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ABSTRACT 

A two locus model is constructed for selection of a gene closely linked to 
the S locus in pin-thmm plants or to the sex determining part of the Y chromo- 
some. Using this model, conditions for stability at the equilibrium point which 
is predicted by one-locus theory when there is heterozygotic superiority are 
derived. If the recombination value is small, it  is found that this equilibrium 
point is unstable and that the gene frequencies go to a new stable equilibrium 
point at which the population has a higher average fitness. A few simple cases 
of selection and the implication of these to the theory of the evolution of the 
Y chromosome are discussed. 

ETEROSTYLY was recognized by DARWIN (1877) as a mechanism to 
enforce outcrossing in plants. Since then the genetics and physiology of this 

mechanism have been elucidated. For recent reviews of this work see VULLEU- 
MIER (1967) or LEWIS (1954). 

Heterostyly has been shown to be controlled by two alleles designated by s 
and S. Pin plants ( ss )  have long styles and short stamens while thrum plants 
( sS )  have short styles and long stamens. This dimorphism is accompanied by 
pollen incompatibility causing the pollen of one form to be fertile on the other 
form, but almost completely infertile on plants of the same form. Therefore, 
this type of genetic system indeed dictates that outcrossing shall occur. 

The effect that close linkage to the S locus has on the equilibrium properties 
of an adjacent heterotic locus is discussed in this paper. It is shown that if the 
recombination value is sufficiently small then the equilibrium point, which is 
determined by the fitness values at the heterotic locus and the assumption of no 
linkage disequilibrium, becomes unstable. This results in the population moving 
to a new equilibrium at which the average fitness of the population is greater. 

The S gene is essentially a sex gene with pins as females and thrums as males. 
Thus, the results presented here apply to those plants and animals which have 
a Y chromosome with a sex determining part, in which no crossing-over occurs, 
and a part homologous to the X chromosome, in which crossing-over is allowed. 

THEORY 

The model presented here is the deterministic theory with discrete generations. 
* Present address: Biology, University of Sussex, Brighton, Sussex, England. 
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It  will be assumed throughout this paper that one form only mates with the 
other form, that is pin x pin and thrum x thrum matings are illegitimate. For a 
discussion of the selections process when pin x pin matings are allowed, see 
BODMER (1960)  or CROSBY ( 1 9 4 9 ) .  Two loci are considered each with two alleles, 
the S locus, which controls heterostyly or sex, and the A locus, on which selection 
occurs. The selection values on the genotypes A A - -, A a - -, and a a - - are 
W,, 1 ,  and W,, respectively. The recombination value between the two loci will 
be denoted by r. 

Let p be the frequency of the As gametes in pins (females). In the thrums 
(males), let x be the conditional frequency of the As gametes given - s, i.e., 

f A s  

fns + fa, 

f AS 

; ana y ,  the conditional frequency of the AS gametes given -S,  i.e. 

. Using the selection values given above and the frequency of gametes 
f A s  + fas 

produced from Table 1, the recurrence relationships for p ,  x, and y in the next 
generation are found to be 

p' = a p x  -t- % p  -t- l/ex 
1 + a p x  + b ( 1 - p )  (1 -x )  

where a = W ,  - 1 and b = W ,  - 1. 

From these equations the equations for Ap,  Ax, and Ay, are derived and are 

The equilibrium values must satisfy the equations obtained by setting Ap 
Ax = A y  = 0 in equations (4), ( 5 ) ,  and (6 ) .  After multiplication by the denomi- 
nators, the equations that the equilibrium values must satisfy are 

0 = p (  1 -p )  [ax - b ( 1  -x) 3 + .5 ( x - p )  
0 = a p y  ( 1  -x) - b( 1 -p)  ( 1 - y )  x + p - x - I ( p - y )  
0 = y ( 1 - y )  [ap - b ( l - p ) l  + r(p--Y) 

(7) 
(8) 
( 9 )  

b b b  It can be seen by substitution that the point (@, 2, y )  = 

satisfies equations (7), (8) and ( 9 )  and therefore it must be an equilibrium 
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point. This point is the equilibrium point that would be obtained in one-locus 
theory using the selection values W1, 1, W ,  for the genotypes A A ,  A a, and a a, 
respectively. 

