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ABSTRACT

A two locus model is constructed for selection of a gene closely linked to
the S locus in pin-thrum plants or to the sex determining part of the Y chromo-
some. Using this model, conditions for stability at the equilibrium point which
is predicted by one-locus theory when there is heterozygotic superiority are
derived. If the recombination value is small, it is found that this equilibrium
point is unstable and that the gene frequencies go to a new stable equilibrium
point at which the population has a higher average fitness. A few simple cases
of selection and the implication of these to the theory of the evolution of the
Y chromosome are discussed.

ETEROSTYLY was recognized by Darwin (1877) as a mechanism to

enforce outcrossing in plants. Since then the genetics and physiology of this
mechanism have been elucidated. For recent reviews of this work see VuLLEU-
MIER (1967) or Lewrs (1954).

Heterostyly has been shown to be controlled by two alleles designated by s
and S. Pin plants (ss) have long styles and short stamens while thrum plants
(sS) have short styles and long stamens. This dimorphism is accompanied by
pollen incompatibility causing the pollen of one form to be fertile on the other
form, but almost completely infertile on plants of the same form. Therefore,
this type of genetic system indeed dictates that outcrossing shall occur.

The effect that close linkage to the S locus has on the equilibrium properties
of an adjacent heterotic locus is discussed in this paper. It is shown that if the
recombination value is sufficiently small then the equilibrium point, which is
determined by the fitness values at the heterotic locus and the assumption of no
linkage disequilibrium, becomes unstable. This results in the population moving
to a new equilibrium at which the average fitness of the population is greater.

The S gene is essentially a sex gene with pins as females and thrums as males.
Thus, the results presented here apply to those plants and animals which have
a Y chromosome with a sex determining part, in which no crossing-over occurs,
and a part homologous to the X chromosome, in which crossing-over is allowed.

THEORY

The model presented here is the deterministic theory with discrete generations.
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It will be assumed throughout this paper that one form only mates with the
other form, that is pin X pin and thrum X thrum matings are illegitimate. For a
discussion of the selections process when pin X pin matings are allowed, see
BoomEr (1960) or Crossy (1949). Two loci are considered each with two alleles,
the 8 locus, which controls heterostyly or sex, and the A4 locus, on which selection
occurs. The selection values on the genotypes AA__, Aa__,andaa__ _ are
Wi, 1, and W, respectively. The recombination value between the two loci will
be denoted by .

Let p be the frequency of the As gametes in pins (females). In the thrums
(males), let x be the conditional frequency of the As gametes given _s, i.e.,

EE _*A_s T and y, the conditional frequency of the AS gametes given _§, i.e.
As as

fAS
fas + fas
produced from Table 1, the recurrence relationships for p, x, and y in the next
generation are found to be

. Using the selection values given above and the frequency of gametes

apx + Yop + Yox

P = TFapz F6(1=p) (1—=2) )
—__ apytp—rip=y) @)
1-+apy +b(1—p)(1—y)

s apytyTrip—y) (3)

Y T A ¥ apy F5A—p) (I—y)
wherea=W,—1and b=W, — 1.

From these equations the equations for Ap, Az, and Ay, are derived and are

— y(1—y)[ap—b(1—p)] +r(p—y)
Ap=P—P= 1+ apz + 5(1—p) (1—2) )

e ,_apy(l—x) = b(l—p)(—=y)x+p—z—r(p—y)
Ar=z—al= T apy T 5(~p) (1—7) ®)
sy =y g PUTP) @z = b(1=)] + 5(z=p) ©

1 +apy + b(1—p) (1—y)

The equilibrium values must satisfy the equations obtained by setting Ap =
Az = Ay = 0 in equations (4), (5), and (6). After multiplication by the denomi-
nators, the equations that the equilibrium values must satisfy are

0=p(1—p)[ax—b(1—x)] + 5(z—p) (7)
0=apy(l—x) —b(l—p)(I=y)z+tp—z—r(p—y) (8)
0=y(A—y)[lap —b(1—p)] +r(p—y) 9)

b b b
a+b’atb’ atb
satisfies equations (7), (8) and (9) and therefore it must be an equilibrium

It can be seen by substitution that the point (g, Z, ¥) =
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point. This point is the equilibrium point that would be obtained in one-locus
theory using the selection values W3, 1, W, for the genotypes A A, A a, and a a,
respectively.

