = sabcd + 8abc , 
Yabd aabcd + sabd , 
Yacd = aabcd + 8acd 

Ybcd = Babcd + 8bcd - 

0 a b  = 8abcd + Sabc + 8abd f Sabscd + s a b  

o a c  = 8abcd + 8abc + 8acd + sac.bd + 8 a c  

Bad = aabcd + sabd + Baed + 8ad.bc f s a d  

0bc  sabcd + 8abc f 8bcd + aad-bc + s b c  

ob6 = 8abcd + 8abd + Sbcd + sac.bd + Sbd 

o c d  = Sabcd + Sacd + abed + 8ab.cd + s c d  , 
leaves four four-gene probabilities that must be retained to account for all fifteen 
probabilities. These are Sabcd, . The latter three are easier 
to handle in many applications as two-gene-pair probabilities, Aab.cd = 8abcd + 

Now, if the genes a, b, c, d are random alleles from the individuals X, Y, Z, W, 
respectively, the fourteen probabilities may be summarized as axYzw, A,Y.zw, 

may be identified with the appropriate gene-pair, three-gene, two-gene-pair, and 
four-gene probability functions of the genes. 

If the genes a and b are contained by X and c and d are random alleles from 
Y and Z, respectively, the set of probabilities is as follows: 

s a c + &  and 

sab*cd, Aac.bd r= sabcd 3- sac.bd, and Aad.bc = Sabcd f 8ad.bc . 

A , ~ . ~ , ,  yxyw, yxyz, yxzw, yyzw, oxy, e,,, exw, eYz, eyw, ezw, each of which 

- - - 
sjtyz - aabcd A;; yz - Aab-cd , ~ A Z + ~ ,  - Aao-bd f Aad-bc 

Ygy - 7 a b c  7 ykZ - Yabd 2yxyz = y a c d +  Ybcd 
- - 

F, = Oab , 2exy = OaC + ebc, 2e,, = ead  f e b d  

The number of distinct probabilities is reduced to nine because four of them are 
averages of two. It should be stressed that implies a four-gene all identity 
probability, and in this case it is for the two genes of X and a random gene from 
each of Y and Z. Similarly, A is for a two-gene-pair state, for the s h d -  
taneous identity of the two genes of X and of the two random genes, one from 
Y and one from Z, and for the average of the two probabilities for the 
other two pairings of the two genes of X and a random one from each of Y and Z. 

There remains to consider the case of a and b as alleles contained by X and c 
and d by Y. The probabilities become 

sky = sabcd 7 4i; =Aab.cd 2A?+?= hacabd + Aad.bc 7 

2Yjty = Yabc + Yabd 2yxi; = Yacd + Ybcd 4eXy = 8 a c  + e a d  + d b c  e b d  7 

Fg = Bab F y  = Bcd 

We have now related gene-pair, two-gene-pair, three-gene and four-gene prob- 
abilities for all situations, two individuals, three individuals and four individuals, 
in which four-gene states can arise. 

The utility of the notation will be seen in pedigree manipulations and compu- 
tations to be considered later. For expressing the frequencies of pairs of indi- 
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viduals, the notation for the nine distinct probabilities for the four-gene states is 
clarified. 

- 
- 6acd+6bcd 

= 'ab-cd 

+6 6ac*bd ad-bc 
- - 

= 6 e a d + 6  +6 ac bc bd 

= l - ~  -~. .-4e +A.. ..+2~.. ..+4y.. +4ye-66 .... = 'E x Y XY x - Y  xi-Y XY XY 6o 
Illustrated also are the manipulations of the gene-pair, two-gene-pair and three- 
and four-gene probabilities to produce the probabilities for the four-gene states. 