The stability of this equilibrium point may be studied by considering an 
expansion about this point and then making the equations linear by neglecting 
quadratic o r  higher order terms. Toward this end, let p = p^ + E ~ ,  x = f + E ~ ,  

and y = p 4- E ~ .  Substituting these values for p ,  z, and y in equations ( I ) ,  ( 2 ) ,  
and ( 3 )  ; rearranging the resulting equations; and neglecting quadratic and 
higher order terms in E2,  and EB; the following recurrence relationships for 
cl, E ~ ,  and are obtained. 

- 
E l *  - - 

a b  
a f b  1 !.+ (-) 

a b  a b  
a + b  

These can be written in the matrix form 

l+c 
a b  

a + b  . where c = - 

The system of equations ( I ) ,  (2), and (3) will be stable at the equilibrium 

point ($, 9 , p )  if and only if the eigenvalues of the above matrix, -- A are all 
less than one in absolute value. 

are found to be A 
The eigenvalues of - l + c  

1+2c 
A I  =- 1,+c 

I + c '  

1 - 2 r + d ( I  -2r)28+8(1 -2r ) ( I t f2c)  _-- 
4(1 '4- c) A2 = 
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1 - 2 7 - - ~ ( 1 - 2 r ) ~ ~ + 8 ( 1 - 2 r ) ( l ' + 2 c )  
4( 1 ,-I- c) 

x3 = 

If W ,  and W ,  are greater than one, then c is greater than zero. This implies A, 
is greater than one and therefore the equilibrium point with heterozygotic 
inferiority remains unstable regardless of any degree of linkage to the S locus. 

If W ,  and W ,  are less than one, the only values allowing a stable heterozy- 
gosity to exist in the one locus model, then 

and 
- l I a , b < O  

-1/2 I c < 0. 

The inequality on c shows that h1 is restricted between zero and one. Since r 5 .5, 
i t  is seen that h, is positive and if h, is positive and if A, is less than one, then h3 
is less than one in absolute value. Therefore (6, f, F) will be stable if and only if 

1 - 2 ~ + ~ ( 1 - 2 ~ ) z ~ + 8 ( l - 2 r ) ( 1  + 2 ~ )  
4(1  + c )  

A, = 

Upon rearranging equation (I  3) ,  it becomes 
-c(l+2c) 

2(2 + 3c) 
= f (c) r >  

Insight into the process of selection on a gene which is closely linked to the S 
locus can be gained by using equation (14) to investigate a few simple cases. 

CASE I :  The maximum value of r at which the point (@,f,y) is not stable: 
Taking the derivative of f ( c )  with respect to c and setting it equal to zero, 

equation (15) is obtained. 

d f ( c )  - -(I 4- 4c) (4 + 6c) + (C + 2c2)6 - - ( 3 ~  + 1) (C o=-- - 1) 
d c  4(2 + 3 ~ ) ~  (2 + 3c)2 

-1 The solutions to this equation are c = -1 and c = ?. Since c must lie between 
1 1 

0 and -%, the solution of interest is c = - - At this value f (c) = - and 
3 '  18' 

therefore the maximum value of r that is allowed for the point ($, 9, y )  to be 
unstable is r = .0555. 

CASE 2: Recessive lethal selection model: 
Let the selection values W ,  and W z  have the values 1 - s and 0, respectively. 

S The value of c is therefore c = - - and equation (14) becomes 
1 f s  

s(1 -s) 
2(1 + s) (2 -3 r >  

The regions of stability and instability on the r-s plane are shown in Figure la. 

CASE 3: Symmetric selection model: 
1 - s. Then Let the selection values W ,  and W ,  have the values W ,  = W ,  
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FIGURE 1 .-Stability of (fi,?,?) for (a) recessive lethal selection and ( b )  symmetric selection. 

( l j ,  si, q)  = ( .5 ,  .5, .5)  and c has the value c = -%S. Substituting this value of c 
into equation (14), one obtains 

The regions of stability and instability for this selection model on the I-s plane 
are shown in Figure Ib. 

Thus far only the stability properties of the point ( l j ,  si, q)  have been examined 
and nothing has been said about what happens if this point is unstable. The 
complete solution of the system of simultaneous equations ( 7 ) ,  (8) and (9) for 
all the equilibrium values is in the realm of possibility. By solving equation (9) 
for p and (8) for x in terms only involving y, then substituting these values into 
equation (7) ; a seventh degree equation in y is obtained. Since three of the roots 

it can be factored. This results in a b are known; y = O ,  y= 1, and y=- 
a f b ’  

fourth degree equation, which is solvable. However, the solution of a fourth 
degree equation is a complicated process and results in roots which have no neat 
form. 