The stability of this equilibrium point may be studied by considering an
expansion about this point and then making the equations linear by neglecting
quadratic or higher order terms. Toward this end, let p=p + &, =% + &,
and y = § -+ ;. Substituting these values for p, z, and y in equations (1), (2),
and (3); rearranging the resulting equations; and neglecting quadratic and
higher order terms in &, ., and &,; the following recurrence relationships for
£1, £2, and e3 are obtained.

b
(aa + /2) ! )82
£y — ( (10)
t+ (55
(—f—b~+1 )el+ )
ratb
g2 = ( (11)
1+ a+b
(__ab +r) b +1—~r)53
atb
83': ( ) (12)
1+ at b
These can be written in the matrix form
&1 = ct 14 ct+ 14 0 &1
€ = ct+1—r 0 ctr £a
£y’ == C+r 0 C'_l_l'_'r €3
1+c¢
ab
wherec——ﬁ

The system of equations (1), (2), and (3) will be stable at the equilibrium

; X . . . . A
point (p, £, 7) if and only if the eigenvalues of the above matrix, TTo e all
Iess than one in absolute value.

. _ A
The eigenvalugs of T e found to be
_1+2¢
A= 1+¢
= 1—2r++/(1—21)2+ 81 —2r) (14 2¢)
, =

4(1+¢)
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_1—2r—~/(T=2r)*+8(1 —2r)(1+2)
- 4(1+0)

If W, and W, are greater than one, then c is greater than zero. This implies A,
is greater than one and therefore the equilibrium point with heterozygotic
inferiority remains unstable regardless of any degree of linkage to the S locus.

If W, and W, are less than one, the only values allowing a stable heterozy-
gosity to exist in the one locus model, then

—1<a,b<0

As

and
~15 < ¢ <.

The inequality on ¢ shows that A, is restricted between zero and one. Since r < .5,
it is seen that A, is positive and if A, is positive and if A, is less than one, then A;
is less than one in absolute value. Therefore (p, £, #) will be stable if and only if

1—2r+~/(1—2r)2+8(1—2r)(1 +2¢) <1

A= A1 Fo) (13)
Upon rearranging equation (13), it becomes
—c(1+2¢)

Insight into the process of selection on a gene which is closely linked to the S
locus can be gained by using equation (14) to investigate a few simple cases.

CASE 1: The maximum value of r at which the point (p, £, #) is not stable:
Taking the dertvative of f(¢) with respect to ¢ and setting it equal to zero,
equation (15) is obtained.

0= df(c) —(1+4c)(4+6¢c)+(c+2)6_ —Bc+1)(ct+1)
T de 4(2+ 3¢c)® B (2 + 3c)?

The solutions to this equation are ¢ = —1 and ¢ = Since ¢ must lie between

0 and —14, the solution of interest is ¢ = — —!— At this value f(¢) = 1—18’ and

therefore the maximum value of r that is allowed for the point (p, £, ) to be
unstable is r = .0555.

CASE 2: Recessive lethal selection model:
_ Let the selection values W, and W, have the values 1 — s and 0, respectively.

The value of ¢ is therefore ¢ = — and equation (14) becomes

s
1+s
s(1—y3s)
2(1+s)(2~5s)
The regions of stability and instability on the r-s plane are shown in Figure 1a.

r>

CASE 3: Symmetric selection model:
Let the selection values W, and W, have the values W, = W, =1 — s. Then
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Ficure 1.—Stability of (p,£,7) for (a) recessive lethal selection and (b) symmetric selection.

(P, 2,9) = (.5, .5,.5) and c has the value ¢ = —¥4s. Substituting this value of ¢
into equation (14), one obtains

s(1-—s)

2(4 — 3s)

The regions of stability and instability for this selection model on the r-s plane
are shown in Figure 1b.

Thus far only the stability properties of the point (g, Z, ) have been examined
and nothing has been said about what happens if this point is unstable. The
complete solution of the system of simultaneous equations (7), (8) and (9) for
all the equilibrium values is in the realm of possibility. By solving equation (9)
for p and (8) for z in terms only involving y, then substituting these values into
equation (7); a seventh degree equation in y is obtained. Since three of the roots

r>

are known; y =0, y =1, and y = it can be factored. This results in a

b
at+b’
fourth degree equation, which is solvable. However, the solution of a fourth
degree equation is a complicated process and results in roots which have no neat
form.