JOINT FREQUENCIES O F  RELATIVES 

In developing the joint frequencies it is assumed that identity by descent is 
independent of the genes in the population. Then, the total array of pairs of 
relatives may be summarized as did HARRIS ( 1964), where pi is the frequency of 
allele ai, 

?pi(aiai) z (aiai) +262, gpipj (aiai) (aiai) 

+28,+, zpipj(aiaj) (aiaj) +2aXi; ?pipj(aiai) (aiai) 

+a, .? pipin(aiai> (ajak) +Sg., ?pipj (aiai) (aiai> 

+S, ~ i k  .? pipin(aiaj) ( a m )  +48,, &pipjplc(aiai) ( a i 4  

23 

23 21 

( 2 )  
ZJk 21 

+a= i~,PipjPkp~ (aiai) (aka~> 7 

where the pairs of genotypes are for (X) (Y).  A bit more explanation than 
HARRIS gave may be helpful. If all four genes are identical by descent then they 
will all be ai with frequency pi (first term). If only three are identical by descent 
then the three will be ai with frequency pi and the other gene will be aj (includ- 
ing j = i) with frequency pi, and so on to the case where none are identical by 
descent and the genotypes occur together as in a randomly mating population 
(last term). 

To obtain the frequency for a specific pair of genotypes one must collect 
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TABLE 1 

Joint genotypic frequencies 

239 

X Y X Y 
a.a a a  i i  i j  a.a. a.a. 

1 1  1 1  

P i  

P i  

P i  

P i  

P i  

P i  

P i  

P i  

P i  

2 

2 

2 

2 

3 

3 

3 

4 

X Y 
a a  i i ai% 

X Y 
i i  a a  a a  

62.y pipj 

2 

j j  

+S% Pipj  

+by P i p j  

+6- XY P i p j  

2 

2 2  

X Y 
a a  i k  a.a i i  

X Y 
a a  a a  
i j  i j  

6z+y 4PiPj  

+hXy 4PiPj  
2 

2 
+hXy 4pipj 

+6- 2 2  
XY 4 ~ i P j  

x Y 
a a  i i "kat 

together the appropriate frequencies from the various terms in (2). The seven 
possible types of pairs of genotypes and their frequencies are displayed in Table 1. 
From these a joint frequency table can be written for any number of alleles by 
appropriate interchanges of X and Y. 

GENERAL PEDIGREE METHOD O F  DETERMINING THE PROBABILITIES 

While it is simple to find the probabilities for some relatives, the arguments 
become tedious far complex pedigrees and a systematic approach is required. The 
handling of F and 6' is well known. To this list we want to add the two-gene-pair 
probability, A, the three-gene probability, y,  and the four-gene probability, 6. 
The expansion of these probabilities to probabilities of states of identity of genes 
back in the pedigree will be indicated by expanding the subscripts according to 
the origin of the genes. For example, if the two parents of X are M and N, then 
we replace X by (MN) . If the probability involves the two genes within X, 
then the replacement means a random gene from M and a random gene from N. 
If the probability involves a random gene from X, then replacement implies a 
random gene from M half of the time and a random gene from N half of the 
time. For two individuals, neither of which is an ancestor of the other, the 
expansions are continued until a common ancestor is indicated, and special 
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consideration is given to these probabilities. When one is an ancestor of the other, 
the descendant is always expanded back to the ancestor. 

Consider first the three-gene probabilities, y's. The probability ygy is for the 
two genes of X and a random one from Y. Bringing in the parents of X, 

- - - 
ygy - Y(MN)Y YMNY 9 

and it is just the three-gene probability for a random gene from each of M, N, 
and Y. Bringing in the parents of Y first, 

- 
Yxy - Yx(zW) = % (Yxz 3- Yx,) ' 

averages the corresponding function over the parents. Further, bringing in the 
parents of X leads to 

- 
Y k Y  - % [Y(MN)Z + Y(MN)W] = % (YMSZ + YMNW) * 

The same result is obtained by the other route, 
- - 

yjiy - YMNY - y M N ( z W )  = % (YMNZ + yiv") 

and the process is continued by bringing in the parents of each until genes from 
the same individual become involved. Expansions must always proceed to bring in 
common individuals. If Y is a parent of X then expand on X, ygY 1 yCMYlY - yMYy 
and not Y, but if X is a parent of Y, the expansion must be on Y. 

Special probability arguments are required when genes of the same individual 
become involved, 

- 

- 
Y ~ ~ - % ( ~ X Y + Y ~ ~ ~ ) ,  y x x x = % ( 1 + 3 F g ) ,  Y ~ X = F ~  * 

The case of yxXy is for two random genes (gametes) from X and one from Y. 
The two random genes from X are the same parental gene % the time, and are 
identical by descent, and are identical to the one from Y with probability Om. 
They are different parental genes 1/2 the time but are identical and identical to 
the one from Y with probability yZy . In the case of three random gametes from 
the same individual, yxxx, they are all the same parental gene % the time and 
thus are identical by descent, and the remainder of the time, %, they are all 
identical when the two parental genes are identical, yix = F, . Only these 
three special functions are required in the evaluation of all other functions 
involving common ancestors. 