Therefore. the procedure outlined above was not used to obtain the other 
equilibrium points. Instead, the selection process defined by equations (1 ) , ( 2 ) ,  
and ( 3 )  , with initial gene frequencies slightly off the equilibrium point ( l j ,  si, f )  , 
was reiterated until an equilibrium was attained. The set of equilibrium values 
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TABLE 2 

673 

Equilibrium values when ($,f, y )  is unstable for the symmetric selection model 

S D X Y WF m W 
- - 

~ ~ 

r = . W  
1 .oo 
1 .MI 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1.00 
1 .oo 
1 .oo 

r = .01 

.733 
298 
938 
.949 
,956 
.959 
.959 
.953 
.926 

r =  .02 

.9558 

.9105 
3639 
3161 
.7667 
.7156 
.6628 
6983 
.5531 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.263 
,278 
,294 
,313 
.333 
.357 
.385 
,417 
,455 

,243 
2.35 
,226 
.214 
,200 
.182 
,158 
,125 
,077 

,9378 
2765 
.8161 
,7571 
,7000 
.6455 
.5947 
,5500 
.5154 

.9737 

.94+4 
,9118 
3750 
.8333 
.7857 
,7308 
.6667 
.5909 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.420 

.350 

.344l 

.345 

.357 

.375 

.398 

.427 

.462 

,412 
.317 
.282 
.257 
,236 
.215 
.191 
.164 
,141 

.9486 
,8891 
3291 
.7699 
,7124 
.6573 
,6060 
.5607 
.5256 

.9537 

.9238 
,8915 
,8556 
.8151 
.7688 
,7153 
,6529 
.5790 

.9512 
,9061. 
.8603 
3128 
.7637 
,7130 
.6607 
.6068 
.55w 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

- 
,414 
.341 
,303 
.275 
.25 1 
,228 
.208 
.221 

- 
.714 
,841 
.883 
.903 
.911 
,911 
397 
,832 

r = .03 

- 
,8976 
3392 
.7807 
,7233 
,6682 
,6166 
.5710 
.5356 

- 
.9059 
3733 
,8376 
,7978 
.7525 
,7003 
,6394 
.5671 

- 
9 1 8  
,8562 
.8092 
.7606 
,7103 
,6585 
.6052 
.5514 

.431 

.386 

.377 
,381 
.394 
.413 
.438 
.471 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

- 
- 

,444 
,412 
.407 
,413 
,428 
,460 
,484 

- 
- 

,420 
.357 
.320 
.292 
,270 
,261 
,343 

- 
,686 
,795 
,835 
,852 
,852 
328 
,689 

- 
3473 
,7899 
,7332 
,6783 
,6267 
,5810 
,5455 

- 
,8563 
,8207 
.7813 
.7368 
.6857 
,6261 
.5554 

- 
,8518 
,8053 
.75 72 
.7075 
.6562 
.6035 
.55M 

thus obtained for  the symmetric selection model with different values of r and s 
is shown in Table 2 and for the recessive lethal model, in Table 3 .  Also included 
in these tables are the average fitness values for pins (females) W F ,  for thrums 
(males m), and for the population w ==% T F  -t i /z m. 
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TABLE 3 

Equilibrium values when (fi 2, y) is unstable for the recessive lethal selection model 