Therefore, the procedure outlined above was not used to obtain the other
equilibrium points. Instead, the selection process defined by equations (1), (2),
and (3), with initial gene frequencies slightly off the equilibrium point (3, Z, 7),
was reiterated until an equilibrium was attained. The set of equilibrium values
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TABLE 2

Equilibrium values when (p, £, #) is unstable for the symmetric selection model

673

s 4 z ¥ WF WM w
r=.00
1 .263 .243 1.00 9378 9737 9558
2 278 235 1.00 .8765 9444 9105
3 294 .226 1.00 8161 9118 .8639
4 313 214 1.00 7571 8750 .8161
5 .333 .200 1.00 .7000 .8333 .7667
.6 357 182 1.00 6455 7857 7156
7 .385 158 1.00 5947 .7308 .6628
8 417 125 1.00 5500 .6667 .6083
9 455 .077 1.00 5154 5909 5531
r—=.01
A 420 412 733 .9486 9537 9512
2 .350 317 .898 .8891 9238 9064
3 340 282 938 8291 .8915 .8603
4 345 257 949 .7699 .8556 .8128
5 357 .236 956 7124 8151 7637
.6 375 215 959 6573 .7688 7130
7 .398 191 .959 .6060 .7153 .6607
.8 427 164 953 5607 .6529 .6068
.9 462 141 926 5256 5790 5523
r=.02
A1 — —_ — — — —_
2 431 414 714 .8976 .9059 9018
3 .386 341 841 .8392 .8733 .8562
4 377 303 .883 .7807 .8376 .8092
3 .381 275 .903 7233 7978 .7606
.6 .394 251 911 .6682 7525 7103
7 413 .228 911 .6166 7003 .6585
8 438 208 897 5710 .6394 6052
9 471 221 .832 5356 5671 5514
r=.03
A — — — —_ — —_
2 — — — — — J—
3 444 420 686 .8473 .8563 .8518
A4 412 357 .795 7899 .8207 8053
5 407 320 835 7332 7813 7572
6 443 292 .852 .6783 7368 .7075
7 428 270 852 .6267 6857 6562
.8 450 .261 .828 5810 6261 .6035
9 484 .343 .689 5455 5554 5504

thus obtained for the symmetric selection model with different values of r and s
is shown in Table 2 and for the recessive lethal model, in Table 3. Also included
in these tables are the average fitness values for pins (females) WF, for thrums
(males WM), and for the population W =14 WF + 1, WM.
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TABLE 3

Equilibrium values when (p %, §) is unstable for the recessive lethal selection model

s p z ¥ WF wM w
r=.00

1.000 1.000 .000 9000 1.0000 .9500

Nt 872 .859 1.000 9070 9128 9099
1.000 1.000 .000 .8000 1.0000 .9000

2 776 735 1.000 .8265 8448 .8357
1.000 1.000 .000 7000 1.0000 .8500

3 .703 623 1.000 .7565 .7893 7729
1.000 1.000 .000 .6000 1.0000 8000

4 6145 522 1.000 6957 744 7188
1.000 1.000 .000 5000 1.0000 7500

5 .600 429 1.000 6429 7000 6714
833 1.000 .000 5000 .8333 6667

.6 565 342 1.000 5976 6613 6294
714 1.000 .000 5000 7143 6071

7 537 258 1.000 5596 .6240 5918
.625 1.000 .000 5000 6250 5625

.8 517 177 1.000 5294 5862 5578
556 1.000 .000 5000 5556 5278

9 505 .092 1.000 5084 5459 5271

r—=.01

987 990 115 .9022 9775 .9398

A .888 .882 .966 .9085 9104 9094
983 990 055 .8052 9736 .8894

2 .789 .760 .966 .8295 .8403 8349
976 989 .036 7101 .9662 .8381

3 714 .651 964 .7607 .7833 7720
958 .989 .028 .6206 .9485 .7845

4 655 553 962 .7008 .7348 7178
904 .988 .025 5526 .8947 7237

5 .609 463 958 .6489 .6921 6705
799 983 .029 5253 7912 6582

.6 572 381 953 .6044 6527 6286
697 974 037 5168 .6903 .6035

Vi 544 307 944 5672 6148 5910
614 955 .056 5132 .6085 5608

.8 524 244 .924 5377 5767 5572
548 .893 119 5113 5430 5271

9 511 221 .861 5174 5361 5267
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TABLE 3—(Continued)