Since 6 is always for four genes, random gametes of parents are introduced in 
parentheses until four random gametes are involved, after which parentheses 
play the role of introducing more parental gametes to be averaged over. Expan- 
sion must always be from the descendant to an ancestor. When one relative is 
not an ancestor of the other the expansion may proceed in terms of the origins 
of genes of both relatives, 

- - - 
6-.. XY = 6X,,,) - *(mi) (ZW) ~M," ' 

and bringing in the parents of NI, 

6MNZW E 6 (UV)NZW = 1/2 (6UNZW + SVNZU') 
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For an individual and its gametes (offspring if the gametes are united), 
- 

S j i ( x y )  - y;zy , = F- x = S**- xx 

Other types of relatives are indicated by parenthetical punctuation. 

S(xx) (xx) Sxxxx % (1 + 7F2) 

S(XX)(XY) = SXXXY = % (Oxy + 3yxy) 

S ( X Y )  (XZ) = S t X X )  ( Y Z )  = SXXYZ = i /z  (yxuz + Sayz) . 

(YY) = S(XY) (XY) = S x x Y Y  = % (Oxy + Y x y  + Yyx + ax?) 

Similar procedures are applied to the two-gene-pair states. If one relative is 
not the ancestor of the other, 

- - 
A2 (zw) - '(MN) (zw) - 'MN zw A,..= 

and it is the simultaneous identity of each separated gene pair either in indi- 
viduals or in pairs of random gametes that is comidered. The other two-gene-pair 
probability, 

- - - 
Ai,+? - ~ ( i m q  + (zw) - ~ + z w  - % (AMz.N\v + AMw.Nz) 7 

is the average of the two probabilities for  the other two possible pairings. Bring- 
ing in the parents of M, the expansions proceed in the usual manner, 

A(w)N zw = % (AUN.ZW AVN.ZW] 3 

A(UV)N+ZW = i /z (AUN+ZW -4- AVN+ZW] . 
The descendant is expanded back to the ancestor, and the probabilities for an 
individual and its random gametes (or offspring) are 

A, xy - - Ygy .J A, xx - - Fs 7 =%(I +3F,) . 
Further manipulation shows that 

= ?4? ( O x y  + YCY) 7 

- Axx.xx - AXX+XX = A?+*, AXX.XY = AXX+XY = 

Other special cases are 

A,,.,, = %(I + F~ + F, + A;, ,) , axY.= = % (exy + ygy +Ti;, +A%+;.> , 
A ~ ~ . ~ ~  = i /z  (A, yz + e,,) , A ~ ~ . ~ ~  = ( A ~ + ~ ~  + yxyz) . 

From these the other two-gene-pair probabilities are found, 
- AXX+YY - AXY.XY, 

Axx+uz = Axr.xz , 
AXY+XY = % (AXX.YU + AXY.SY) , 
AXY+XZ = % (AXX.YZ f AXY.XZ) 

We now have a systematic method of calculating all of the probabilities for a 
specific pedigree or for sgme system of mating. 

SYSTEMS O F  MATING 

When the system of mating is the same over time, it is not required to apply 
the pedigree method over more than one generation. One simply finds the 
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expressions, transition matrix, for the probabilities in one generation in terms of 
the probabilities of the previous generation. Then the probabilities for any 
generation can be found by powering the matrix and multiplying by the vector 
of initial conditions. 

As an example consider fu l l  sib mating. The results of the previous pedigree 
method may be applied directly, ( t  indexes the generations) 

G ~ ~ ~ + ~  = a(XY)(XP)t = %(e,,, + yzyt + yfxt + . 
Because of the symmetry between full sibs, y2y = yyx and F, = F, . Let A = A 2  f 
and At = A%+, so that the X,Y subscripts can be dropped. Then, 

&+I = % ( e t  + 2yt -t S t >  
A:+l= %(I f 2 y t  +A:+ At +2Ft +28t) 
et+, = vi ( 1  + Ft + 2et) 

yt+1= % ( y t  + e t> 

At+l  = i / (2y t  +A:+Ot) (3) 
Ft+l= et  

the other expressions being found in a similar manner. It is easiest to work with 
the complements of these, analogous to the panmictic coefficient, 1-F. Let 

& = (1--6t, 1-yt, I-A;, I-At, I-Ft, 1 4 t )  . 
Then, gt+l Agt, where 

A =  

is the transition matrix, and gt = Atgo. Of course, I-F and 1-0 may be treated 
separately from the others, as they have been in the past, since their transition 
does not depend on the other probabilities. 