- - - 
S P 2 Y WF W M  W 

.I 

.2 

.3 

-4 

.5 

.6 

.7 

.8 

-9 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.a 

.9 

1 .Ooo 
372 

1 .Ooo 
.776 

1 .ooo 
.703 

1 .om 
.615 

1 .om 
,600 

,833 
.565 

.714 

.537 

.625 

.517 

.556 

.505 

.987 
,888 

.983 
,789 

,976 
.714 

,958 
.655 

.go* 
,609 

.799 

.572 

.697 

.54* 

.614 

.524 

.548 

.511 

1 .Ooo 
,859 

1.000 
,735 

1 .Ooo 
.623 

1 .ow 
,522 

1.000 
.429 

1 .000 
.342 

1 .Ooo 
.258 

1.000 
,177 

1.000 
,092 

,990 
382 

.990 
,760 

.989 

.651 

,989 
.553 

,988 
,463 

.983 

.381 

,974 
.307 

.955 

.2& 

393 
.221 

r= .00  

,000 
1 .O00 

.Ooo 
1 .Ooo 

.Ooo 
1 .Ooo 

.Ooo 
1.000 

.ow 
1 .ooo 

.Ooo 
1 .Ooo 

.Ooo 
1.OOO 

,000 
1 .OOo 

.Ooo 
1.000 

r = .01 

,115 
,966 

,055 
,966 

.036 

.964 

,028 
.962 

.025 
,958 

.029 

.953 

,037 
.944 

.056 
,924 

.119 
261 

.woo 

.9070 

.8Ooo 
,8265 

.7OOo 

.756 

.6ooo 

.6957 

.5000 

.61.29 

.5000 
,5976 

.5OOo 

.5596 

.5Ooo 
,5294 

.5000 

.5084 

,9022 
.go85 

,8052 
3295 

.7101 

.7607 

.6206 

.7008 

.5526 

.6489 

,5253 
.60& 

.5168 

.5672 

.5 132 
,5377 

.5113 

.5174 

1 .OoOo 
,9128 

1 .Oooo 
. 8 W  

1 .oOoo 
,7893 

1 .moo 
.7414 

1 .oooo 
.7Ooo 

,8333 
.6613 

.7143 

.624Q 

,6250 
.5862 

.5556 
,5469 

.9775 

.9104 

.9736 
3403 

.9662 

.7833 

.9485 

.7348 

.8947 

.6921 

.7912 

.6527 

.6903 
,6148 

.6085 

.5767 

.5430 
.5361 

.9500 
,9099 

3357 

3500 
.7729 

.8000 

.7188 

.7500 

.6714 

.6667 

.6294 

.6071 
,5918 

.5625 

.5578 

.5278 
,5271 

.9398 

.9094 

3894 
3340 

.8381 

.7720 

.7845 

.7178 

.7237 

.6705 

.6582 

.6286 

.6035 

.5910 

.5608 

.5572 

.5271 

.5267 
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.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

,974 
,906 

,967 
,804 

,953 
,726 

,925 
.665 

,865 
,618 

,773 
,581 

,681 
.552 

,603 
,532 

,536 
,522 

- 
- 

,950 
,820 

,931 
,740 

.896 
,677 

,834 
,629 

,749 
,590 

.6@ 
,561 

,589 
,542 

- 
- 

,978 
,905 

.978 
,786 

.977 

.680 

,976 
.585 

,972 
,500 

.962 
,424 

,942 
.361 

,898 
,323 

,697 
,438 

- 
- 

.965 
,813 

,963 
.710 

,960 
,619 

.953 
,539 

,936 
.472 

.902 
,424 

216 
,428 

- 
- 

r = .02 

,270 .9042 
,919 .go91 

.I20 .81m 

.926 .a317 

,079 .7195 
.924 ,7642 

,062 ,6371 
,919 ,7054 

,058 .5761 
,912 .65% 

.064 .5455 
,900 ,6108 

,083 .5326 
,879 .5743 

.128 .5264 
,833 ,5455 

,337 52.33 
,624 .5255 

r = .03 

- - 
- - 

.202 3150 

.877 .8330 

,131 ,7284 
.878 .7669 

.lo4 .6517 
371 .7093 

,098 .5950 
,859 .65 94 

.lo9 ,5634 
,839 .6165 

. 1 42 5478 
,802 ,5807 

,232 .5399 
.710 .5524 

- - 
- - 

.9548 
,9091 

,9475 
,8366 

.9342 
,7779 

,9066 
,7283 

,8475 
.6846 

.7573 
,6445 

.6676 

.6061 

.5920 

.5676 

.5297 
,5272 

- 
- 

.9214 

.a340 

.9033 
,7734 

A696 
.7224 

.8092 
,6777 

.7273 
,6369 

.6457 

.5980 

.5750 

.5593 

- 
- 

.9295 

.g091 

3789 
3341 

,8268 
.7711 

,7719 
.7169 

,7118 
,6695 

.6514 

.6276 

,6001 
.5902 

.5592 
5565 

.5265 

.5264 

- 
- 

3682 
.8335 

A159 
.7702 

.7606 

.7159 

.7021 

.6685 

.&53 
6267 

.5968 

.5894 

.5575 

.5559 

- 
- 



676 C. STROBECK 

For each value of r and s there are two equilibrium points. Only one of these 
equilibrium points is given for  the symmetric selection model, the other being 
( p ,  2, r), where p = 1 - p ,  Z = 1 - 5, and 7 = 1 - y ,  which has the same values 
for  WF, W M ,  and w. Both equilibrium points are given for the recessive lethal 
model. 