675

P z ¥ WF wM w
r=.02
974 978 270 .9042 9548 9295
.906 .905 919 .9091 9091 .9091
.967 .978 120 8102 9475 8789
804 .786 926 8317 .8366 8341
.953 977 .079 7195 9342 8268
726 .680 924 7642 7779 7711
.925 976 .062 6371 .9066 7719
.665 585 919 7054 7283 7169
.865 972 .058 5761 .8475 7118
618 500 912 6545 .6846 6695
773 962 064 5455 7573 6514
581 424 900 6108 6445 6276
681 942 .083 5326 .6676 .6001
552 361 879 5743 .6061 5902
.603 .898 128 5264 5920 5592
532 .323 .833 5455 5676 5565
536 .697 337 5233 5297 5265
522 438 .624 5255 5272 5264
r=.03
.950 .965 202 .8150 9214 .8682
.820 813 877 .8330 .8340 .8335
.931 .963 131 7284 9033 8159
.740 .710 878 7669 7734 7702
.896 .960 104 6517 .8696 .7606
677 619 871 .7093 7224 7159
834 .953 .098 5950 .8092 7021
629 .539 .859 6594 6777 6685
.749 .936 109 5634 7273 6453
590 472 839 6165 .6369 6267
.664 902 142 5478 6457 5968
561 424 802 5807 5980 5894
589 816 232 5399 5750 5575
542 428 .710 5524 5593 5559
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For each value of r and s there are two equilibrium points. Only one of these
equilibrium points is given for the symmetric selection model, the other being
(P, Z,¥), where p=1—p,7=1—z,and ¥y = 1 — y, which has the same values
for WF, WM, and W. Both equilibrium points are given for the recessive lethal
model.

There are two inferences that can be drawn from the data given in Tables 2
and 3. For a given value of s, the average fitness of the population is seen to
increase as r decreases. These differences in the average fitness of the population
could result in the selection for reduced recombination between the A locus and
the § locus. Secondly, the average fitness of pins (females) is always less than
the average fitness in thrums (males). If the fitness values are relative viabilities,
this would result in a ratio of pins to thrums less than one. This second inference
was noted by HarLpane and MoscHinsky (1939) when discussing partial sex
linkage in human inbreeding populations.

There is one other inference that can be drawn in the case of the recessive
lethal model, Table 3. It will be noticed that if a, the recessive allele, is coupled
to the S allele, a greater difference between WM and WF and a higher average
fitness W results compared to having A coupled to S.

If the point (p, £, ) is stable this does not rule out the possibility that there
are other equilibrium points which are also stable. An example of this using the
recessive lethal selection model is given in Table 4. The possibility of other stable
equilibrium points existing does not seem to extend greatly the range of r over
which an effect due to linkage to the § locus is observed. For in the example
presented in Table 4, (p, £, ) becomes the only stable equilibrium value at an r
value equal to r = .07.

CASE 4: Complete linkage to the S locus:
Since —14 < ¢ < 0 if 0 < W,, W, < 1, the right hand side of equation (14) is

always greater than zero. Therefore with r = 0, equation (14) is never satisfied
and the point (p, Z, §) is always unstable,
Substituting r = 0 into equations (7), (8), and (9), one obtains

Ap=0=p(1 —p) [ax—b(1 —2)] +.5(x—p) (15)
Ar=0=apy(1l—2)—b(l—p) 1 —y)z+p—=x (16)
Ay =0=y(1 —y) [ap—~b(1 —p)] (17)

From equation (17) it can be seen that Ay = 0 if and only if y =0, y =1, or

TABLE 4
Stable equilibria (W, =.5, W, =0 and r = .06)

p T ¥y WF WM w

.667 667 667 6667 .6667 6667
745 .849 319 .6453 .7075 6764
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b . . Y )
P=—T%" It can also be shown using equations (15) and (16)bthat ifp= PE
and Ap = Ax = Ay =0, then z and ¥ must also be equal to ey

b b b

atdb’ atb atb

above always to be unstable when r = 0. Therefore, the only stable equilibrium
values that are allowed if » = O must have y = Oory = 1.

This transforms the model presented here into the normal model of sex linked
selection. The selection values of A A, A a, and a a in the females become equal
to Wy, 1, and W,, respectively. The selection values in the male for the genotypes
A and a become W, and 1 if y =1 or 1 and W, if y = 0. The equilibrium values
under sex linked selection can be found in Wrieur (1970) and are not given
here.

However, the point (p, 2, 7) = ) has been shown

DISCUSSION

Darvingron (1958) considers the evolution of the Y chromosome to have
three phases: (1) the mutation of the sex gene or gene complex, (2) the reduction
of recombination between the sex gene and other genes in the heterogametic sex,
and (3) the erosion of the genes on the thus formed chromosome. The theory
presented here has bearing on the second phase of this evolution.

It has been shown, by the data in Table 2, and Table 3, that a decrease in r
increases the average fitness of the population. Since the pins (females) are
homozygous for s s, the value of r does not enter directly into the equations for
p’ or Ap. Therefore in the equations given in this paper, r only refers to the
recombination value in the thrums (males). The increase in average fitness due
to a reduction of r could result in the selection for low recombination in a similar
manner as Nex (1969 and 1967) has shown selection for reduced recombination
in the normal two locus models.

If the recombination was reduced so that no crossing-over with the X chromo-
some occurs, then by case four, all the genes on the Y chromosome must be fixed.
This could be the preliminary step of phase three.
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