Alternatively, one may make substitutions ( 1 )  into both sides of (3) to arrive 
at the relationships between the probabilities for distinct four-gene states of 
identity of the two generations. Let 

then ht = Btho,  where 
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is the generation matrix given by FISHER (1949, Table 5 )  relating the frequen- 
cies of mating types in adjacent generations for sib mating. FISHER produced the 
latent roots and a solution for Bt. 

Of more interest is a finite randomly mating population. For simplicity let it 
be monoecious, and the sex of the gamete be random with respect to any parent 
(the combined sampling plan of WEIR and COCKERHAM 1969). In order to argue 
the gametic probability functions back through the parents to gametes in the 
previous generation one must take into account the ways the gametes relate to 
the parents. For a random pair of gametes they may be both from the same 
parent or one from each of two parents with probabilities P' and Pll, respectively, 
Pz f Pl1= 1. For three gametes the probabilities are P3, Pzl and Pill, and for 
four gametes are P', P31, Pzz, PZ1l, and Pl1l1, where the notation indicates the 
ways of obtaining three and four gametes from one, two, three, and four parents. 
(These P's are considered in detail in WEIR and COCKERHAM 1969). 

Since genes in random sets of gametes bear the same relationship to each other 
regardless of how they are constituted within or between individuals, certain 
probability functions such as F and e will be the same. We denote these prob- 
ability functions in a manner corresponding to the P s .  For example Ff+, is for 
a pair of gametes from the same parent, and consequently, 

FY+~ = et  =F, , 
F" being for two gametes from separate parents. Then, Ft+, is just the average, 

or 

The same procedure is followed for the other functions. 
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Only one A is required since the probability is the same for a random set of two 
pairs of gametes in any arrangement. The three arrangements are argued 
separately for PZl1 and PZ2 and averaged. 

- 1+4Ft+4yt+3at nllll = A ’ t f l  t A?+1- 12 
p22+2p211+4p1111 3P31+2P22+2P211 

(I-&) + (I-ut) 6 4 I - A t + l =  

9P4+6P31+4P22+2P211 
12 (I-Ft) - + 

With these results, we may set up the transition matrix C for the probability 
functions 

and 
kt = Ctk, . 

The values of the P’s depend on the distribution of the number of offspring per 
parent and are discussed in WEIR and COCKERHAM (19693. With equal chance 

k:= ( l -At ,  I-St ,  l-yt, I-Ft) 

of ea 

C =  

ich parent producing any gamete, 
r 

(2N--1) (2N-2) (2N-3) 

( 2 N )  
0 

(2N-1) (2N-2) (2N-3) 
0 

( 2 N )  

0 0 

0 0 

- 

6(2N-I )  (2N-2) 7 ( 2 N - l )  

( 2 ~ )  3 ( 2 N )  3 

(2N-I)  (2N-2) 3(2N-1) 

(5“ ( 2 N )  = 
2N-1 

0 
2N 

where N is the number of individuals. The roots of the matrix are the diagonal 
terms. The asymptotic behavior of all elements of k is determined by the largest 
root, (2N-1) /2N, the one corresponding to 1 -F. 

COMMENTS 

To arrive at the joint frequencies of relatives as was done in Table 1 ,  it is 
assumed that the founder individuals are not inbred and not related and with 
alleles associated at random, i.e., HARDY-WEINBERG proportions. For example, it 
may be verified for full sib mating that letting S= = 1 for the initial mate pairs 
and applying ( 1 )  gives the same results as applying the transition (B) directly 
to the frequencies of initial mate pairs in HARDY-WEINBERG proportions and 
mated at random. 