There are two inferences that can be drawn from the data given in Tables 2 
and 3.  For a given value of s, the average fitness of the population is seen to 
increase as r decreases. These differences in the average fitness of the population 
could result in the selection for  reduced recombination between the A locus and 
the S locus. Secondly, the average fitness of pins (females) is always less than 
the average fitness in thrums (males). If the fitness values are relative viabilities, 
this would result in a ratio of pins to thrums less than one. This second inference 
was noted by HALDANE and MOSCHINSKY (1939) when discussing partial sex 
linkage in humm inbreeding populations. 

There is one other inference that can be drawn in the case of the recessive 
lethal model, Table 3. It will be noticed that if a, the recessive allele, is coupled 
to the S allele, a greater difference between WM and WF and a higher average 
fitness w results compared to having A coupled to S. 

If the point (6, f ,  F) is stable this does not rule out the possibility that there 
are other equilibrium points which are also stable. An example of this using the 
recessive lethal selection model is given in Table 4. The possibility of other stable 
equilibrium points existing does not seem to extend greatly the range of r over 
which an effect due to linkage to the S locus is observed. For in the example 
presented in Table 4, (+, f, p) becomes the only stable equilibrium value at an r 
value equal to r = .07. 

CASE 4: Complete linkage to the S locus: 

_ _ _ _  

Since -% < c < 0 if 0 < W,, W ,  < 1, the right hand side of equation (14) is 

always greater than zero. Therefore with r = 0, equation (14) is never satisfied 
and the point (6, 2, 9 )  is always unstable. 

Substituting r = 0 into equations (7), (8) , and (9), one obtains 

A p = O = p ( l  - p )  [ a z - b ( l - z ) ]  + . 5 ( 2 - p )  (15) 
A ~ = O = a p y ( 1  -z) - b ( l  - p ) ( l - y ) Z + p - z  (16) 
A y = O = y ( l  -y) [ a p - b ( l  -p) ]  (17) 

From equation (1 7) it can be seen that A y  = 0 if and only if y = 0, y = 1. or 

TABLE 4 

Stable equilibria (W, = .5, W, = 0 and r = .06) 

- - - 
P z Y WF W M  W 

.667 .667 .667 .6667 .6667 .6667 

.745 ,849 .319 .w3 .7075 .67M 
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It can also be shown using equations (1 5 )  and (16) that if p = - b b 
p = a + b .  a+b 

b and Ap = Ax = Ay = 0, then x and y must also be equal to - 
a f b ’  

b b -) b has been shown However, the point (e, 2, 9 )  = (- - a + b ’ a + b  a f b  
above always to be unstable when I = 0. Therefore, the only stable equilibrium 
values that are allowed if r = 0 must have y = 0 or y = 1. 

This transforms the model presented here into the normal model of sex linked 
selection. The selection values of A A, A a, and a a in the females become equal 
to W1, 1, and W,, respectively. The selection values in the male for the genotypes 
A and a become W ,  and 1 if y = 1 or 1 and W ,  if y = 0. The equilibrium values 
under sex linked selection can be found in WRIGHT (1970) and are not given 
here. 

DISCUSSION 

DARLINGTON (1958) considers the evolution of the Y chromosome to have 
three phases: (1 ) the mutation of the sex gene or gene complex, (2) the reduction 
of recombination between the sex gene and other genes in the heterogametic sex, 
and (3) the erosion of the genes on the thus formed chromosome. The theory 
presented here has bearing on the second phase of this evolution. 

It has been shown, by the data in Table 2, and Table 3, that a decrease in I 
increases the average fitness of the population. Since the pins (females) are 
homozygous for s s, the value of r- does not enter directly into the equations fo r  
p’ or Ap. Therefore in the equations given in this paper, r only refers to the 
recombination value in the thrums (males). The increase in average fitness due 
to a reduction of I could result in the selection for low recombination in a similar 
manner as NEI (1969 and 1967) has shown selection for  reduced recombination 
in the normal two locus models. 

If the recombination was reduced so that no crossing-over with the X chromo- 
some occurs, then by case four, all the genes on the Y chromosome must be fixed. 
This could be the preliminary step of phase three. 
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