The parameterization provides a complete description of populations, sib 
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mating, parent offspring or random mating, in which only four genes are in- 
volved. More genes icquire an extension of the probability functions to accom- 
modate all possible states of identity. The number of states increases at an 
slarming rate with N .  If, hcwever, one is primarily interested in evaluating 
rates and average times to fixation or loss of genes then only 2N-I probability 
functions are requircd. KEMPTHORNE (1967) gave the transition matrix c 
extended to accommodate the probability functions 1-8%, i=2,  3 . . . 2N for 
random sampling of genes. 

and 8tN--8:2 is the 
probability of becoming fixed at time t. The average time to fixation for a neutral 
gene that is being fixed is TZN = 2 ( 8;N-8,N ) t. Now consider a general transition 
matrix of dimensions K x K corresponding to C for the vector containing 1-82N. 
There is a solution of the form 

The probability of being fixed at generation t is 

m 

t=1 t-1 

K 
1-8:N =i& a,X: 

where Xi’s are roots of the matrix and the ai’s are determined by the initial con- 
ditions, and also igl ai = 1. The probability of becoming fixed at time t is found 
to be 

K 

and the average time to fixation is 

For matrix C the roots are just the diagonal terms which would generally be 
the case for the monoecious system. For 2N=2, K=l, al = 1,  X1 = 1/2, and T2 = 2, 
the usual result for self-fertilization. For 2N = 3, not biologically reasonable, 

K = 2, a, = 3/2, X1 = 2/3, a, = -1/2, A, = 2/9, and i, = 27/7. For 2N = 4, 
K = 3, a, = 25/14, hl = 3/4, a, = -1, A, = 3/8, a3 = 3/14, h3 = 3/32, and t 4 -  - 
5866/1015. The function t:, = <,/(2N-I) is of interest. 

t,’ = 2, t: = 1.9286, t: = 1.9265, 

because it provides the rate of loss of neutral genes, and which appears to be 
close to one gene every two generations. Thus the results of KIMURA and OHTA 
(1969) appear to approximate well those for small populations with the substi- 
tution of 2N-1 for 2N, which is of no consequence if N is large. Other facets, 
such as the effects of small and large variation in the number of offspring per 
parent, need a more thorough investigation. 

The four-gene parameters provide the frequencies of pairs of disomic relatives 
for any system of mating. It was this description that permitted HARRIS (1964) 
to formulate generally the covariances among relatives for a single locus, and 
the extension to multiple loci when genotypes of different loci are not correlated 
(linkage and identity equilibrium). However, loci which do not recombine 



246 C. C. COCKERHAM 

freely are not in identity equilibrium during intermediate stages of inbreeding, 
although the founder population is in linkage equilibrium (WEIR and COCKER- 
HAM 1969). Consequently, his results require some modification for linked genes. 

Probably most important, the four-gene parameters provide a model for esti- 
mation and testing of hypotheses with gene frequency data. The individuals need 
not necessarily be relatives but other groupings or pairings such as mates for 
which the parameters are unknown. One procedure of analysis is to use analysis 
of variance (quadratic) techniques for  estimation and testing of hypotheses 
involving two-gene parameters, as exemplified by COCKERHAM (1969) for group- 
ings of individuals. There is a logical extension to components of higher moments, 
cubic and quartic techniques, for three- and four-gene parameters. While test 
statistics are not available for testing these higher order functions directly, the 
functions do provide unbiased estimators of classes of frequencies to be used as 
expected values for xz testing, which is important unless the data are extensive. 

Alternatively, one may use maximum likelihood estimation procedures. In  
any case the model delimits all possible associations of the genes whatever the 
causes for these associations. 

SUMMARY 

All two-, three- and four-gene and two-gene-pair probability functions for a 
single locus are interrelated for all situations, one, two, three, and four  indi- 
viduals, in which the gene states of identity can arise. Systematic procedures are 
developed for computing the probabilities from pedigrees. In  the case of regular 
systems of mating, these procedures need be applied for only one generation, 
and are illustrated for sib mating and a randomly mating finite moaoecious popu- 
lation. The method produces exact probabilities of fixation and average times to 
fixation. Extensions to an arbitrary size of monoecious population are sug- 
gested. The four-gene probability functions provide joint genotypic frequencies 
for any type of relatives. They also provide a model for the analysis of frequency 
data for pairs of individuals, such as mate pairs, for which the relationships are 
unknown. 
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